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Although various susceptibility genes have been revealed to influence tobacco

smoking, the underlying regulatory mechanisms between genetic variants and

smoking are poorly understood. In this study, we investigated cis-expression

quantitative trait loci (cis-eQTLs) and methylation quantitative trait loci

(mQTLs) for 56 candidate smoking-linked genes using the BrainCloud cohort

samples. An eQTL was revealed to significantly affect EGLN2 expression in

the European sample and two mQTLs were respectively detected in CpG

sites in NRXN1 and CYP2A7. Interestingly, we found for the first time that the

minor allele of the single nucleotide polymorphism (SNP) rs3745277 located

in CYP2A7P1 (downstream of CYP2B6) significantly decreased methylation

at the CpG site for CYP2A7 (cg25427638; P = 5.31 × 10−7), reduced

expression of CYP2B6 (P = 0.03), and lowered the percentage of smokers

(8.8% vs. 42.3%; Odds Ratio (OR) = 0.14, 95% Confidence Interval (CI): 0.02–

0.62; P = 4.47 × 10−3) in a dominant way for the same cohort sample.

Taken together, our findings resulted from analyzing genetic variation, DNA

methylation, mRNA expression, and smoking status together using the same

participants revealed a regulatory mechanism linking mQTLs to the smoking

phenotype. Moreover, we demonstrated the presence of different regulatory

effects of low-frequency and common variants on mRNA expression and

DNA methylation.
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Introduction

Tobacco smoking is the leading preventable cause of
death throughout the world, and one of the three leading
components of the global disease burden (1). It causes more
than 7 million deaths annually, with about 10% of these
resulting from second-hand smoke. Even though most smokers
realize that smoking causes many types of cancer and affects
a person’s overall health (2), an estimated 1.1 billion people
still smoke cigarettes worldwide, and about 80% of these live
in low- and middle-income countries (1). Nicotine dependence
(ND), with an average heritability of 0.56 (3), is the primary
factor maintaining smoking behavior and predicting failures of
smoking cessation.

With efforts to identify genetic susceptibility loci for
smoking during the past decades, a total of 14 linkage
regions and 47 unique loci in 60 susceptibility genes have
been revealed (4, 5). Most variants identified within these
genetic susceptibility loci are located in non-coding regions, an
observation which is in line with findings from other complex
traits: i.e., variations in non-coding regulatory sequences
contribute to the genetics of complex traits (6). However, we
know little about the mechanisms by which most regulatory
variants act (7). With the rise of massively parallel sequencing
technologies, recent studies have characterized multiple levels
of gene regulation, including chromatin states, transcription
factor (TF) binding footprints, profiles or different epigenetic
marks, and posttranscriptional modifications that enable us
to probe the control of regulatory variants for transcriptional
processes (7, 8). Both cis-expression quantitative trait loci
(cis-eQTLs) and methylation quantitative trait loci (mQTLs)
mapped for these molecular phenotypes have been used to
nominate single nucleotide polymorphisms (SNPs), which
are then tested for their associations with different types
of drug addiction such as alcohol (9), heroin (10), and
smoking (11).

Hancock et al. (11) found several SNPs that were associated
with both CHRNA5 methylation and expression in addiction-
related brain regions and with the risk of ND across diverse
ancestry groups. However, unlike the comparatively well-
characterized chromosome 15q25.1 region, eQTLs and mQTLs
mapped to other ND candidate genes in human brain tissues
have rarely been reported. Further, because of the difficulties
of human brain specimen collection, datasets containing
regulatory phenotypes in the brain are limited. For a dataset with
the information on DNA methylation, mRNA expression, and
ND phenotypes collected from the same participants, it becomes
even more challenging. Here, for the first time, we intended to
link SNPs, DNA methylation, mRNA expression, and smoking
status together within a single cohort’s study. Although smoking
status is used less commonly than ND-related phenotypes
such as smoking quantity or the Fagerström Test for Nicotine
Dependence (FTND) score, this phenotypic measure could be

used to tag some of the same linkage regions and susceptibility
genes as efficiently as other ND-related measures (4, 5).

This study had the following three objectives: (1) to
determine cis-regulatory loci (eQTLs and mQTLs) for a
collection of ND susceptibility genes; (2) to characterize
significant cis-eQTLs and mQTLs by integrating regulatory
features from the Roadmap Epigenomics (12), the Encyclopedia
of DNA Elements (ENCODE) (13), and Genotype–Tissue
Expression (GTEx) (14) Projects; and (3) to combine cis-
regulatory variants, DNA methylation, mRNA expression, with
smoking status to explore their biological mechanisms.

Materials and methods

The BrainCloud cohort’s study samples

We used the BrainCloud1 cohort’s study samples to identify
genetic variants associated with expression and methylation for
56 ND susceptibility genes (5). The SNP genotypes of each
sample were either obtained directly from genotype arrays
(Illumina Human1M-Duo and HumanHap650Y) provided by
the website or imputed on the basis of the 1000 Genomes
Project Phase 3 reference panel. Data on mRNA and DNA
methylation were available from the post-mortem prefrontal
cortex of human participants who had no neuropathologic
or neuropsychiatric diagnoses and no reported alcohol or
other drug abuse or positive toxicology results (15, 16). For
detailed information on the 56 genes of interest located in
46 genetic susceptibility loci in this study, please refer to
Supplementary Table 1. Because the CHRNA5/A3/B4 gene
cluster has been reported by others (11) on the same dataset,
we excluded this region from the current study. We obtained
the data via the database of Genotypes and Phenotypes (dbGaP;
Accession Number phs000417.v2.p1) and the BrainCloud
project website (see text footnote 1).Gene expression data
also are available through the dataset deposited in National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) with series number GSE30272.

In the original dataset, data on SNP genotypes are available
for 270 participants, whereas mRNA expression and DNA
methylation data are available only for subsets of 269 and
108 subjects, respectively. To eliminate significant effects of
developmental life stages and be consistent with the typical age
of onset for smoking, only post-childhood subjects (i.e., older
than 10 years) were included in this study, which resulted in
178 [94 African Americans (AAs) and 84 European Americans
(EAs)] and 60 (31 AAs and 29 EAs) samples with both
expression and methylation data, respectively. Please refer to
Table 1 for sample characteristics.

1 http://www.libd.org/braincloud
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TABLE 1 Characteristics of study participants.

Sample mRNA expression DNAmethylation

AA EA AA EA

Sample size: N 94 84 31 29

Age (years): mean (SD) 39.8 (15.9) 36.8 (18.3) 44.2 (18.9) 43.3 (19.5)

Female: N (%) 34 (36.2) 25 (29.8) 15 (48.4) 13 (44.8)

Smoker: N (%) 30 (31.9) 16 (19.0) 8 (25.8) 6 (20.7)

PMI (hours): mean (SD) 33.3 (15.6) 27.4 (15.1) 33.8 (15.4) 29.0 (15.3)

pH: mean (SD) 6.6 (0.3) 6.5 (0.3) 6.6 (0.3) 6.5 (0.3)

RIN: mean (SD) 8.1 (0.7) 8.2 (0.8) 8.1 (0.6) 8.0 (1.0)

AA, African American; EA, European American; SD, standard deviation; pH, potential
of hydrogen; PMI, post-mortem interval; RIN = RNA integrity number.

Genome-wide covariate and surrogate
variable analysis

We first analyzed the contribution of each of the
demographic (age, sex, and race) and technical [post-mortem
interval, pH, RNA integrity number (RIN), and batch]
covariates to the degree of genome-wide expression and
methylation. The Kolmogorov-Smirnov (KS) test was used to
capture the differences in the correlation p-value distributions
for each covariate. Except for covariate effects of demographic
variables, we paid special attention to post-mortem quantitative
factors such as interval, tissue pH status, RIN, and batch
effects. Because of the significant minor allele frequency (MAF)
differences observed between the AA and EA samples (4), a
robust linear regression model with adjustment for covariates
was implemented for each ethnic group separately. We also
performed surrogate variable analysis on the obtained residuals
across the whole genome using the R package “sva” (17). No
surrogate variable was found in either AA or EA samples, which
verified the elimination of known and unknown factors after
the above covariate adjustment. These residuals, instead of the
original raw levels, were used for further data analysis.

Selection of probes and genotype
imputation

For expression data of the 56 genes included in the study, 6,
34, and 17 genes had 0, 1, or > 1 expression probes, respectively.
For each of those 17 genes with more than one probe, the
specific probe covering all transcripts of the target gene and
showing the highest intensity was selected, expect for COMT
and DLC1 genes, for which we made our decisions based
solely on probe position and intensity, respectively. All the 50
selected expression probes contained no SNP in their sequences
(Supplementary Table 2).

For the methylation data, 98 CpG sites were identified and
measured for 50 of the 56 genes (Supplementary Table 2).

The genotype imputation interval for each gene was assigned
according to the widest genomic range determined by its start
and end positions and the CpG site position(s), plus 1 Mb on
both sides (16, 18). If the intervals for several adjacent genes
overlapped, an all-inclusive genomic interval was chosen on the
corresponding chromosome for imputation.

Genotype imputation for each genomic interval was
conducted with reference to the haplotype panel of the 1000
Genomes Project Phase 3 integrated variant set release2 using
IMPUTE2 with the default settings (19) (Supplementary
Table 3). We used a cutoff of 0.3 for the “info” metric,
comparable to the r-squared metrics implemented by other
programs such as MaCH and Beagle (20) to remove poorly
imputed variations (21, 22). To have the same set of SNPs for
both ethnic samples, any loci with a call rate of < 95% and a
Hardy-Weinberg equilibrium (HWE) p-value of < 0.001 was
excluded from the combined sample for either expression or
methylation data.

Association quantitative trait loci
analysis and multiple testing correction

Genotype dosage data, including the imputed variants after
quality control measures, were analyzed for associations with
expression and methylation phenotypes (the residuals described
in the preceding section) using PLINK (23). Linear regression
analysis was performed to test for correlation between the
residuals and the number of minor alleles for each variant under
the additive genetic model. From this analysis, an asymptotic
p-value from the Wald statistic was obtained as a measure of
association for each variant with any extent of expression or
methylation of a given gene.

To correct for the number of SNPs tested for each
phenotype, a region-wide empirical p-value was computed
for the asymptotic p-value for each variation by using 1,000
permutations provided in PLINK (23). To correct for the
number of comparisons being investigated for expression
or methylation, a false discovery rate (FDR) threshold was
calculated on the basis of the region-wide empirical p-values by
using the fwer2fdr function of the R package “multtest.”

Variant annotation and post hoc
analysis

For those genetic loci with the number of aggregated
QTLs n ≥ 10, linkage disequilibrium (LD) blocks were defined
following Gabriel et al. (24) in Haploview (Supplementary
Figures 1–3). Tracks from the 1000 Genomes Browser3 were

2 https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html

3 http://www.internationalgenome.org/1000-genomes-browers/
index.html
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added to illustrate the relative position of each QTL with respect
to its corresponding expression or methylation probes and other
regulatory features (i.e., promoter regions and TF binding sites)
found in multiple cell lines.

Because the cis-regulatory variants in NRXN1, CYP2A7,
and EGLN2 account for the majority of the total significant
QTLs identified, we conducted post hoc analysis for these three
genes. Pearson correlations between corresponding methylation
and expression extents were computed. On the basis of the
“smoke at death” and “smoking history” information available
for this sample, we classified smoking status for each subject
as a smoker if he/she smoked at death with a positive or
missing smoking history or did not smoke at death but had
a positive smoking history and non-smoker if both his/her
smoking measures were negative. A total of 36 subjects with
missing smoking history plus missing or negative smoking at
death were considered as missing smoking status. Please find
specific numbers (percentages) of smokers in Table 1.

Student’s t-test was used to compare methylation or
expression differences between subjects with distinct
race, smoking status, or genotypes. Fisher’s exact test was
implemented in the analysis of contingency tables formed by
any combination of subjects’ ethnic identity, smoking status,
and variant minor allele copies. All the above-mentioned
statistical tests were performed in R.

Results

Cis-methylation quantitative trait loci
mapping analysis for 56 susceptibility
genes

We found 138 cis-mQTLs in 10 genes (NRXN1, PDE1C,
CHRM2, TAS2R38, CHRNA2, DBH, PTEN, CHRM1, NRXN3,
and CYP2A7) with region-wide significance; all of which were
ethnicity-specific except for CYP2A7 (Table 2). Phenotype-wide
significant variants accounted for 102 of them. Among the 138
region-wide significant variants, 42 and 68 are for CpG sites in
NRXN1 (cg10917619) and CYP2A7 (cg25427638), respectively.
The cis-mQTL for NRXN1, with all the associated variants in
complete LD, was EA-specific, whereas the one for CYP2A7 was
observed in both the AA and EA samples. Although the cis-
mQTLs for CYP2A7 formed more than one haplotype block, the
D’ values among them are high (D’ ≥ 0.75 in AAs and ≥ 0.63
in EAs). Corresponding LD plots are shown in Supplementary
Figure 1 for EGLN2 and Supplementary Figure 2 for NRXN1
in EAs, and Supplementary Figures 3A,B for CYP2A7 in AAs
and EAs, respectively. Furthermore, 56 of the 68 region-wide
significant variants in the CYP2A7 mQTL showed phenotype-
wide significance in both ethnic groups.

Annotations from HaploReg v4.1 corroborated the
regulatory potentials of the significant cis-mQTLs for NRXN1

and CYP2A7 (Table 2 and Supplementary Tables 4A,B).
According to the core 15-state model from the Roadmap
Epigenomics Project (12), it was predicted that 13 of the
41 variants in NRXN1 would show significant association
with either enhancer or both enhancer and promoter histone
marks in human brain tissues. A core set of five chromatin
marks (H3K4me3, H3K4me1, H3K36me3, H3K27me3, and
H3K9me3) assayed in 127 epigenomes was concatenated to
train a ChromHMM model and compute posterior probabilities
of 15 chromatin states for each variant in the Roadmap
Epigenomics Project (12). Additionally, almost all of the
41 variants except rs13031157, rs17573587, rs17514717, and
rs13023341 were predicted to alter one or more of the regulatory
motif indicatives of TF binding sites, among which rs17514766
was detected to bind to SP1 in H1-hESC cells (13). Moreover,
16 of the 41 variants showed one to three independent QTL
hits in the genome-wide repository of associations between
SNPs and phenotypes (GRASP)4(25) either as mQTLs for the
same CpG site (i.e., cg10917619) in the temporal cortex, frontal
cortex, or caudal pons (22) or as loci significantly associated
with blood metabolite concentrations or ratios (26). Four
variants, i.e., rs6545187, rs7574611, rs13031157, and rs7594170,
significantly affected NRXN1 gene expression in nerve tibial
tissues based on the GTEx Project results (14). Among them,
rs7574611 was discovered as both a cis-mQTL and an eQTL,
and rs7594170 was significantly associated with both the
serum concentration of 17-dimethylurate and NRXN1 gene
expression levels in independent studies (14, 22, 26). According
to NCBI dbSNP functional annotation, all of the 41 variants
within the range of 121 Kb (distance between the two mQTLs
furthest away) are intronic except for rs67661616, which is
within the 5′- untranslated region (UTR) region of NRXN1
(Supplementary Figure 2).

Unlike the cis-mQTLs for NRXN1, 12 (18%) of the 67
variants (among them, rs373754258 is missing for HaploReg
annotation) for CYP2A7 showed significant associations
with promoter or enhancer histone marks or DNase-
hypersensitive sites in human induced pluripotent stem
cells (iPSCs), embryonic stem cells (ESCs), or H1-derived
neuronal progenitor cultured cells (ESDRs) (Table 2 and
Supplementary Tables 4A,B) (12). However, similar to NRXN1,
61 of the variants were predicted to change one or more of the
regulatory motifs. Eight variants affected TF binding in ChIP-
Seq experiments of the ENCODE Project (13). The involved
TFs include glucocorticoid receptor (GR), the CCCTC-binding
factor (CTCF), the cohesion ring complex subunit RAD21,
transcriptional co-activating protein P300, signal transducer
and activator of transcription 3 (STAT3), estrogen receptor
alpha (ERalpha_a), forkhead box protein A1 (FOXA1), and
trans-acting T-cell-specific TF GATA-Binding Protein 3

4 http://grasp.nhlbi.nih.gov/Overview.aspx
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TABLE 2 Significant CpG-SNP pairs with region- or phenotype (pheno)-wide cis associations in the AA and EA samples.

Gene CpG
methylation
probe ID

RefGene
Group

SNP ID
(A1/A2)

SNP
position

Distance
to CpG

AA (N = 31) EA (N = 29)

A1
Freq

R2 Region
-wide P

Pheno
-wide P

A1
Freq

R2 Region
-wide P

Pheno
-wide P

NRXN1 cg10917619 5′-UTR rs7567632 (C/T) 51,198,384 –57,243 0.10 0.13 1 1 0.19 0.51 0.033 0.054

rs6545187 (C/T) 51,200,546 –55,081 0.23 0.23 0.098 1 0.40 0.55 0.015 0.03

rs7574611 (A/C) 51,214,993 –40,634 0.16 0.27 0.099 1 0.34 0.70 0.001 0.002

rs7594170 (G/A) 51,237,767 –17,860 0.35 0.20 1 1 0.40 0.61 0.004 0.008

rs2163018 (T/C) 51,304,238 48,611 0.11 0.14 1 1 0.19 0.51 0.033 0.066

PDE1C cg22131691 Body rs73303752 (G/A) 31,495,561 –615,427 0.11 0.55 0.038 0.067 0 NA 1 1

CHRM2 cg04748704 TSS1500 rs35259000
(C/CTA)

13,715,061 599,818 0.13 0.54 0.015 0.024 0.07 0 1 1

rs1528099 (A/G) 137,167,984 614,741 0.26 0.50 0.038 0.07 0.07 0 1 1

TAS2R38 cg25481253 1s t Exon rs6949261 (G/C) 141,980,921 307,537 0.42 0.46 0.05 0.07 0.09 0.03 1 1

cg03017475 rs1110074 (T/C) 141,210,054 –464,287 0.24 0 1 1 0.47 0.46 0.019 0.031

rs4726505 (A/C) 141,949,743 275,402 0.41 0.50 0.017 0.032 0.09 0 1 1

CHRNA2 cg02953306 5′-UTR rs78908411 (T/A) 27,331,607 –5,019 0.07 0.55 0.009 0.018 0 NA 1 1

DBH cg25020204 rs117956167
(G/C)

136,466,632 –33,602 0.02 0 1 1 0.04 0.52 0.043 0.066

PTEN cg01228636 TSS1500 rs140133143
(AT/A)

89,751,172 129,399 0 NA 1 1 0.04 0.53 0.025 0.044

rs118039301
(A/C)

89,759,243 137,470 0 NA 1 1 0.04 0.53 0.025 0.05

cg16687447 5′-UTR rs185979581
(T/C)

88,920,089 –703,247 0.04 0.83 0.007 0.014 0 NA 1 1

CHRM1 cg13530039 TSS1500 rs2736595 (G/A) 61,720,538 –969,019 0.23 0.53 0.035 0.034 0.79 0.05 1 1

rs2524294 (G/A) 61,721,234 –968,323 0.23 0.53 0.035 0.045 0.79 0.05 1 1

NRXN3 cg15572745 5′-UTR rs144623790
(AAT/A)

78,026,973 –843,259 0.25 0.01 1 1 0.05 0.46 0.044 0.066

CYP2A7 cg25427638 rs10500282 (C/T) 41,508,442 119,085 0.39 0.56 0.002 0.004 0.29 0.27 0.65 0.787

rs11673270 (C/A) 41,520,844 131,487 0.48 0.49 0.009 0.018 0.26 0.32 0.38 0.505

rs3745275 (A/G) 41,531,705 142,348 0.42 0.59 0.0001 0.002 0.31 0.48 0.014 0.028

rs3745277 (A/G) 41,531,915 142,558 0.48 0.54 0.003 0.006 0.22 0.43 0.058 0.088

rs10409701 (A/G) 41,537,868 148,511 0.40 0.73 0.0001 0.002 0.21 0.52 0.009 0.018

Genomic positions are based on the NCBI Build 37/hg19 assembly. Significant region- and pheno-wide p-values are given in bold. SNP annotations were obtained from HaploReg v4.1
(http://www.broadinstitute.org/mammals/haploreg/haploreg.php).
SNP, single nucleotide polymorphism; AA, African American; EA, European American; A1 Freq, allele frequency of A1; R2 , regression r-squared; Region-wide p, corrected empirical
p-value based on 103 max (T) permutations with correction for the number of variants tested for cis associations at this CpG site; Pheno-wide p, region-wide p-value after correcting for
the 107 CpG sites tested using augmentation multiple testing procedure.

(GATA3). Regarding the GRASP results (25), associations
between 15 variants and methylation of cg25427638 were
replicated in cerebellum, caudal pons, and frontal and temporal
cortex tissues of an independent study with 150 neurologically
normal Caucasian subjects (22). The 67 variants for CYP2A7
overlap with CYP2B6 and CYP2A7P1 in a region spanning 35
Kb (Supplementary Figures 3A,B). Looking at the associated
variants’ effect sizes as measured by R2, the effects of these
cis-mQTLs are larger in AAs than in EAs (Table 2).

Cis-expression quantitative trait loci
mapping

As shown in Table 3, six cis-eQTLs were detected
in the AA sample for six genes based on region-wide

significance. Two of these variants passed the phenotype-
wide significance threshold: rs73386029 for CACNA2D1 and
rs139998364 for HTR5A. Fifty-six region-wide significant cis-
eQTLs were identified in the EA sample for BDNF and EGLN2,
among which 54 variants were significantly associated with
the expression of EGLN2, measured by probe hHC023008
(Table 3). All but 1 of the 54 variants for EGLN2, forming
one LD block, showed phenotype-wide significance as well
(Supplementary Figure 1).

Among the 50 cis-eQTLs for EGLN2, 23 showed
chromatin states of promoter, enhancer, or DNase I
activity cluster in human brain tissues (Table 3 and
Supplementary Table 4C). One or more regulatory motifs
were changed for 48 of the 54 variants (27). DNA polymerase
II (POL2) and c-Myc binding sites were influenced by
15 variants in different cell lines based on the ENCODE
Project (13).
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Connection of genetic variation,
methylation, expression, and smoking
status

As shown in clustering of cis-mQTLs in CYP2B6 and
CYP2A7P1, significant correlation between the mQTL-
associated methylation site at CYP2A7 (cg25427638) and
CYP2B6 expression and significantly different cg25427638
methylation and CYP2B6 expression between smokers and
non-smokers were observed. We picked one genotyped variant
(rs3745277), which had strong biological evidence based on
HaploReg v4.1 (28) results (Table 3), to check simultaneously
the effect of its minor allele on cg25427638 methylation,
CYP2B6 expression, and smoking status. As shown in Figure 1,
subjects with one or two copies of the minor allele (A) of
rs3745277 (dominant effect) had a significant decrease in their
methylation at cg25427638 (P = 5.31 × 10−7), a weak decrease
in their expression of CYP2B6 (P = 0.03), and a significantly
lower percentage of smokers (8.8 vs. 42.3%; OR [95% CI] = 0.14
[0.02–0.62]; P = 4.47 × 10−3). We performed the same sets of
analysis for AAs and EAs separately, and similar patterns of
results were observed (Figure 2).

Discussion

In this study, we performed cis-eQTL and mQTL analysis
for 56 smoking susceptibility genes in human brain. Six and
two cis-eQTLs were detected for DRD1, CACNA2D1, CHRM2,
HTR5A, DNM1, and C14orf28 in the AA sample and for
BDNF and EGLN2 in the EA sample, respectively. Except for
TAS2R38, which has two detected cis-mQTLs, one cis-mQTL

for each gene was found for PDE1C, CHRM2, CHRNA2, PTEN,
CHRM1, and CYP2A7 in the AA sample; and six cis-mQTLs
were located for genes NRXN1, TAS2R38, DBH, PTEN, NRXN3,
and CYP2A7 in the EA sample, respectively. Only the cis-mQTL
for CYP2A7 is the same across the two ethnic samples. Among
the QTLs determined, the cis-eQTL for EGLN2 accounts for
54 (87%) of the 62 total significant variants for all the cis-
eQTLs; the cis-mQTLs for NRXN1 and CYP2A7, respectively,
make up 42 (30%) and 68 (49%) of the 138 significant cis-
mQTLs.

All 50 significantly associated variants within the cis-
eQTL of EGLN2 had strong biological evidence that it
affected gene expression according to HaploReg v4.1
(Supplementary Table 4C). For example, rs34406232 is at
an active transcriptional start site (TSS) not only in neuronal
progenitors, neurons, and astrocytes (12, 13), but also in
eight human brain regions including dorsolateral prefrontal
cortex (12). It is also within a DNase I-hypersensitive site,
which is characterized by open and accessible chromatin for
active genes. More importantly, in H1-hESC cells, this variant
interacts with POL2 (13) and changes a regulatory motif for
Evi-1 (27), which positively regulates transcription from the
POL2-binding promoter. Additionally, rs34406232 resides in
the 5′-UTR region of EGLN2 based on dbSNP annotation, and
recent studies suggest that transcriptional regulation near the
5′-ends of genes exerts the strongest control of gene expression
(7). All this evidence makes rs34406232 highly likely to be a
functional regulatory variant for EGLN2 expression. However,
because nearly all the 54 cis-eQTLs are in complete LD (assessed
by D’) with each other (Supplementary Figure 1), and they
may cause changes in EGLN2 mRNA expression individually
or collectively, at present we cannot pin down rs34406232 as
the causal variant.

TABLE 3 Significant expression probe-SNP pairs with region- or phenotype (pheno)-wide cis associations in the AA and EA samples.

Ethnicity Gene Expression
Probe Oligo

ID

SNP ID
(A1/A2)

Variant
Position

Distance to
TSS

A1 Freq R2 Region-wide
P

Pheno-wide
P

AA (N = 94) DRD1 hHC010798 rs147731662
(T/C)

175600872 729,709 0.01 0.21 0.046 0.092

CACNA2D1 hHC009943 rs73386029 (C/A) 82036439 –36,592 0.02 0.25 0.017 0.034

CHRM2 hHC005116 rs324650 (A/T) 136693661 140,262 0.67 0.17 0.042 0.084

HTR5A hHC008651 rs139998364
(A/G)

155628744 766,134 0.01 0.46 0.018 0.036

DNM1 hHC021993 rs3824415 (A/G) 130145624 –820,039 0.22 0.19 0.034 0.068

C14orf28 hHR004782 rs78410784 (G/C) 45639985 273,478 0.08 0.18 0.036 0.072

EA (N = 84) BDNF hHC017923 rs72887755 (A/G) 27801789 58,493 0.02 0.22 0.035 0.062

rs116860953
(G/A)

27930226 186,930 0.02 0.21 0.031 0.037

EGLN2 hHC023008 rs4802088 (T/C) 41255768 –49,377 0.03 0.30 0.002 0.004

rs34406232 (A/C) 41305530 385 0.02 0.29 0.003 0.006

Genomic positions are based on the NCBI Build 37/hg19 assembly. Significant region- and pheno-wide p-values are in bold. Variant annotations were obtained from HaploReg v4.1
(http://www.broadinstitute.org/mammals/haploreg/haploreg.php).
SNP, single nucleotide polymorphism; AA, African American; EA, European American; TSS, transcriptional start site; A1 Freq, allele frequency of A1; R2 , regression r-squared; Region-
wide p, corrected empirical p-value based on 103 max (T) permutations with correction for the number of variants tested for cis associations with this expression probe; Pheno-wide p,
region-wide p-value after correcting for the 51 expression probes tested using augmentation multiple testing procedure.
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FIGURE 1

Comparisons of cg25427638 methylation, CYP2B6 expression, and smoker percentage between subjects with zero copies of rs3745277 minor
allele and those with either one or two copies. The two boxplots indicate methylation at cg25427638 (A) and expression for CYP2B6 (B) for
subjects with 0 or 1/2 copies of rs3745277 minor allele. (A) Student’s t-test results are included. Because of the existence of outliers, as shown in
the top panel, robust statistical methods were implemented to confirm the t-test results. The barplot in (C) illustrates smoker and non-smoker
percentages for each genotype. Fisher’s exact test was performed to obtain the p-value for this panel. All the p-values are significant (P < 0.05).

FIGURE 2

Comparisons of cg25427638 methylation, CYP2B6 expression, and smoker percentage between subjects with zero copies of rs3745277 minor
allele and those with either one or two copies in AAs or EAs, respectively. The four boxplots indicate methylation at cg25427638 (A) and
expression for CYP2B6 (B) for subjects with 0 or 1/2 copies of rs3745277 minor allele (A) in the AA (left) or EA (right) ethnic group. Student’s
t-test results are included. The barplots in (C) illustrate smoker and non-smoker percentages for each genotype group in AAs or EAs. Fisher’s
exact test was performed to obtain the p-values for this panel. P-values < 0.05 are considered significant.

When we compared EGLN2 expression in smokers and
non-smokers, no significant difference was detected, which is
not surprising, because variants in EGLN2 are reported to
be associated with cigarettes smoked per day (CPD), breath
carbon monoxide (CO), ND, smoking efficiency (CO/CPD),
and nicotine metabolite ratio (NMR) (29–31) but not directly
with smoking status. Bloom et al. (30) indicated that multiple
SNPs in high LD with rs3733829, a genome-wide association
study (GWAS) hit but without clear functional consequence
prediction (29), are co-localized in the 5′-UTR or promoter
region and may have impact on EGLN2 gene transcription
in subjects of European descent. It is even more interesting
that Clark et al. (32) captured the EGLN2 region followed
by next-generation deep sequencing in 363 individuals of
European ancestry and identified variant sets with regulatory
annotations such as promoters and chromatin states involving
or flanking active TSSs significantly associated with CPD.

Eight of the 50 cis-eQTLs for EGLN2 in this study were
detected by Clark et al. with similar MAFs (32) and were
included in both individual and sets of variants analysis.
However, significant association with CPD was found only
for different variant sets. These results provided us great
confidence in the imputation quality of IMPUTE2 (33) for
low-frequency variants and encourage us to believe that the
cis-eQTLs determined here affect EGLN2 gene transcription
in aggregate, which then influences CPD or other smoking
measures mentioned above.

Although the 41 cis-mQTLs for NRXN1 were
overrepresented with enhancer and promoter histone marks
in human brain tissues (12), 36% of the variants were
replicated as mQTLs for the same CpG site in three human
brain regions by an independent study (22), and four of
them affected NRXN1 gene expression in tibial nerve tissues
(14). None of these variants was identified as cis-eQTL in
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this study (Supplementary Table 4A). We did not detect a
correlation between methylation at cg10917619 and NRXN1
gene expression nor a difference of methylation at this site
between smokers and non-smokers. The two non-synonymous
rare variants [p.R206L and rs77665267 (p.T274P)], reported
by our group as having an aggregate effect on smoking status
in 1430 unrelated EA subjects, are 903 Kb away from the
cis-mQTL, which are more likely to affect the encoded protein
sequence directly (34). The SNP rs2193225 and a major
haplotype that includes this SNP, 32 Kb downstream from
the cis-mQTL, were significantly associated with different ND
measures in an EA family sample with 671 subjects (35). Bierut
et al. (36) nominated three SNPs (rs12623467, rs12467557, and
rs10490162) within the mQTL region to be associated with ND
status in smokers.

The cis-mQTL for CYP2A7 was identified in both AA and
EA samples. Fifteen of the variants were replicated for the
same CpG site in four human brain regions by an independent
study (22). But unlike the QTLs for EGLN2 and NRXN1, this
QTL is 116 Kb away from the CpG site (cg25427638), not
overlapping with the target gene CYP2A7. Yet architectural
proteins including cohesin (subunit RAD21) and CTCF were
seen to be bound at several loci of the cis-mQTL, which can
bring enhancers and promoters together that are located far
apart in linear sequence (37). When we tried to correlate
methylation at cg25427638 with gene expression, CYP2B6
instead of CYP2A7 and CYP2A6 showed statistical significance
(r2 = 0.37; P = 0.004). The specific mechanisms of the biological
effect of the cis-mQTL cg25427638 on DNA methylation
in CYP2A7 and CYP2B6 gene expression are not clear.
Further, CYP2B6 expression was significantly different between
smokers and non-smokers, whereas methylation of cg25427638
indicated a nominally significant difference. Observation of
these differences may benefit from a larger sample, as no
difference was found in the frontal cortex in a previous study
of 26 subjects (38). By using one genotyped variant with strong
biological evidence (rs3745277), we demonstrated its effect
on cg25427638 methylation, CYP2B6 expression, and smoking
status simultaneously. Other variants within the cis-mQTL are
expected to have similar regulatory effects on methylation,
expression, and smoking status because of the high LD among
the 68 variants. As in the cis-eQTL for EGLN2, we cannot
identify causal variant(s) within the region.

Several variants in this region are reported to be associated
with either CPD or nicotine metabolism, including rs4105144,
a CPD GWAS hit (39); rs7260329, an NMR GWAS hit
(31); and rs8109525, associated with nicotine metabolism
independent of the well-studied non-synonymous variants
rs3211371, rs3745274, and rs2279343 (CYP2B6∗5 and ∗6) (40).
Additionally, 16 CpG sites within 19q13 were affected by the
NMR GWAS hit (rs7260329) using whole blood DNA (31),
and rs8109525 was associated with differences in CYP2B6
mRNA expression in liver biopsy samples (40). However, neither
rs7260329 nor rs8109525 was in LD with the cis-mQTL in the

BrainCloud cohort; rs4105144 was not available. None of the
three variants was in LD with the mQTL in either the 1000
Genomes AFR or the EUR samples. Regulatory mechanism
differences among tissues (blood, brain, and liver in this case)
may explain the discrepancy (7). The three functional variants
(rs3211371, rs3745274, and rs2279343) unfortunately were not
available in this study either. Even though rs2279343 and
rs3211371 were not in LD with the mQTL in the AFR and EUR
samples of the 1000 Genomes Project, rs3745274 was found to
be in high LD (r2

≥ 0.8) with 4 and 8 mQTLs in the 1000
Genomes AFR and EUR samples, respectively. It is noted that
two missense SNPs rs3745274 and rs2279343 were reported to
be linked, and these two functional variants were observed to
affect expression and activity of CYP2B6 gene in liver (41), but
the cis-mQTL could have an independent effect from them on
CYP3B6 gene expression in human brain.

There are several limitations of this study. First is sample size
although even using modest sample sizes (60–100 individuals),
early studies found a large number of genetic associations
with differences in gene regulation (7). We acknowledge that
more cis-eQTLs and mQTLs are anticipated if larger samples
become available. Second is the inability to map trans-regulatory
variants, although heritability studies suggest that more than
half of the genetically explained variance in gene expression
is attributable to trans-acting variants (42). However, we have
to acknowledge that reliable detection of trans-QTLs has been
challenging in humans because of the smaller effect of trans-
acting variants compared with cis-QTLs and a higher statistical
penalty for multiple testing (7). Besides enlarging the sample
size, focusing on QTLs affecting expression of putative trans-
regulatory elements (thereby minimizing the number of tests
performed) might be another promising approach (7). Third,
although post-mortem prefrontal cortex gray matter tissue
homogenates were used to measure mRNA expression and DNA
methylation in the BrainCloud cohort, a highly relevant brain
region for studying smoking (43–45), previous research has
shown that active regulatory regions and non-coding transcripts
often are cell- and tissue-specific, and regulatory mechanism
differences between tissues or different cell types are of a
much larger magnitude (7). Considering that the physiological
response to nicotine is a complex process involving multiple
brain regions (46) and that the brain is built from a large number
of cell types (47), in-depth investigation of gene regulation in
different brain regions and cell types is anticipated, for example
by using the PsychENCODE data (48). Fourth, we employed
a relatively simple and straightforward group comparison to
reveal those significant eQTLs and mQTLs, which might be not
as robust as we wish as such approach could not well control
the potential confounders if they might exist in the data. Finally,
the smoking status phenotype derived from two variables in
the original study is primitive. The limited sample size of this
study may magnify the sampling error for this phenotype,
and statistical power may be reduced to connect molecular
measurements with smoking status compared with other more
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refined and commonly used ND measures, e.g., CPD, FTND,
and ND classification based on the Diagnostic and Statistical
Manual of Mental Disorders (DSM).

Despite these limitations, this is one of a few studies
integrating data on genetic variation, DNA methylation, mRNA
expression, and smoking phenotypes for the same cohort. The
connection we found among cis-mQTL, CpG site methylation
in CYP2A7, CYP2B6 expression, and smoking status received
vigorous support from projects enabling parallel sequencing of
regulatory features; i.e., the Roadmap Epigenomics, ENCODE,
and GTEx projects. Further studies are warranted to test causal
relations among these regulatory layers or to weave other
factors into the picture such as chromatin accessibility, histone
modifications, and TF binding using one cohort if possible. In
this way, we are able not only to learn about mechanistic steps
between genetic variation and smoking effectively, but also to
narrow down the GWAS variant list efficiently.
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SUPPLEMENTARY FIGURE 1

Linkage disequilibrium (LD) D’ plot of the 54 eQTLs for EGLN2 gene in
BrainCloud EA sample. The LD D’ plot was drawn using Haploview
(https://www.broadinstitute.org/scientific-community/science/
programs/medical-and-population-genetics/haploview/haploview).
Gene annotation and regulatory feature tracks were obtained from the
1000 Genomes Browser (http:
//www.internationalgenome.org/1000-genomes-browers/index.html).
The black vertical bar indicates position of expression probe
hHC023008. Red boxes highlight eight rare variants, which were found
to be collectively affecting smoking quantity by Clark et al. (32). The
yellow star marks the variant with the strongest biological evidence
based on HaploReg v4.1 results
(http://www.broadinstitute.org/mammals/haploreg/haploreg.php).

SUPPLEMENTARY FIGURE 2

Linkage disequilibrium (LD) D’ plot of the 42 mQTLs for NRXN1 gene in
BrainCloud EA sample. The LD D’ plot was drawn using Haploview
(https://www.broadinstitute.org/scientific-community/science/
programs/medical-and-population-genetics/haploview/haploview).
Gene annotation and regulatory features tracks were obtained from the
1000 Genomes Browser (http:
//www.internationalgenome.org/1000-genomes-browers/index.html).
Black vertical bar indicates position of methylation probe cg10917619.

SUPPLEMENTARY FIGURE 3

Linkage disequilibrium (LD) D’ plot of the 68 mQTLs for CYP2A7 in
BrainCloud (A) African American (AA) sample, and (B) European
American (EA) sample. The LD D’ plots were drawn using Haploview
(https://www.broadinstitute.org/scientific-community/science/
programs/medical-and-population-genetics/haploview/haploview).
Gene annotation and regulatory features tracks were obtained from the
1000 Genomes Browser (http:
//www.internationalgenome.org/1000-genomes-browers/index.html).
Black vertical bars indicate position of methylation probe cg25427638.
Yellow star marks variant with strongest biological evidence based on
HaploReg v4.1 results
(http://www.broadinstitute.org/mammals/haploreg/haploreg.php).
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