The aim of this study is to compare the performance of simple peak fitting and LCM in a test-retest dataset, hypothesizing that the more sophisticated LCM approach would improve quantification of Hadamard-edited data compared with simple peak fitting.
A test–retest dataset was re-analyzed using Gannet (simple peak fitting) and Osprey (LCM). These data were obtained from the dorsal anterior cingulate cortex of twelve healthy volunteers, with TE = 80 ms for HERMES and TE = 120 ms for MEGA-PRESS of glutathione (GSH). Within-subject coefficients of variation (CVs) were calculated to quantify between-scan reproducibility of each metabolite estimate.
The reproducibility of HERMES GSH estimates was substantially improved using LCM compared to simple peak fitting, from a CV of 19.0–9.9%. For MEGA-PRESS GSH data, reproducibility was similar using LCM and simple peak fitting, with CVs of 7.3 and 8.8%. GABA + CVs from HERMES were 16.7 and 15.2%, respectively for the two models.
LCM with simulated basis functions substantially improved the reproducibility of GSH quantification for HERMES data.