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Objective: Increased risk of stroke is highly associated with psychiatric

disorders. We aimed to conduct the machine learning model based on multi-

modal magnetic resonance imaging (MRI) radiomics predicting the prognosis

of ischemic stroke.

Methods: This study retrospectively analyzed 148 patients with acute ischemic

stroke due to anterior circulation artery occlusion. Based on the modified

Rankin Scale (mRS) score, patients were divided into good (mRS ≤ 2) and poor

(mRS > 2) outcome groups. Segmentation of the infarct region was performed

by manually outlining a mask of the lesion on diffusion-weighted images (DWI)

using MRIcron software. The apparent diffusion coefficient (ADC), fluid decay

inversion recoverage (FLAIR), susceptibility weighted imaging (SWI) and T1-

weighted (T1w) images were aligned to the DWI images and the radiomic

features within the lesion area were extracted for each image modality. The

calculations were done using pyradiomics software and a total of 4,744

stroke-related imaging features were automatically calculated. Next, feature

selection based on recursive feature elimination was used for each modality

and three radiomic features were extracted from each modality plus one

feature from the lesion mask, for a total of 16 radiomic features. At last,

five machine learning (ML) models were trained and tested to predict stroke

prognosis, calculate the received operating characteristic (ROC) curves and

other parameters, evaluate the performance of the models and validate their

predictive efficacy by five-fold cross-validation.
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Results: Sixteen radiomic features were selected to construct the ML models

for prognostic classification. By five-fold cross-validation, light gradient

boosting machine (LightGBM) model-based muti-modal MRI radiomic

features performed best in binary prognostic classification with accuracy of

0.831, sensitivity of 0.739, specificity of 0.902, F1-score of 0.788 and an area

under the curve (AUC) of 0.902.

Conclusion: The ML models based on muti-modal MRI radiomics are of high

value for predicting clinical outcomes in acute stroke patients.

KEYWORDS

diffusion-weighted imaging, radiomics, machine learning, ischemic stroke, magnetic
resonance imaging

1. Introduction

Psychiatric comorbidities, such as depression (1), anxiety
(2) and dementia (3), are the frequent consequences of stroke,
which is one of the leading causes of disability and death
worldwide (4). The psychiatric disorders make the prognosis of
stroke complicated, and the prognosis varies greatly depending
on the time of consultation and treatment, which lead to
a challenge in deciding of “when to treat” and “how to
treat” during rehabilitation of stroke patients (5). The accurate
prediction of rehabilitation outcomes will do great help to
propose the appropriate treatment strategies and rehabilitation
goals based on each patient’s condition (6).

The combination of the multi-modal magnetic resonance
imaging (MRI) techniques provides a powerful tool for stroke
diagnosis. Mitra et al. (7) used the information from multimodal
[T1-weighted, T2-weighted, fluid attenuated inversion recovery
(FLAIR), and apparent diffusion coefficient (ADC)] MRI images
to extract areas with high likelihood of being classified as stroke
lesions. Radiomics is an emerging approach that combines
imaging and artificial intelligence to extract quantitative features
from images in high throughput. Zhang et al. (5) developed
the machine learning model-based diffusion weighed imaging
(DWI)/ADC radiomic features to classify ischemic stroke
onset time. Quan et al. (8) constructed the unfavorable
outcome model based on the radiomic feature extracted from
FLAIR and ADC image. Moreover, susceptibility weighted
imaging (SWI), reflecting the oxygen extraction fraction of
brain tissues, has been demonstrated as a useful predictor of
early infarct size and early-stage clinical prognosis in acute
ischemic stroke (9).

In this study, we constructed five machine learning (ML)
models that aimed to predict the prognosis of ischemic stroke
patients based on muti-modal MRI radiomics. In addition, we
assessed predictive value of the models for ischemic stroke
treatment decision-making.

2. Materials and methods

2.1. Participants

This study was a retrospective analysis of 180 patients
diagnosed with acute ischemic stroke at Liangxiang Hospital
(Beijing, China) from October 2020 to May 2022, of which
148 were included in analysis (Figure 1). The inclusion
criteria were: (1) acute ischemic stroke due to anterior
circulation artery occlusion; (2) MRI completed within 48 h
of admission; (3) complete set of MRI sequences; (4) complete
data on demographics and clinical characteristics; and (5)
signed informed consent. The exclusion criteria were: (1)
cerebral hemorrhage; (2) traumatic brain injury; (3) previous
neurological or psychiatric disease; and (4) significant artifacts
in MRI data. This study was approved by the ethics committee
of Liangxiang Hospital (approval number 2016126).

Demographic characteristics as well as the clinical and
imaging data were collected under the permission of patients.
The National Institutes of Health Stroke Scale (NIHSS) score
was collected to evaluate the degree of neurological deficit in
stroke patients, which represented the level of consciousness, eye
movements, integrity of visual fields, facial movements, arm and
leg muscle strength, sensation, coordination, language, speech
and neglect (10). Arranging from 0 to 42, the higher the NIHSS
score, the more severe the neurological impairment: score 0 was
normal neurological function, 1 to 4 was mild stroke, 5 to 15 was
moderate stroke, 16 to 20 was moderate-severe stroke and 21 to
42 was severe stroke.

The modified Rankin Scale (mRS) score was used as a
prognostic judgment index, with good prognosis defined as mRS
scores of 0, 1, and 2, and poor prognosis defined as mRS scores
of 3, 4, and 5. Of the 148 patients included in the analysis,
83 were in the good prognosis group and 65 were in the poor
prognosis group.
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FIGURE 1

Flow chart of participant selection and analysis. DWI,
diffusion-weighted imaging; ADC, apparent diffusion
coefficient; FLAIR, fluid attenuated inversion recovery; SWI,
susceptibility weighted imaging; ML, machine learning; SVM,
support vector machine, RF, random forest; LightGBM, light
gradient boosting; CatBoost, category boosting, and XGBoost,
eXtreme gradient boosting.

2.2. MR image acquisition

MRI scans were performed within 3 days of stroke onset,
using a Magnetom Skyra 3.0T MRI scanner (Siemens, Germany)
with a 20-channel phased-array head coil.

All participants underwent the following scans:
(1) T1-weighted image scan. Scan parameters: T1w

sequence, repetition time (TR) = 2,000 ms, inversion time
(TI) = 900 ms, echo time (TE) = 8.8 ms, matrix = 209 × 256,
field of view (FOV) = 220 mm2

× 196 mm2, thickness = 5 mm.
number of layers = 24 layers, and parallel imaging factor = 2.

(2) Cerebrospinal fluid suppression image. Scan parameters:
T2-FLAIR sequence, TR = 6,000 ms, TI = 2,028 ms, TE = 72 ms,
matrix = 320 × 261, FOV = 220 mm2

× 196 mm2,
thickness = 5 mm, number of layers = 24 layers, and parallel
imaging factor = 2.

(3) SWI imaging scan sequence. Scan parameters: 3D-GRE
sequence, TR = 27 ms, TE = 20 ms, flip angle (FA) = 15◦,
matrix = 256 × 256, FOV = 220 mm2

× 196 mm2, layer
thickness = 2.5 mm, number of layers = 44, repetition
number = 1, fat suppression on, and parallel imaging factor = 2.

(4) DWI imaging scan sequence. Scan parameters: EPI-
Resolve sequence, b-value b = 1,000 and 0 scan, TR = 500 ms,
TE1 = 63 ms, TE2 = 103 ms, FA = 180◦, matrix = 160 × 160,

FOV = 220 mm2
× 220 mm2, layer thickness = 5 mm, number

of layers = 24, fat suppression on, and parallel imaging factor = 2.

2.3. Image processing and
segmentation

Image analysis was performed independently by two MR
diagnosticians blinded to the groups. The region of interest
(ROI) of acute ischemic lesions was manually outlined layer by
layer on the DWI images using MRIcron software.1

For each patient, data including all modalities (ADC,
FLAIR, SWI, T1w) were aligned to the DWI images using
SPM12 software2 so that the outlined lesions could be directly
used for texture feature extraction in the different modal images
(Figure 2).

2.4. Radiomic feature extraction

For each patient, the MRI data of the five modalities
was analyzed by pyradiomics software3 for radiomiscs feature
extraction using the recommended settings and steps for MRI
data: (1) Images were resampled to 3 mm2

× 3 mm2
× 3 mm.

(2) DWI, FLAIR, SWI, and T1w images are weighted images
and thus needed to be numerically standardization. A scale of
100 was used and the binwith was set to 5. Since ADC images
are quantitative, no numerical standardization was done and
binwith was set to 20. The above settings ensured that the total
number of bins is between 16 and 128. (3) Texture feature
extraction was performed on the original images and filtered
images, where the filter consisted of Laplacian of Gaussian filter
based on sigma = 3 and 5 mm, edge enhancement filter, and 8
wavelet transforms (combination of high pass and low pass in
three dimensions). (4) Finally, the texture features of radiomics
were extracted, including 18 first order, 22 glcm, 16 glrlm, 16
glszm, and 14 gldm features. Thus, a total of 946 features were
extracted per image. The shape features of 14 lesion regions
were also extracted.

2.5. Feature selection and model
training based on ML

The scikit-learn package4 was used for feature selection
of the MRI data of the five modalities. The recursive feature
elimination (RFE) feature extraction method was used and

1 http://www.itk-snap.org

2 https://www.fil.ion.ucl.ac.uk/spm/

3 https://www.radiomics.io/pyradiomics.html

4 https://scikit-learn.org/
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FIGURE 2

Lesion segmentation results for one patient with manual outlining of the lesion using MRIcron on (A) the original DWI image, (B) the lesion
superimposed onto the DWI image, (C) the lesion superimposed onto the ADC image, (D) the lesion superimposed onto the FLAIR image
aligned to the DWI image, (E) the lesion superimposed onto the SWI image aligned to the DWI image, and (F) the lesion superimposed onto the
T1w image aligned to the DWI image. MRI, magnetic resonance imaging; ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging;
FLAIR, fluid attenuated inversion recovery; SWI, susceptibility weighted imaging; T1w, T1-weighted.

TABLE 1 Baseline demographic and clinical characteristics.

Characteristics Good prognosis
(mRS ≤ 2) (n = 83)

Poor prognosis
(mRS > 2) (n = 65)

t/χ2 P-value

Age, year, mean ± SD 59.21 ± 10.94 70.80 ± 10.92 –6.404 0.001

Male, n (%) 62 (74.70) 38 (58.46) 4.386 0.036

NIHSS score, mean ± SD 2.33 ± 1.75 9.75 ± 5.65 –10.222 0.001

Hypertension, n (%) 61 (73.49) 56 (86.15) 3.528 0.060

Diabetes, n (%) 43 (51.81) 27 (41.54) 1.542 0.214

History of coronary heart disease, n (%) 4 (4.82) 13 (20.00) 8.263 0.004

History of atrial fibrillation, n (%) 3 (3.61) 11 (16.92) 7.539 0.006

Smoking, n (%) 55 (66.27) 31 (47.69) 5.166 0.023

Drinking, n (%) 45 (54.22) 22 (33.85) 6.105 0.013

Complications, n (%) 1 (1.20) 36 (55.38) 57.069 0.001

NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale.

TABLE 2 Results of feature selection for each MRI modality.

Feature 1 Feature 2 Feature 3

Shape MeshVolume

DWI log-sigma-3-0-mm-3D_glrlm_
LowGrayLevelRunEmphasis

log-sigma-3-0-mm-3D_glrlm_
ShortRunLowGrayLevelEmphasis

wavelet-LLH_glcm_Idn

ADC log-sigma-5-0-mm-3D_firstorder_Maximum log-sigma-5-0-mm-3D_firstorder_TotalEnergy wavelet-HLL_gldm_
LargeDependenceHighGrayLevelEmphasis

FLAIR original_firstorder_90Percentile log-sigma-3-0-mm-
3D_glszm_LargeAreaEmphasis

log-sigma-3-0-mm-3D_glszm_
LargeAreaHighGrayLevelEmphasis

SWI log-sigma-5-0-mm-3D_glcm_Idmn wavelet-HHH_glcm_Imc1 wavelet-HHH_glcm_Imc2

T1w original_glszm_ZoneVariance log-sigma-5-0-mm-3D_glszm_
LargeAreaLowGrayLevelEmphasis

wavelet-LLL_glcm_Imc1

ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; FLAIR, fluid attenuated inversion recovery; SWI, susceptibility weighted imaging; T1w, T1-weighted.
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TABLE 3 Results of different models for the test set (average results of five-fold).

Model Accuracy Sensitivity Specificity Precision Recall F1-score

SVM 0.791 0.631 0.915 0.858 0.631 0.722

RF 0.818 0.723 0.891 0.838 0.723 0.773

LightGBM 0.831 0.739 0.902 0.875 0.739 0.787

CatBoost 0.812 0.662 0.928 0.876 0.662 0.748

XGBoost 0.804 0.708 0.878 0.833 0.708 0.753

SVM, support vector machine Classifier; RF, random forest; LightGBM, light gradient boosting machine; XGB, extreme gradient boosting; F1-score = 2 × (precision × recall)/(precision
+ recall).

FIGURE 3

Precision-recall curves of the five models on five-fold cross-validation.

only the three best features were retained for each modality.
For lesion shape features, we used the same method to
retain the one best feature. Finally, a total of 16 image
features were retained and used to train the ML model
with the scikit-learn tool. A total of five methods, including
Support Vector Machine (SVM) Classifier, Random Forest
(RF) Classifier, Light Gradient Boosting Machine (LightGBM)
Classifier, Category Boosting (CatBoost) Classifier, and eXtreme
Gradient Boosting (XGBoost) Classifier, were used to build
the models. Model performance was evaluated by a five-
fold stratified cross-validation process. The evaluation metrics

included accuracy, precision, recall, F1 score, receiver operating
characteristic (ROC) curve, area under the curve (AUC),
precision recall curve.

2.6. Statistical analysis

Statistical analysis was performed using SPSS 21.0 software.
The independent samples t-test was used to compare the
measurement data. Results with p < 0.05 were considered to be
statistically significant differences.
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FIGURE 4

ROC curves and AUC values of the five models on five-fold cross-validation. ROC, received operating characteristic; AUC, area under the curve.

3. Results

3.1. Demographic characteristics of
patients

Of the 148 patients, 83 (56.1%) had a good prognosis and
65 (43.9%) had a poor prognosis. The training set comprised
104 patients and the remaining 44 were used to test the ML
model. For the overall sample, the mean age was 64.29 years
and the mean NIHSS score was 5.59. These two variables
differed significantly between groups (p < 0.05). No significant
differences were found between patient groups for other baseline
clinical characteristics (all p > 0.05, Table 1).

3.2. Radiomic feature extraction and
selection

Three best radiomic features for each MRI modality (DWI,
ADC, FLAIR, SWI and T1w) and one best feature for lesion

shape were selected as features in the ML models. The detailed
information about the features is presented in Table 2.

3.3. Training and evaluation of ML
prediction models

The average results obtained for the test set using the
different classification models after five-fold cross-validation are
as follows: SVM model with 79% accuracy, RF model with 82%
accuracy, LightGBM model with 83% accuracy, CatBoost model
with 81% accuracy, and XGBoost model with 80% accuracy.
The full model evaluation results are shown in Table 3 and
Figures 3, 4.

4. Discussion

Early and accurate determination of disease progression
may be important for new stroke patients, allowing timely
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targeted treatment and effective improvement. To predict the
prognosis of AIS early and accurately, this paper investigated
five ML models based on multi-modal (T1w, ADC, DWI,
FLAIR, and SWI) MRI radiomic features to predict AIS
prognosis. The results showed that LightGBM model performed
best in binary prognostic classification with accuracy of 0.831,
sensitivity of 0.739, specificity of 0.902, F1-score of 0.788 and an
area under the curve (AUC) of 0.902.

At present, most studies on the prognosis of ischemic
stroke have used retrospective cohort studies to perform
traditional statistical analysis of stroke prognosis models using
Cox regression and logistic regression (11–13). Previous studies
have failed to make full use of MRI data, resulting in low
prediction accuracy (14–16). Several studies support that ML
can predict stroke prognosis more accurately (17–19). Wang
et al. (20) showed that, despite variability, current ML-based
prognosis prediction of stroke patients has great potential.
Qu et al. (21) used ML of retinal images to assess risk in
771 patients with ischemic and hemorrhagic stroke, achieving
sensitivity and specificity of ischemic stroke risk assessment
values of 91.0 and 94.8%, respectively. The area under the ROC
curve for ischemic stroke was 0.929. Cui et al. (22) applied
ML to develop and validate the incidence and severity of acute
ischemic stroke in 1,100 patients. The combination of ML
methods (e.g., complex neural networks) with imaging omics
seems particularly promising, especially for the identification
and segmentation of small lesions (23–25). Macciocchi et al.
(26) performed a 3 month systematic evaluation of ischemic
stroke and concluded that characteristics, such as age, previous
stroke, initial neurological deficit, and lesion location, were
highly correlated with functional outcome. The current results
are consistent with those of previous studies, suggesting that
imaging histology scores, hemorrhage, age, and NIHSS at 24 h
are independent indicators of clinical outcome in patients with
ischemic stroke. By combining these independent risk factors
to generate a new imaging histology line graph, several studies
have reported an association of DWI-derived ADC changes with
functional outcome in ischemic stroke (27). A previous study
reported that DWI had a 90% probability of identifying a lesion
within 3 h prior to symptom onset (28). The present study
suggested that radiomic features based on multi-modal MRI
could predict clinical outcomes in acute stroke patients with
accuracy of 0.831.

This study has provided new clues for predicting the
prognosis of AIS and demonstrated the ability of multi-modal
based radiomics to accurately predict the clinical functional
outcome of AIS, contributing to the prevention of post-
stroke psychiatric diseases. However, this study still has several
limitations. First, this was a retrospective study with selection
bias. Studies using larger samples are needed to further validate
the predictive efficacy of the model. Second, this study did
not differentiate the etiology and site of stroke, and manual
outlining of ROI was affected by individual subjective factors.

These clinical and imaging data should be considered in further
study in the next step.
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