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Background: Generalized tonic–clonic seizures (GTCS) are associated with

significant disability and sudden unexpected death when they cannot be

controlled. We aimed to explore the underlying neural substrate of the different

responses to antiseizure drugs between the seizure-free (SF) and non-seizure-free

(NSF) patients with GTCS through the amplitude of low-frequency fluctuation

(ALFF) method.

Methods: We calculated ALFF among the SF group, NSF group, and healthy controls

(HCs) by collecting resting-state functional magnetic resonance imaging (rs-fMRI) data.

One-way ANOVA was used to compare the ALFF of the three groups, and post-hoc

analysis was done at the same time. Pearson’s correlation analysis between ALFF in the

discrepant brain areas and the clinical characteristics (disease course and age of onset

of GTCS) was calculated after then.

Results: A significant group effect was found in the right fusiform gyrus (R.FG), left

fusiform gyrus (L.FG), left middle occipital gyrus (L.MOG), right inferior frontal gyrus

(R.IFG), right precentral gyrus (R.PreG), right postcentral gyrus (R.PostG), and left

calcarine sulcus (L.CS). The SF and NSF groups both showed increased ALFF in all

discrepant brain areas compared to HCs except the R.IFG in the NSF group. Significantly

higher ALFF in the bilateral FG and lower ALFF in the R.IFG were found in the NSF group

compared to the SF group.

Conclusions: Higher ALFF in the bilateral FG were found in the NSF group compared

to the SF and HC groups. Our findings indicate that abnormal brain activity in the FG

may be one potential neural substrate to interpret the failure of seizure control in patients

with GTCS.

Keywords: generalized tonic–clonic seizures, seizure-free, non-seizure-free, amplitude of low-frequency

fluctuation, the fusiform gyrus
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INTRODUCTION

The prevalence of idiopathic generalized epilepsy (IGE) is ∼1
per 1,000 adults (1) and accounts for 20 to 55% of all epilepsies
(2). Generalized tonic–clonic seizures (GTCS) are one subtype
of IGE (3) and are also the most dangerous type of seizures,
commonly known as the grand mal, and have received a lot
of attention because of the increased risk of injury (4) and
sudden unexpected death in epilepsy (5, 6). Most generalized
seizures can be effectively controlled with appropriate antiseizure
drugs; however, around 20–30% of patients still failed to
achieve seizure control, presenting a non-seizure-free state
(7). Generally speaking, GTCS are not candidates for curative
resective surgical procedures due to the generalized spike-wave
discharges during seizures and are also associated with significant
morbidity and disability when they cannot be controlled (4, 8).
However, emerging evidence suggests that “generalized” epilepsy
is not truly general, but rather specific areas of the brain are
affected mainly, while other areas are relatively unaffected (9,
10). Therefore, it is particularly important to understand the
pathophysiology from a variety of aspects and perspectives in
order to obtain more effective treatments for patients with GTCS
who failed to achieve seizure control.

Previous studies have shown that different changes were
observed in gray matter volumes, regional glucose metabolism,
and the electroencephalogram (EEG) in the seizure-free group
compared with the non-seizure-free group in other types of
epilepsy through surgery or antiseizure drug treatment (11–13).
For example, a follow-up study published in JAMA Neurology
showed that a larger proportion of the piriform cortex was
resected in the seizure-free group compared with the non-
seizure-free group in neurosurgical treatment of temporal
lobe epilepsy (11). Of course, research also showed that the
non-seizure-free IGE patients on adequate antiepileptic drug
treatment did not present more severe white matter tract
involvement compared to the seizure-free patients (14). So far,
the underlying neural substrate of these two epileptic clinical
outcomes in GTCS remains unclear. Conventional magnetic
resonance imaging (MRI) examinations often present normal
neuroimaging findings in patients with GTCS. In recent decades,
with the development of neuroimaging methods, increasing
studies suggested that the abnormal structure and functional
connectivity in cortical and subcortical brain regions, like the
thalamus, cingulate cortex, and inferior frontal gyrus, were found
in GTCS through functional magnetic resonance imaging (fMRI)
(15–20). However, most studies aimed at differences between
patients with GTCS and healthy controls through fMRI, while
there were little reports on the differences between the seizure-
free and the non-seizure-free patients afflicted with GTCS.

The fMRI with simultaneous EEG recording studies have
found that interictal epileptiform discharges in epileptic patients
resulted from a population of abnormally hyperactive and
hypersynchronous neurons and that the characterization of
spontaneous neuronal activities was based on the fact that
there are coherent low-frequency fluctuated blood oxygen
level-dependent (BOLD) signals in widespread but functionally
related brain regions (21–23). The amplitude of low-frequency

fluctuation (ALFF) is just frequently used to reflect resting brain
activity bymeasuring the spontaneous low-frequency oscillations
of the BOLD signal of every single voxel in the brain without any
predefined seed region of interest (24, 25) and has been widely
applied in epilepsy (26–28) and other brain diseases (29, 30).
For example, increased ALFF in the epileptogenic regions and
decreased ALFF in the default mode regions were found in
epilepsy (27). And there were also some studies suggesting that
ALFF may be a new biomarker for the physiological state of
the brain (31). Therefore, we evaluated the underlying neural
substrate of the different responses to adequate antiseizure drugs
in patients with GTCS via ALFF methods.

In the current study, we collected resting-state fMRI (rs-fMRI)
data from three groups of adults, including the seizure-free (SF)
group, the non-seizure-free (NSF) group, and healthy controls
(HCs). We performed an exploratory whole-brain analysis to
identify the underlying neural substrate of these two epileptic
clinical outcomes in GTCS throughALFF analysis as the outcome
measures because it reflects resting whole brain activity and has
strong test–retest reliability (24). Based on the above background
in GTCS, we hypothesized that patients in the NSF group may
have potential difference of ALFF in the thalamus, cingulate
cortex, frontal lobes, and other related brain regions compared to
the other two groups, which may be interpreted as the failure of
seizure control in GTCS. Besides, the correlation between ALFF
values and clinical symptoms was further investigated.

MATERIALS AND METHODS

Participants
The patients in the current study were recruited from the
epilepsy clinics of the First Affiliated Hospital of Anhui Medical
University in Hefei from August 2019 to February 2020. After
that, patient recruitment had to be halted because of COVID-
19. They had all received the clinical diagnosis of IGE with
GTCS according to the International League against Epilepsy
(ILAE) Classification 2017 (32) and clinical interview from
two qualified epileptologists based on the clinical grounds and
EEG findings. The inclusion criteria for patient recruitment
were as follows: (1) bilateral and symmetric generalized motor
seizure, like muscle stiffness, severe muscle contractions all
over the body, and loss of consciousness at the same time; (2)
at least one generalized spike-wave discharge during interictal
EEG recording; (3) more than 2 years with disease course
of GTCS; and (4) no structural abnormality via conventional
MRI, like trauma, tumor, or intracranial infection. The exclusion
criteria were as follows: (1) pregnancy; (2) substance abuse,
other neurologic diseases, or chronic diseases; (3) Mini-Mental
State Examination (MMSE) score of <24 points; (4) history
of partial seizures; (5) predominant focal EEG abnormalities;
(6) falling asleep during rs-fMRI scanning; (7) head motion
exceeding 2.0mm or involved rotation exceeding 2.0◦; and (8)
structural abnormality at conventional MRI. Two patients were
excluded owing to excessive motion (>2.0mm, 2.0◦). Finally, 36
outpatients diagnosed with GTCS were included in this study,
and all of themwere right-handed and ranged from 18 to 55 years
in age. Then, 36 patients with GTCSwere divided into two groups
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based on their clinical presentation: 15 patients had adequate
seizure control for at least 2 years classified as the SF group and
21 patients presented at least one recurrent GTCS in the previous
3 months classified as the NSF group before rs-fMRI scanning,
despite regular use of the adequate antiseizure drugs.

For HCs, we recruited 27 right-handed healthy participants
without a history of seizures who were matched with the
GTCS groups in age and education years, maintaining a similar
proportion ofmen andwomen as in the patient groups. Exclusion
criteria were the same as for patients except for the diagnosis
of GTCS.

The study was approved by the Anhui Medical University
Ethics Committee, and all patients and HCs signed informed
consent forms.

Clinical Assessment
Clinical information including demographic data, education
level, past medical history, and use of antiseizure drugs was
collected from all patients. The Mini-Mental State Examination
(MMSE) was used to evaluate the cognitive function of all the
participants (33).

Neuroimaging Data Acquisition
We acquired rs-fMRI images of participants with the same
procedure as described by Zu et al. at the University of
Science and Technology of China, Hefei, Anhui Province (34).
Specifically, during scanning, all participants were instructed to
keep their eyes closed without moving the body and not to think
of anything in particular. Functional images were conducted
with a 3.0 T MRI scanner (Discovery GE750w, GE Healthcare,
Buckinghamshire, UK) composed of 217 echo-planar imaging
volumes with the following parameters: repetition time (TR) =
2,400ms; echo time (TE) = 30ms; flip angle = 90◦; matrix size
= 64 × 64; field of view = 192 × 192 mm2; slice thickness =
3mm; 46 continuous slices (voxel size = 3 × 3 × 3 mm3). T1-
weighted anatomic images with 188 slices were also acquired in
sagittal orientation (TR = 8.16ms; TE = 3.18ms; flip angle =

12◦; field of view= 256× 256mm2; slice thickness= 1mm; voxel
size= 1× 1× 1 mm3).

Data Preprocessing
Functional data were preprocessed with the Data Processing
Assistant for Resting-State fMRI Advanced Edition (DPARSFA)
V4.3 software package (35), which is a widely used rs-fMRI
analytic tool and based on the Statistical Parametric Mapping
(SPM8). The first 10 volumes were discarded to exclude the
influence of unstable longitudinal magnetization. We processed
the remaining volumes with the following steps: (1) slice
timing correction; (2) motion correction; (3) co-registration
to respective structural images; (4) nuisance regression with
24 Friston motion parameters, white matter high signal, and
cerebrospinal fluid signal as regressors; (5) spatial normalization
to a standard template (Montreal Neurological Institute; MNI)
based on the diffeomorphic anatomical registration through
the exponentiated lie algebra (DARTEL) algorithm (36), which
provides greater registration accuracy than unified segmentation
(37); and (6) spatial smoothing employing DARTEL with a

6mm at full width half-maximum three-dimensional Gaussian
kernel (38).

ALFF Analysis
ALFF analysis was performed using the DPARSFA software
after preprocessing. The calculation procedure was the same as
reported in previous studies (25, 27). First, with the fast Fourier
transform, the time series of each voxel was transformed to a
frequency domain, and the square root of the power spectrum
was calculated. Then, the averaged square root of the power
across 0.01–0.08Hz was determined as the ALFF measurement.
For standardization, the ALFF of each voxel was further divided
by the global mean of ALFF values. The standardized ALFF of
each voxel then has a value of about 1, and this standardization
procedure is analogous to that used in PET studies (39).

Statistical Analysis
Two patients with GTCS whose head motion exceeded 2.0mm
or involved rotation exceeding 2.0◦ during the rs-fMRI scanning
were excluded. Finally, 15 SF patients, 21 NSF patients, and 27
HCs were analyzed. One-way analysis of variance (ANOVA) was
performed with the DPABI software (35) as a measure of the
resting-state ALFF difference among the three groups. The result
after one-way ANOVA was overlain on the Ch2 template. All
statistical maps were corrected for multiple comparisons using
the Gaussian random field (GRF) method with the threshold set
at a voxel level of p < 0.001 in combination with a cluster level of
p < 0.05, two-tailed, and then the clusters were saved. Then the
values of ALFF were acquired by extracting signals at the saved
clusters above. Finally, the software SPSS 16.0 was used to analyze
the ALFF values of different groups. One-way ANOVA was used
to compare the ALFF values of the three groups, and Bonferroni
correction of post-hoc analysis was done at the same time.

Correlation Analysis
To investigate the underlying linear association of different ALFF
values across the SF and NSF groups, Pearson’s correlation
coefficients between ALFF values in the discrepant brain areas
and the clinical characteristics (disease course and age of onset of
GTCS) were calculated.

RESULTS

Clinical Data
Thirty-six patients with GTCS and 27 HCs completed all
procedures. The basic characteristics of demography and clinical
outcomes for the participants are shown in Table 1. There were
no significant differences as regards age (F = 1.561, p = 0.218),
gender (χ2

= 0.206, p= 0.902), education (F= 1.320, p= 0.275),
andMMSE scores (F= 2.133, p= 0.127) among the three groups.
Besides, we did not find significant differences about age of onset
(t = −0.970, p = 0.339) and course of disease (t = −0.296, p =

0.769) between the SF and NSF groups.

Group Differences in ALFF
A significant group effect was found in the right fusiform gyrus
(R.FG, F = 30.290, p < 0.001), left fusiform gyrus (L.FG, F =
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TABLE 1 | Demographic and clinical characteristics of participants.

SF NSF HCs F/t/χ2 P

Sample size (n) 15 21 27 - -

Age (year) 26.53 (7.63) 30.19 (8.45) 31.13 (11.01) 1.561 0.218

Gender (M/F) 6/9 10/11 12/15 0.206 0.902

Education (years) 13.73 (3.79) 11.81 (4.66) 13.41 (3.52) 1.320 0.275

Age of onset (years) 17.27 (7.40) 20.24 (10.06) - −0.970 0.339

disease course (month) 111.20 (93.56) 119.43 (71.85) - −0.296 0.769

MMSE 29.67 (0.816) 28.90 (1.81) 29.63 (1.11) 2.133 0.127

Medications (patient number)

Lamotrigine 10 6

Depakine 6 17

Levetiracetam 0 1

Phenobarbital 1 1

Phenytoin 0 2

Oxcarbazepine 0 3

Carbamazepine 0 1

MMSE, the Mini-mental State Examination; SF, seizure-free; NSF, non-seizure-free; HCs, healthy controls.

One-way ANOVA were used for age, education and MMSE among the three groups. Two-sample t-tests were used for age of onset and disease course between the SF and NSF

groups. Chi-square test was used for gender among the three groups.

Data are presented as mean (standard deviation).

23.388, p < 0.001), left middle occipital gyrus (L.MOG, F =

20.437, p< 0.001), right inferior frontal gyrus (R.IFG, F= 24.357,
p < 0.001), right precentral gyrus (R.PreG, F = 21.650, p <

0.001), right postcentral gyrus (R.PostG, F = 20.295, p < 0.001),
and left calcarine sulcus (L.CS, F = 15.429, p < 0.001) (Table 2;
Figure 1).

Pairwise Comparison of ALFF
The values of ALFF were acquired by extracting signals at the
significant clusters above and then were entered into pairwise
comparison in SPSS. After Bonferroni correction of post-hoc
analysis, all brain regions showed abnormal ALFF in the SF
group, but only six brain regions showed abnormal ALFF in the
NSF group relative to HCs. There were three abnormal brain
regions for the SF and NSF. Specifically, the SF group showed
increased ALFF in the bilateral FG, L.MOG, R.IFG, R.PreG,
R.PostG, and L.CS (Table 2; Figure 2). The patients with NSF
GTCS showed increased ALFF in the same region as the SF
group, except for the R.IFG (Table 2; Figure 2). It was worth
noting that a higher ALFF in the bilateral FG and lower ALFF in
the R.IFGwere found in theNSF group compared to the SF group
(Figure 2). There were no significant differences in the L.MOG,
R.PreG, R.PostG, and L.CS between the SF and NSF groups.

Correlation Between ALFF and Clinical
Characteristics
Correlation analyses between ALFF and clinical characteristics
(disease course and age of onset of GTCS) were performed in
the significant regions between the SF group (seven regions)
and the NSF group (six region) separately. Among the total
of 26 correlation analyses (13 abnormal regions, two clinical
characteristics), two correlations reached p < 0.05, but none
can survive Bonferroni correction. Specifically, two positive

correlations were observed between ALFF in the R.FG (r= 0.630,
p= 0.012) and L.FG (r = 0.543, p= 0.037) and disease course in
the SF group, where patients with higher ALFF in these two brain
regions had a longer course (Figure 3).

DISCUSSION

In the current study, we aimed to explore the underlying neural
substrate of the different responses to adequate antiseizure
drugs between the SF and NSF patients afflicted with GTCS
through a cross-sectional study. We observed the changes of the
spontaneous whole-brain activity through ALFF analysis among
the SF, NSF, and HCs. A significant group effect was found in the
R.FG, L.FG, L.MOG, R.IFG, R.PreG, R.PostG, and L.CS. The SF
group showed increasedALFF in the bilateral FG, L.MOG, R.IFG,
R.PreG, R.PostG, and L.CS, and the NSF group showed increased
ALFF in the same regions as the SF group except the R.IFG. It was
worth noting that higher ALFF in the bilateral FG was found in
the NSF group compared to the SF group. Moreover, two positive
correlations were observed between ALFF in the bilateral FG and
disease course in the SF group.

Epilepsy is a complex neurological syndrome characterized
by abnormally hypersynchronous hyperactivity of a population
of neurons. Previous studies have suggested that the amplitude
or power (square of amplitude) of low-frequency fluctuations
can provide both the nature and extent of signal changes
underlying spontaneous neuronal activities (31, 40). Generally,
increased ALFF accompanied increased neuronal activity. In
this study, we found that ALFFs of both the SF and NSF
groups were significantly increased compared with those of HCs
(except the R.IFG in the NSF group), indicating that neuronal
excitability was significantly enhanced in patients with GTCS,
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TABLE 2 | One-way ANOVA and pairwise comparison of ALFF among the three groups.

Brain regions Voxel size Peak coordinates (mm) F value P-value HCs vs. SF (p) HCs vs. NSF (p) SF vs. NSF (p)

x y z

R.FG 188 15 −75 −9 30.290 < 0.001 ** < 0.001 ** < 0.001 *0.028

L.FG 141 −18 −81 −9 23.388 < 0.001 **0.005 ** < 0.001 *0.027

L.MOG 31 −27 −87 6 20.437 < 0.001 ** < 0.001 ** < 0.001 0.546

R.IFG 31 42 18 27 24.357 < 0.001 ** < 0.001 0.095 ** < 0.001

R.PreG 43 27 −21 63 21.650 < 0.001 ** < 0.001 ** < 0.001 1.000

R.PostG 78 51 −18 48 20.295 < 0.001 **0.002 ** < 0.001 0.155

L.CS 45 −21 −66 9 15.429 < 0.001 **0.001 ** < 0.001 0.954

ALFF, the amplitude of low-frequency fluctuation; R.FG, right fusiform gyrus; L.FG, left fusiform gyrus; L.MOG, left middle occipital gyrus; R.IFG, right inferior frontal gyrus; R.PreG, right

precentral gyrus; R.PostG, right postcentral gyrus; L.CS, left calcarine sulcus; SF, seizure-free; NSF, non-seizure-free; HCs, healthy controls.

All statistical maps were corrected with Gaussian Random Field method with the significance of voxel p < 0.001, cluster p < 0.05, two-tailed.

**p < 0.01, *p < 0.05 after Bonferroni correction of post-hoc analysis.

FIGURE 1 | Group differences in ALFF among three groups (SF, NSF, and HCs). A significant group effect was found in the right fusiform gyrus, left fusiform gyrus, left

middle occipital gyrus, right inferior frontal gyrus, right precentral gyrus, right postcentral gyrus, and left calcarine sulcus (correction with Gaussian random field, voxel

p < 0.001, cluster p < 0.05, two-tailed).

which was consistent with the physiological mechanism of
epilepsy. Abnormal functional changes in extensive brain regions
were found in patients with GTCS according to previous studies

(16, 41). For example, Ji and colleagues found that GTCS patients
presented abnormal functional connectivity in many regions,
such as the anterior cingulate cortex, inferior frontal gyrus,
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FIGURE 2 | Pairwise comparison of ALFF in the seven brain regions. One-way ANOVA was used to compare the ALFF values of the three groups, and Bonferroni

correction of post-hoc analysis was done at the same time in the significant brain regions (A–G). **p < 0.01, *p < 0.05 after Bonferroni correction of post-hoc

analysis. ALFF, the amplitude of low-frequency fluctuation; SF, seizure free; NSF, non-seizure free; HCs, healthy controls.
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FIGURE 3 | The correlation between the ALFF values and clinical characteristics. The ALFF values of the right fusiform gyrus (r = 0.630, p = 0.012) and left fusiform

gyrus (r = 0.543, p = 0.037) were positively correlated with disease course in the SF group respectively (A,B). **p < 0.01, *p < 0.05 after Bonferroni correction of

post-hoc analysis. ALFF, the amplitude of low-frequency fluctuation; SF, seizure-free; NSF, non-seizure-free; HCs, healthy controls.

and bilateral cuneus (16). In this study, we found that patients
with GTCS presented aberrant brain activity in the bilateral FG,
L.MOG, R.IFG, R.PreG, R.PostG, and L.CS, which have also been
reported in patients with IGE in previous studies (42–44).

It was worth noting that higher ALFF in the FG was found
in the NSF group compared to the SF and HC groups. Previous
EEG studies have shown that the slow-wave activity in epileptic
regions was enhanced significantly, and the amplitude of slow
wave was also increased prominently in intractable epilepsy
patients (45, 46). As mentioned above, the characterization of
spontaneous neuronal activities was based on the spontaneous
fluctuations in the BOLD signals in widespread but functionally
related brain regions (23). However, the correlation between
slow-wave activity and ALFF was unclear, and there were some
studies suggesting that ALFF may be a new biomarker for the
physiological state of the brain (31). Therefore, over-enhanced
ALFF in the FG seemed to be a novel neural substrate to interpret
the occurrence of frequent seizures in NSF patients with GTCS in
our study. The FG, located in the inferior temporal lobe, has been
proposed to be a critical area for face processing and perception

(47). Therefore, most of the previous studies focused on the
relationship between the cognition deficit like visual naming or
recognition performances and related brain regions like the FG
in patients with epilepsy (48–50). However, some studies have
shown that the FG was one of the epileptic foci and patients with
epilepsy achieved a good seizure outcome with the resection of
the FG (51, 52). In addition, abnormal structure and function
were also found in the FG in patients with epilepsy (43, 53,
54). For example, increased sulcal depth in the FG in benign
childhood epilepsy compared to the HCs (53) and decreased gray
matter volume in the FG after temporal lobectomy in patients
with mesial temporal lobe epilepsy who achieved seizure freedom
(54) were found in recent studies. All this research suggested that
the changes in the FG may be related to the clinical outcome of
epilepsy. In our study, the NSF patients had higher ALFF in the
FG compared with the SF group, which seems to once again verify
the importance of the FG in the control of seizure in patients
with GTCS.

On the other hand, two positive correlations were observed
between ALFF in the bilateral FG and disease course in the SF
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group in the current study. Although the correlation analysis did
not pass Bonferroni correction, it presented a certain correlation
trend because the p-value reached 0.05. In other words, when
the seizure is well controlled, the shorter course of the disease
in patients with GTCS accompanied a lower ALFF in the bilateral
FG, which may be more conducive to achieving seizure control.
A previous study also indicated that epileptic patients with well-
controlled seizure were more likely to be older, have late-onset
epilepsy, and have shorter disease duration (55, 56). However, it
was not clear why the course of the disease was associated with
ALFF of the bilateral FG in the SF group but not in the NSF
group. Our results seemed to show that the disease course was
not related to the occurrence of seizures when patients failed to
achieve seizure control. Indeed, in our study, we did not find
statistical difference in the disease course between the SF andNSF
groups. Therefore, beyond a certain range, the seizure control
of patients with GTCS may be related to ALFF of the FG rather
than the disease course. Of course, a larger sample size is needed
to further verify the credibility due to insufficiently rigorous
correlation results.

Some limitations in our study are worthy of consideration.
First, the recruitment of participants was temporarily interrupted
because of the sudden outbreak of COVID-19, and the relatively
few participants may limit the statistical power. Future research
with a larger sample size is needed to repeat the current
experiment to ensure the credibility of the results. Second,
patients with GTCS took different types of antiseizure drugs in
our study, which may have different effects on brain activity as
described in previous studies (57). Finally, this is a cross-sectional
study which cannot provide longitudinal alteration data of the
participants; thus, it cannot be determined whether abnormal
ALFF in the FG could be used to predict clinical outcome in
patients with GTCS. Follow-up studies are necessary to observe
changes in ALFF before and after taking antiseizure drugs in
patients with GTCS and their associations with the responses
to antiseizure drugs. Given a positive result is found, the FG
may become a new target for the treatment of NSF patients with
GTCS. From this perspective, our study is of great significance in
laying a foundation for further exploration.

CONCLUSION

In summary, the study compared ALFF by rs-fMRI data among
the SF group, NSF group, and HCs. Abnormal ALFF in the
bilateral FG, L.MOG, R.IFG, R.PreG, R.PostG, and L.CS was
found among three groups. Significantly higher ALFF in the
bilateral FG was observed in the NSF group compared to the

SF and HC groups. Our findings indicate that abnormal brain
activity in the FG may be one potential neural substrate to
interpret the failure of seizure control in patients with GTCS.
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