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The altered functional connectivity (FC) level and its temporal characteristics

within certain cortical networks, such as the default mode network (DMN),

could provide a possible explanatory framework for Autism spectrum

disorder (ASD). In the current study, we hypothesized that the topographical

organization along with its temporal dynamics of the autistic brain measured

by temporal mean and variance of complex network measures, respectively,

were significantly altered, which may further explain the autistic symptom

severity in patients with ASD. To validate these hypotheses, the precise FCs

between DMN regions at each time point were calculated using the resting-

state functional magnetic resonance imaging (fMRI) datasets from the Autism

Brain Imaging Data Exchange (ABIDE) project. Then, the minimal spanning tree

(MST) technique was applied to construct a time-varying complex network of

DMN. By analyzing the temporal mean and variance of MST parameters and

their relationship with autistic symptom severity, we found that in persons with

ASD, the information exchange e�ciencies between cortical regions within

DMNwere significantly lower andmore volatile compared with those in typical

developing participants. Moreover, these alterations within DMN were closely

associated with the autistic symptom severity of the ASD group.

KEYWORDS

autism spectrum disorder, default mode network, dynamic functional connectivity,
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Introduction

Autism spectrum disorder (ASD) describes a group of neurodevelopmental

disorders, which could impair social communication ability and lead to restricted and

repetitive patterns of behaviors or interests (1). The prevalence rate of ASD has increased

drastically in recent years world over and ASD has become one of the global public

health problems affecting human mental health seriously (2, 3). Thus, it is imperative

to elaborate on the pathological mechanisms and potential risk factors related to ASD

and develop efficient therapies.
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With the recent development of modern neuroimaging

techniques, particularly functional magnetic resonance imaging

(fMRI), the exploration of the neuropathological of ASD

has become possible. The functional connectivity revealed by

temporal dependency between functional signals of distinct

cortical regions could provide a possible explanatory framework

for ASD (4). A theory of cortical hypoconnectivity in the

autistic brain predicts that the interregional collaboration and

information exchange required both in cognitive tasks and task-

free resting-state (RS) would be underserved in ASD (5, 6).

This theory has been supported by numerous neuroimaging

studies, although cortical hyperconnectivity has also been

detected in some studies (7, 8). Among all these functional

connectivity studies, the hypoconnectivity involving regions of

the default mode network (DMN) which are crucial to the

normal development of social cognition abilities (e.g., self-

representation, mentalizing ability, and emotion recognition)

has been consistently observed in previous studies (9, 10).

By representing the brain as a complex network with a set

of nodes (i.e., cortical regions/scalp channels) connected by

edges (i.e., neural connectivity), one can study its topographical

organization by using concepts from graph theory to evaluate

various graph parameters (11). Related research shows that

the node-level and network-level complex network parameters

are significantly altered in patients with ASD and could

predict their autistic symptom severity, which suggested that

the topographical configuration of the cortical network within

the autistic brain tends to deviate from the optimal network

organization (12, 13).

However, previous studies focusing on neural connectivity

and topographical organizations between cortical regions of

persons with ASD had certain limitations. For example, the

widely used static functional connectivity techniques are too

simplistic to elaborate all the temporal-spatial information of

cortical activities, since previous research proved that temporal

coupling between cortical regions fluctuated over time, even

during task-free resting-state (RS) (14). In Jia et al. (15), the

dynamic conditional correlation (DCC), which could assess

the dynamic functional connectivity (dFC) between cortical

regions and is a technique with high test-retest reliability,

was applied to investigate the DMN-FC (i.e., the functional

connectivity between DMN regions) patterns of persons with

ASD. They showed that compared to the typical developing

(TD) group, the ASD group exhibited a significantly lower

temporal mean of DMN-FC and significantly higher temporal

variance of DMN-FC. In our study, we intend to examine

the topographical properties of the time-varying complex brain

network of persons with ASD through the DCC technique

and minimal spanning tree (MST) using the resting-state fMRI

datasets of the Autism Brain Imaging Data Exchange (ABIDE),

which includes functional and structural brain imaging datasets

of more than 1,000 participants (16). The MST is a unique

acyclic subgraph that contains the strongest connections from

the set of all available weighted connections (17). As a network

construction technique, one of the excellent features of the

MST approach is that MST is unaffected by the thresholding

problem (18). Moreover, recent studies have shown that MST

analysis is effective and sensitive to capturing alterations of

the topographical organization due to group differences and

conditional effects in both functional and structural imaging

datasets (17, 19, 20). We hypothesized that compared to TD

participants, persons with ASD should exhibit significantly

altered topographical organization measured by temporal mean

and variance of MST parameters. Moreover, these abnormalities

should be significantly associated with the autistic symptom

severity in the ASD group.

Materials and methods

The resting-state FMRI datasets

The ABIDE project includes the resting-state fMRI (RS-

fMRI) datasets, MRI datasets, and phenotypic information

(including gender, age at fMRI scan, sex, IQ, and diagnostic

information) of 1,112 participants (539 persons with ASD and

573 TD participants recorded by 17 institutions (so-called

“sites”) (16). The data collection were conducted following the

basic principles of the Helsinki declaration and were approved

by the research ethics committees of these institutions. Informed

consent was obtained from the participants or their legal

guardians. Details of acquisition and experimental protocols of

all the sites are available at http://fcon_1000.projects.nitrc.org/

indi/abide/abide_I.html.

The RS-fMRI datasets of 343 persons with ASD and 428

TD participants were selected for the complex network analysis.

The dataset selection was performed according to the following

criteria: (1) datasets with MRI images providing near-full brain

coverage and successful registration; (2) datasets passing manual

quality assessments of three independent raters; (3) datasets

with mean framewise displacement (func_mean_fd) < 0.2mm;

(4) datasets with percent framewise displacement >0.2mm

(func_perc_fd) < 25%; (5) individuals with IQ score >75; (6)

individuals in ASD group with reliable diagnostic information

obtained via Autism Diagnostic Observation Scale (ADOS)

or Autism Diagnostic Interview-Revised (ADI-R); (7) datasets

from sites with more than three participants in each group after

selecting datasets based on the above six criteria (15).

The independent t-tests with groups (ASD group vs. TD

group) as the independent variable and phenotypic information

(i.e., age at fMRI scan and IQ) and image parameters (i.e.,

func_mean_fd and func_perc_fd) as dependent variables did not

detect any significant group difference (ps > 0.05). For more

information on the demographic data of these participants, see

Supplementary Table S1.
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Resting-state FMRI datasets
preprocessing

In this study, the fMRI datasets were preprocessed

by the Data Processing Assistant for Resting-State fMRI

(DPARSF) (21, 22), which is a convenient plug-in software

based on Statistical Parametric Mapping (SPM) package

and Resting-State fMRI Data Analysis Toolkit (REST) (23,

24). The image preprocessing consists of the following

steps (15):

1. The first 4 image volumes within each fMRI dataset

were discarded.

2. All volume slices were corrected for different signal

acquisition times by shifting the signal measured in each slice

relative to the acquisition of the slice at the mid-point of

each TR.

3. The images for each fMRI dataset were realigned using

a six-parameter (rigid body) linear transformation with

a two-pass procedure (registered to the first image and

then registered to the mean of the images after the

first realignment).

4. Individual structural images (T1-weighted MPRAGE) were

co-registered to the mean functional image after realignment

using a six degrees-of-freedom linear transformation

without re-sampling.

5. The transformed structural images were segmented into

gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF) (25). The Diffeomorphic Anatomical Registration

Through Exponentiated Lie algebra (DARTEL) tool was used

to compute transformations from individual native space to

MNI space (26).

6. The Friston 24-parameter model was used to regress out head

motion effects from the realigned data (27).

7. The signals from WM and CSF were regressed out to

reduce respiratory and cardiac effects. Since previous studies

showed that global signal regression (GSR) could yield

substantial increases in negative correlations, GSR was not

performed (28).

8. The images were registered in Montreal Neurological

Institute (MNI) space with 3 mm3 cubic voxels

by using transformation information acquired from

DARTEL. The images were further smoothed by a kernel

of 6mm.

9. Temporal filtering (0.01–0.1Hz) was performed on the time

series to remove low-frequency drifts and high-frequency

noise from the signal.

10. According to Andrews-Hanna et al. (29), 18 sphere regions

of interest (ROIs) with a radius of 10mm within DMN

were defined. The centroid coordinate of each sphere

ROI is shown in Table 1. The signal time series of each

ROI was computed as the mean value of voxels within

this ROI.

Computing dynamic functional
connectivities between ROIs

The dynamic functional connectivities (dFCs) between ROIs

were assessed through the DCCmethod, which possesses at least

the following advantages (14, 15). Firstly, unlike the traditional

sliding-window (SW) based techniques, it does not need to

choose a window length which is usually arbitrarily decided

by researchers in SW-based techniques and could provide a

functional connectivity level at a specific time point instead of

a time window in SW-based techniques. Secondly, the test-retest

reliability of the metrics provided by the DCC method is much

higher than those of the SW techniques (30).

Before computing the DCC, each ROI signal with length T

should be converted to a mean zero time series. Assume yt is the

converted time series of an ROI pair with dimension 2×T. The

dynamic correlations Rt with dimension 1×T can be calculated

using the following equations:

σ 2
i,t = ωi + αi · y

2
i,t−1 + βi · σ

2
i,t−1, where i equals 1 or 2 (1)

Dt = diag
{

σ1,t , σ2,t
}

(2)

εt = D−1
t · yt (3)

Qt = (1− θ1 − θ2) · Q+ θ1 · εt−1 · ε
′

t−1 + θ2 · Qt−1 (4)

Rt = diag {Qt}
−1/2 · Qt · diag {Qt}

−1/2 (5)

Firstly, each ROI time series within yt is modeled

by a generalized autoregressive conditional heteroscedastic

(GARCH) model, which expresses the conditional variance of

a single time series at time t as a linear combination of past

values of the conditional variance and of the squared process

itself [equation (1)]. Secondly, the standardized residual εt was

computed through equation (2) and equation (3). Thirdly, the

non-normalized version of the time-varying correlation matrix

Qt was computed using an exponentially weighted moving

average (EWMA) window [equation (4)]. Note that, in equation

(4), θ1 and θ2 are non-negative scalars satisfying 0 < θ1 + θ2 <

1, Q can be calculated as Q = 1
T

∑T
t=1 εt • εTt . Lastly, Qt is

rescaled, which creates the dynamic correlations Rt .

Constructing time-varying complex
networks using minimal spanning tree
(MST)

After the dFCs of all ROI pairs were assessed through

the approach illustrated above, we obtained a time-varying

correlation matrix Ct with dimensionN×N×T, where N and T

were the number of ROIs and time points, respectively. Ct(i, j, k)

indicates the FC between ROI #i and ROI #j at time point k.

In this study, we used minimum spanning tree (MST)

analysis to build the time-varying complex network within

DMN. The MST consists of the strongest connections in the
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TABLE 1 The 18 DMN ROIs defined in the current study.

ROI Abbrev. MNI coordinate

x y z

PCC-aMPFC Core

Anterior medial prefrontal cortex (ROI #1) aMPFC −6 52 −2

Posterior cingulate cortex (ROI #2) PCC −8 −56 26

dMPFC Subsystem

Dorsal medial prefrontal cortex (ROI #3) dMPFC 0 52 26

Left temporal parietal junction (ROI #4) lTPJ −54 −54 28

Left lateral temporal cortex (ROI #5) lLTC −60 −24 −18

Left temporal pole (ROI #6) lTempP −50 14 −40

Right temporal parietal junction (ROI #7) rTPJ 54 −54 28

Right lateral temporal cortex (ROI #8) rLTC 60 −24 −18

Right temporal pole (ROI #9) rTempP 50 14 −40

MTL Subsystem

Ventral medial prefrontal cortex (ROI #10) vMPFC 0 26 −18

Left posterior inferior parietal lobule (ROI #11) lpIPL −44 −74 32

Left retrosplenial cortex (ROI #12) lRsp −14 −52 8

Left parahippocampal cortex (ROI #13) lPHC −28 −40 −12

Left hippocampal formation (ROI #14) lHF+ −22 −20 −26

Right posterior inferior parietal lobule (ROI #15) rpIPL 44 −74 32

Right retrosplenial cortex (ROI #16) rRsp 14 −52 8

Right parahippocampal cortex (ROI #17) rPHC 28 −40 −12

Right hippocampal formation (ROI #18) rHF+ 22 −20 −26

entire weighted undirected graph so that the sum of the weights

of the edges (i.e., the reciprocal of DCC at a specific time

point) included in the tree is minimized without forming

cycles (17, 18). The MST is a connected graph without loops

between nodes (i.e., the 18 ROIs within DMN) and without

isolated nodes (i.e., there exists a path between each pair of

nodes in the graph). An MST with N nodes has exactly N-1

edges/connections. Assuming the number of nodes is N, the

MST at each time point was produced using Kruskal’s algorithm

in the following manner (31). Firstly, all the connections at a

given time point were ranked from lowest to highest “weight”.

As discussed above, the “weight” was calculated as the reciprocal

of connection strength, and thus can be considered as the

cost of information exchange between nodes. Secondly, after all

the connections were removed, the connection with the lowest

weight was added. Then, the connection with the second lowest

weight was added and this procedure was repeated until all

nodes were connected. If adding a new connection resulted in

a cycle or loop, this connection was discarded, and the next

connection ranked by weight was added to the graph. Lastly,

the graph thus constructed was binarized (i.e., the existing

edges and non-existing edges were given a value of 1 and

0 respectively).

Computing the MST parameters

After the MST at each time point was constructed, the

following parameters of each MST were computed (17–20).

1. The degree of certain node ki (where i = 1, . . . , N). It is

defined as the number of connections or edges for a given

node. The nodes with high degree are “hub nodes” in the

MST and are crucial to the information exchange between

distinct nodes.

2. The degree of certain MST K. It is the degree of the node with

maximum degree: K = max(ki).

3. The leaf fraction of certain MST Lf . The “leaf ” refers to the

node with only one connection. The leaf number in an MST

ranges between 2 (a line-topology) and a maximum value

N − 1 (a star-like topology). Leaf fraction is the actual leaf

number divided by the maximum possible leaf number: Lf =

L/(N−1), where L is the actual leaf number in theMST. Thus,

the leaf number, together with the leaf fraction, could be used

to describe to what extent theMST has a central organization.

A high value of leaf number or leaf fraction indicates that the

communication within the network is largely dependent on

hub nodes.
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4. The assortativity coefficient of certain MST R. It equals the

Pearson correlation coefficient of the degrees of two nodes

at the end of connections, and ranges between−1 and 1. If

0 < R < 1, the MST is an assortative network, otherwise, it’s

a disassortative network.

5. The diameter of certain MSTD. It is defined as the maximum

value among lengths of all the available shortest paths. In

MST, the shortest path between two nodes is defined as the

path with least connections, and its length is the number of

connections within this shortest path.

6. The betweenness centrality of certain node BCi (where i =

1, . . . , N). It is defined as the total number of shortest paths

between any two nodes that are passing node i, divided by

the total number of shortest paths in the network: BCi =

A/C2N , where A is the total number of shortest paths that

are passing node i. Nodes with a high BC are considered

“hub nodes” not based on their number of connections,

but on their importance for global communication in

the network.

7. The betweenness centrality of certain MST BC. It is the

maximum value of nodal betweenness centrality: BC =

max (BCi) . It could also be used to describe the global

network organization ofMST. In star-like topography, the BC

value of MST equals to 1.

8. The global efficiency of certain MST E. It measures the

average inverse shortest path length in the network, and

thus relates to the efficiency of information exchange within

the network.

9. The characteristic path length of certain MST L. It refers to

the average of all the shortest path lengths in the network and

could be used to assess the cost of information transfer within

the network.

10. The degree divergence of certain MST κ . It measures the

broadness of the degree distribution and could be calculated

using the following formula: κ =

〈

k2
〉

〈k〉
, where k is the

degree of nodes. This measure is believed to be related to

resilience against attacks on the network. Higher κ indicates

a broader degree of distribution and higher vulnerability for

targeted attacks.

11. The tree hierarchy of certain MST Th. It characterizes

the balance between network integration and overload

of central nodes and can be computed using the

following formula: Th = L
(2•M•BC)

, where L,

M, and BC are the leaf number, edge/connection

number (i.e., N − 1), and betweenness centrality of

the MST.

12. The eccentricity of node ecci (where i = 1, . . . , N).

It is defined as the longest distance between a

certain node and the other nodes. Nodes with lower

eccentricity are more prone to be hub nodes within

the network.

Computing summary statistics of MST
parameters

After all the network-level parameters (i.e.,

K, Lf , R, D, BC, E, L, κ and Th) and node-level parameters

(i.e., ki, BCi, ecci, where i = 1, . . . , N) were evaluated for

the MST of each time point, we computed two basic summary

statistics for each parameter above, i.e., their temporal means

and temporal variances. More information about summary

statistics computation can be seen in Figure 1.

Statistical tests on summary statistics of
MST parameters

For the temporal mean and variance of network-level

parameters and node-level parameters, independent t-tests

were conducted with groups (ASD group vs. TD group)

as independent variables, after controlling the effects of

the following variables: the age at scan, func_mean_fd,

func_perc_fd, IQ score, gender, and sites. To control the

multiple comparison problem when testing the summary

statistics of node-level MST parameters, the false discovery rate

(FDR) procedure was used (32). The threshold for significance

was p < 0.05.

Correlations with autistic symptom
severity

To investigate the relationship between the two

summary statistics of MST parameters and scores of

autistic symptom severity in the ASD group, the Pearson

correlation coefficients between the two summary statistics

of MST parameters and symptom severity as assessed

by the ADOS total (ADOS_TOTAL), communication

(ADOS_COMM), social (ADOS_SOCIAL) and stereotyped

behavior (ADOS_STEREO_BEHAV) scores were calculated

after controlling the effects of following variables: the age

at scan, func_mean_fd, func_perc_fd, IQ score, gender, and

sites. The significance of the correlation coefficients was

assessed with a t-statistic. The threshold for significance was p

< 0.05.

Results

Group di�erences in the temporal mean
and variance of MST parameters

The results of statistical tests conducted on the temporal

mean of MST parameters are shown in Table 2 and Figure 2.
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FIGURE 1

The computation pipeline of the summary statistics of MST parameters.

And the results of statistical tests conducted on the temporal

variance of MST parameters are shown in Table 3 and

Figure 3.

Compared with those in the TD group, the temporal

mean of betweenness centrality of MST, global efficiency,

and betweenness centrality of ROI #1 (i.e., aMPFC)

was significantly lower in the ASD group, whereas

the temporal mean of tree hierarchy and eccentricity

of ROI #1 (i.e., aMPFC) were significantly higher in

ASD group.

Compared with those in the TD group, the temporal

variance of betweenness centrality of ROI #1 (i.e.,

aMPFC) was significantly lower in the ASD group,

whereas the temporal variance of the following measures

was significantly higher in the ASD group: betweenness

centrality of MST, tree hierarchy, global efficiency,

characteristic path length, betweenness centrality of ROI

#6 (i.e., lTempP), eccentricity of ROI #1 (i.e., aMPFC),

TABLE 2 The mean±SD of the temporal mean of MST parameters with

significant group di�erences and associated t values.

mean (SD) of two groups t-value

ASD group TD group

Betweenness

centrality of MST

0.6371± 0.0173 0.6401± 0.0159 −7.13**

Tree hierarchy 0.3379± 0.0232 0.3337± 0.0202 6.54*

Global efficiency 0.3405± 0.0054 0.3412± 0.0056 −3.98*

Betweenness

centrality of ROI #1

0.2418± 0.1003 0.2670± 0.1026 −9.72**

Eccentricity of ROI

#1

7.8138± 0.5652 7.6500± 0.6198 12.67**

*: p < 0.05; **: p < 0.01.

eccentricity of ROI #2 (i.e., PCC), and eccentricity of ROI #16

(i.e., rRsp).
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FIGURE 2

The violin plots of the temporal mean of MST parameters with significant group di�erences. Compared with those in TD group, the temporal

mean of betweenness centrality of MST (A), global e�ciency (C) and betweenness centrality of ROI #1 (E) were significantly lower in ASD group,

whereas the temporal mean of tree hierarchy (B) and eccentricity of ROI #1 (D) were significantly higher in ASD group.
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TABLE 3 The mean±SD of temporal variance of MST parameters with

significant group di�erences and associated t values.

mean (SD) of two groups t-value

ASD group TD group

Betweenness

centrality of MST

0.0059± 0.0026 0.0054± 0.0023 7.94**

Tree hierarchy 0.0123± 0.0123 0.0099± 0.0096 8.60**

Global efficiency 4.0240× 10−4±

1.6335× 10−4

3.7092× 10−4±

1.4217× 10−4

7.83**

Characteristic path

length

0.2492± 0.0672 0.2362± 0.0611 8.66**

Betweenness

centrality of ROI #1

0.0444± 0.0116 0.0472± 0.0099 −10.46**

Betweenness

centrality of ROI #6

0.0265± 0.0130 0.0245± 0.0134 7.96**

Eccentricity of ROI

#1

3.7715± 0.8264 3.5710± 0.6860 13.10**

Eccentricity of ROI

#2

3.6906± 0.7456 3.5430± 0.7025 7.78**

Eccentricity of ROI

#16

3.6258± 0.7304 3.5008± 0.7187 7.44**

*: p < 0.05; **: p < 0.01.

Associations between the temporal mean
and variance of MST parameters and
autistic symptom severity

By computing the correlation between the temporal mean

of MST parameters and autistic symptom severity assessed by

ADOS, we found the following (Table 4). First, the correlation

between the temporal mean of the following two MST

parameters and the ADOS_TOTAL score and ADOS_COMM

score were significantly negative: betweenness centrality of

ROI #4 (i.e., lTPJ) and degree of ROI #4 (i.e., ITPJ). Second,

the correlation between the temporal mean of degree of

ROI #9 (i.e., rTempP) and the ADOS_COMM score was

significantly negative. Third, the correlation between the

temporal mean of the eccentricity of ROI #4 (i.e., lTPJ) and

both the ADOS_TOTAL score and ADOS_COMM score were

significantly positive.

By computing the correlation between the temporal variance

of MST parameters and autistic symptom severity assessed by

ADOS, we found the following (Table 5). First, the correlation

between the temporal variance of the following two MST

parameters and the ADOS_COMM score was significantly

positive: global efficiency and eccentricity of ROI #4 (i.e.,

lTPJ). Second, the correlation between the temporal variance

of degree of ROI #4 (i.e., lTPJ) and the ADOS_COMM score

was significantly negative. Third, the correlation between the

temporal variance of the following fourMST parameters and the

ADOS_SOCIAL score was significantly positive: betweenness

centrality of ROI #7 (i.e., rTPJ), degree of ROI #15 (i.e., rpIPL),

eccentricity of ROI #12 (i.e., lRsp), and eccentricity of ROI

#14 (i.e., lHF+). Fourth, the correlation between the temporal

variance of degree of ROI #4 (i.e., lTPJ) and the ADOS_Total

score was significantly negative, whereas the correlation between

the temporal variance of eccentricity of ROI #4 (i.e., lTPJ) and

the ADOS_Total score was significantly positive.

Discussion

In the current study, using the DCC technique and

MST approach, the complex brain network within DMN

was constructed for each sampling point (i.e., each TR).

Then, network-level and node-level graph theory-based MST

parameters were derived from MST of each sampling point.

The temporal mean and variance of these MST parameters

were further computed. We found that the two summary

statistics of certain MST parameters were significantly altered

in the ASD group, which suggests that the topographical

configuration of the cortical network within DMN, along with

its temporal dynamics, were significantly altered in the autistic

brain. Moreover, using correlation analysis, we found that

these alterations were significantly associated with the autistic

symptom severity of persons with ASD.

Altered MST parameters within DMN

Statistical tests conducted on the two summary statistics (i.e.,

temporal mean and variance) of MST parameters revealed some

interesting results.

First, compared with those of the TD group, the temporal

mean and variance of betweenness centrality of ROI #1 (i.e.,

aMPFC) were significantly smaller in ASD group, whereas the

temporal mean and variance of eccentricity of ROI #1 (i.e.,

aMPFC) were significantly larger in ASD group. The relatively

smaller temporal mean and variance of betweenness centrality

of aMPFC suggest that in the autistic brain, the aMPFC is

in a relatively inferior position since the less short paths are

passing aMPFC.Moreover, compared with the autistic brain, the

position of aMPFC varied drastically in a typically developing

brain. The statistical results of eccentricity suggest that in

the autistic brain, aMPFC locates away from the center of

DMN and the distance from aMPFC to the other regions

within DMN varies drastically. The aMPFC, especially the

dorsal part, is supposed to be involved in social cognition

processes, such as self-referential processes (33). The altered

MST parameters related to aMPFC (i.e., reduced temporal mean

and variance of betweenness centrality, enhanced temporal

mean, and variance of eccentricity) may reduce the efficiency of

information communication between aMPFC and other DMN
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FIGURE 3

The violin plots of temporal variance of MST parameters with significant group di�erences. Compared with those in TD group, the temporal

variance of betweenness centrality of ROI #1 (E) was significantly lower in ASD group, whereas the temporal variance of the following measures

were significantly larger in ASD group: betweenness centrality of MST (A), tree hierarchy (B), global e�ciency (C), characteristic path length (D),

betweenness centrality of ROI #6 (F), eccentricity of ROI #1 (G), eccentricity of ROI #2 (H), and eccentricity of ROI #16 (I).
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TABLE 4 The Pearson correlation coe�cients between the temporal mean of MST parameters and autistic symptom severity.

ADOS scores

ADOS_COMM ADOS_STEREO_BEHAV ADOS_SOCIAL ADOS_TOTAL

Betweenness centrality of ROI #4 −0.3079** −0.2287*

Degree of ROI #4 −0.3160** −0.2344*

Degree of ROI #9 −0.1746*

Eccentricity of ROI #4 0.1917* 0.1789*

Only significant correlation coefficients are presented. *: p < 0.05; **: p < 0.01.

TABLE 5 The Pearson correlation coe�cients between the temporal variance of MST parameters and autistic symptom severity.

ADOS scores

ADOS_COMM ADOS_STEREO_BEHAV ADOS_SOCIAL ADOS_TOTAL

global efficiency 0.1739*

betweenness centrality of ROI #7 0.2478*

degree of ROI #4 −0.2674* −0.2086*

degree of ROI #15 0.2383*

eccentricity of ROI #4 0.2278* 0.1748*

eccentricity of ROI #12 0.1761*

eccentricity of ROI #14 0.1927*

Only significant correlation coefficients are presented. *: p < 0.05.

regions. Considering the functions of aMPFC in the human

cognition system, we supposed that the altered MST parameters

related to aMPFC should result in the reduced efficiency of social

information processing, such as the self-reference process in the

autistic brain.

Second, as for ROI #2 (i.e., PCC), although none of the

temporal means of MST parameters related to this brain region

was found to be significantly altered, the temporal variance of

eccentricity of PCCwas significantly larger in persons with ASD.

The PCC plays a crucial role in various cognitive functions,

such as autobiographical memory (especially those involving

friends and family members), and evaluation of valence of

emotional stimuli (34, 35). Certain cognitive processes involving

PCC were closely associated with the successful completion of

social communication and social information processing. Jia

et al. (15) have proved that significantly much lower and more

volatile connections between PCC and other DMN regions were

an important pathological feature of the ASD. Taken together

with Jia et al. (15), the PCC of the autistic brain manifests

the following characteristics: drastic variations of its distance

to other DMN regions, and much lower and more volatile

information exchange efficiency between PCC and other DMN

regions. This will certainly reduce the efficiency and stability of

information communication between aMPFC and other DMN

regions. Considering the functions of PCC in social cognition,

we supposed that the altered MST parameters related to PCC

revealed in this study could impair the social information

processing in the autistic brain and may contribute to the

emergence of ASD-related symptoms.

Note that the reduced stability of information

communication in social cognition related regions was

supported by group comparison results of temporal variances

of “position-related” parameters for ROI #6 (i.e., lTempP)

and ROI #16 (i.e., rRsp). Table 3 shows the temporal variance

of betweenness centrality of ROI #6 (i.e., lTempP) and the

eccentricity of ROI #16 (i.e., rRsp) was significantly enlarged in

autistic brains. These two cortical regions are crucial regions of

the so-called “social brain” (36).

Third, statistical tests conducted on the temporal mean

and variance of network-level MST parameters revealed that

compared with those of the TD group, the temporal mean

of betweenness centrality of MST was significantly smaller in

the ASD group, whereas the temporal variance of betweenness

centrality of MST was significantly larger in ASD group.

Since the betweenness centrality of certain MST is defined

as the maximum value of nodal betweenness centrality and

could be used to describe the global network organization

of MST, the above results suggest that the “load” of central

nodes is much lower (i.e., the topographical configuration

tends to be “link-like” topology) and varies drastically in the

brain network of autistic brain (18). Considering the formula

of the tree hierarchy of MST (i.e., the tree hierarchy of

certain MST is the reciprocal of the betweenness centrality

of this MST), the results of statistical tests conducted on
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the summary statistics of the tree hierarchy of certain MST

could be easily verified. Moreover, these results were consistent

with the results of global efficiency and characteristic path

length: compared with those of the TD group, the temporal

mean of global efficiency was significantly smaller, and the

temporal variances of global efficiency and characteristic path

length were significantly larger in the ASD group. Given the

functional significance of these MST parameters, all these

facts (i.e., altered topographical configuration, global efficiency,

and characteristic path length) should lead to significantly

lower efficiency and less robustness of information transfer

within the DMN of the autistic brain, which should further

affect the cognitive processes related with DMN (e.g., social

information processing).

Correlations between MST parameters
and symptom severity

The correlation analysis between summary statistics of

MST parameters and ADOS scores provide further evidence

about the aberrant global network organization of DMN in the

autistic brain.

First, as for ROI #4 (i.e., lTPJ), we found that the

temporal mean of betweenness centrality of lTPJ and the

temporal mean and variance of degree of lTPJ were significantly

negatively correlated with the ADOS_COMM score and the

ADOS_TOTAL score, whereas the temporal mean and variance

of eccentricity of lTPJ were significantly positively correlated

with the ADOS_COMM score and the ADOS_TOTAL score.

These results indicated that “the position of lTPJ within DMN”

could predict the autistic symptom severity of persons with

ASD, and are highly consistent with previously published studies

(15). For example, Jia et al. (15) found that the abnormal

connections of lTPJ and the other regions within DMN were

closely associated with the autistic symptom severity, especially

the ADOS_COMM score. These results support the presumed

functions of lTPJ (e.g., social communication development,

joint attention, and theory of mind) and its role in the

neuropathological mechanism of autism (37).

Second, the temporal mean of degree of ROI #9 (i.e.,

rTempP) was significantly negatively correlated with the

ADOS_COMM score. The right temporal pole (rTemP) is

crucial to understanding the mental state of others and the social

communication (38). The relatively smaller degree of rTemP

leads to the result that the information exchange efficiency

related to rTemP is much lower and more paths are needed to

communicate with this region, which may damage the social

communication efficiency of persons with ASD.

Third, as for the temporal variances of MST parameters, the

temporal variances of betweenness centrality of ROI #7 (rTPJ),

eccentricity of ROI #12 (lRsp), eccentricity of ROI #14 (lHF+),

and degree of ROI #15 (rpIPL), global efficiency was significantly

positively correlated with the ADOS scores. These results

indicate that the volatility of certain node-level/global level MST

parameters could predict the pathological behavior and the

defect in the social communication ability of these patients.

Limitations and future directions

In the current study, the preprocessing pipeline has several

separately conducted steps; each designed to remove a specific

type or class of artifacts. This approach is named as “the modular

preprocessing approach”, and has been commonly used in RS-

fMRI studies (39). However, Lindquist et al. (39) showed that

preprocessing steps performed at a later stage of the pipeline

may potentially re-introduce artifacts that had previously been

removed from the data in an earlier step, which may induce

adverse effects on dFC estimations (39). They suggested that

one way to avoid this problem was to simultaneously perform

different preprocessing steps within an omnibus framework. In

future studies, we need to perform the RS-fMRI preprocessing

using the framework provided by Lindquist et al. (39), and test

whether the preprocessing framework affects the main results

revealed here.

Secondly, in the RS-fMRI datasets used here, the autistic

symptom severity of persons with ASD was assessed via ADOS-

module 3 or ADOS-module 4, and we did not consider the

differences in the module of the ADOS. For the sake of

completeness, we provided the Pearson correlation coefficients

between the temporal mean/variance of MST parameters

and autistic symptom severity assessed by ADOS-module 3/

ADOS-module 4 in Supplementary Tables S2–S5. The results

presented in these four tables were not completely consistent

with those displayed in Tables 4, 5 shown above. Although

inconsistency could be clearly observed between these tables,

the main conclusions of correlation analysis are still unchanged,

i.e., the significantly lower and more volatile information

communication within DMN is closely associated with the

autistic symptom severity.

Thirdly, many graph theory-based complex network

parameters which could be classified into the network-level

parameters and node-level parameters were derived in our

study. For these parameters, independent t-tests were conducted

with groups (ASD group vs. TD group) as an independent

variable, after controlling the effects of certain confounding

variables. Then FDR procedure was applied for each node-

level parameter, which may not fully control the multiple

comparison problems. In the following statistical test, all the

network-level and node-level parameters were included in the

FDR procedure. We found that the p-values of the temporal

means of tree hierarchy and global efficiency only reached a

marginally significant level, and the statistical significance of

other parameters did not change. This indicated that the FDR
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procedure could not significantly influence the conclusions

revealed here.

Fourthly, we performed correlational analyses on the

temporal mean and variance of all the parameters and did

not merely focus on those showing significant between-group

differences. This was because we believed that significant

between-group differences revealed on certain parameters did

not signify these parameters could predict the autistic symptom

severity, and vice versa. Moreover, since the ADOS scores of

some patients were invalid, the number of patients involved

in group difference tests was larger than that involved in

correlational analyses. All these arguments were supported

by the fact that the parameters with significant correlation

coefficients were not limited to the parameters with significant

group differences.

Lastly, it is well known that ASD could affect the normal

functioning of several brain networks, such as the DMN, salience

network (SN), language network, and attention network (5, 7,

40–42). It is difficult to investigate the spatial organizations of

all the networks within a single study, thus we focused on the

DMN, which has been consistently observed in previous studies.

In future studies, the dFCs and the MST characters of other

cortical networks should be studied.

Conclusion

In the current study, using the DCC technique and

MST approach, the temporal dynamic features (i.e., temporal

mean and variance) of topographical configuration of the

cortical network within DMN of persons with ASD were

investigated. The following conclusions could be derived from

the statistical tests and correlation analyses. Firstly, in the

autistic brain, aMPFC and PCC which are core regions of

DMN locate away from the center of DMN. The information

exchange efficiency between cortical regions within DMN is

significantly lower and more volatile for patients with ASD.

Secondly, the significantly lower and more volatile information

communication within DMN is closely associated with autistic

symptom severity. These results provide a novel insight into the

possible neuropathological mechanism of ASD.
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