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Autism spectrum disorder (ASD) is one common psychiatric illness that

manifests in neurological and developmental disorders, which can last

throughout a person’s life and cause challenges in social interaction,

communication, and behavior. Since the standard ASD diagnosis is highly

based on the symptoms of the disease, it is di�cult to make an early diagnosis

to take the best cure opportunity. Compared to the standard methods,

functional brain network (FBN) could reveal the statistical dependence among

neural architectures in brains and provide potential biomarkers for the

early neuro-disease diagnosis and treatment of some neurological disorders.

However, there are few FBN estimation methods that take into account

the noise during the data acquiring process, resulting in poor quality of

FBN and thus poor diagnosis results. To address such issues, we provide a

brand-new approach for estimating FBNs under a noise modeling framework.

In particular, we introduce a noise term to model the representation errors

and impose a regularizer to incorporate noise prior into FBNs estimation.

More importantly, the proposed method can be formulated as conducting

traditional FBN estimation based on transformed fMRI data, which means the

traditional methods can be elegantly modified to support noise modeling. That

is, we provide a plug-and-play noise module capable of being embedded into

di�erent methods and adjusted according to di�erent noise priors. In the end,

we conduct abundant experiments to identify ASD from normal controls (NCs)

based on the constructed FBNs to illustrate the e�ectiveness and flexibility of

the proposed method. Consequently, we achieved up to 13.04% classification

accuracy improvement compared with the baseline methods.

KEYWORDS

Autism spectrum disorder, functional brain network, Pearson’s correlation, adaptive

noise depression, functional magnetic resonance imaging

1. Introduction

Autism spectrum disorder (ASD) is one of the most common psychiatric illnesses

characterized by repetitive behaviors and persistent impairments in communication and

interaction (1, 2). Referring to a current report provided by the CDC of the USA (3),

the overall ASD prevalence is rapidly increasing, rising from 6.7 per 1,000 children

aged 8 years in surveillance years 2000 and 2002 to 23.0 in the surveillance year 2018.
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However, doctor’s diagnosis of ASD highly depends on people’s

developmental history and behavior, whichmay result in delayed

final diagnosis and thus missed early help (4). To get an early

diagnosis, gene-level measurements can help, but their high cost

and complexity impedes the spread (5, 6). Recently, researchers

have shown that unusual brain activity and abnormal functional

disruptions in brain regions highly correlate with ASD, making

it capable to discover informative biomarkers and analyze brain

activity to help diagnose ASD (7–9).

As a successful non-invasive technique for measuring brain

activity, functional magnetic resonance imaging (fMRI) has

been successfully used to aid in the early diagnosis of ASD

(10–12). Functional brain network (FBN) is one of the most

popular tools to help diagnosis based on the fMRI data (13–15).

Generally, FBN is constructed by the brain regions of interest

(ROIs) and their correlations, such as the statistical dependence

between different ROIs (16, 17). Compared to the current study,

which directly utilizes the fMRI data to identify the ASD from

normal controls (NCs), the FBN-based methods can provide

more stable measurements among neural time series of the

brain that highly relates to some neurological diseases, including

ASD,mild cognitive impairment (MCI) (18), Alzheimer’s disease

(AD) (19), and chronic tinnitus (CT) (20).

Second-order statistics are most commonly used to estimate

FBN, and typical models include Pearson’s correlation (PC)

(21) and sparse representation (SR) (22). PC enjoys an efficient

and robust FBN estimation that captures the full correlation

among ROIs, but it has dense connections and is affected by

confounding effects from other brain regions (16). Instead, SR

can capture the partial correlation that eliminates the potential

effects of other brain regions. However, the computation of

the inverse covariance matrix is involved in partial correlation,

which is ill-posed (23). Therefore, SR is equipped with an L1-

norm regularizer to obtain a more stable partial correlation,

leading to relatively lower computation efficiency than PC.

Despite their successful applications, the existing methods

rarely take into account the data acquisition noise, which usually

leads to poor FBN estimation and thus poor performance

on disease identification. Before FBN estimation, the data

preprocessing follows a standard pipeline to avoid influence

caused by noisy signals (24), which is still not easy to filter

out all the artifacts/noises from the data due to the weak fMRI

signals. For example, some preprocessing steps may further

introduce the notorious noisy time points into the data (e.g.,

spatial normalization) (25).

To address the earlier issues, in this study, we propose a

novel FBN estimation strategy by embedding a noise modeling

term to depress the effects of noise on FBN estimation. The

noise term measures the noises and their correlation among

time series to capture the noise pattern implied in time series.

We show that such a term appears to be a modification of

the data-fitting term, which has a great influence on FBN

estimation. Then we introduce a noise prior to constraining

the noise pattern from a practical view. Consequently, our

proposed method realizes to automatically and simultaneously

model the noise and estimate FBN under a unified framework.

In summary, the contributions of our proposed method are

highlighted as follows:

1. Our method combines the noise depression and FBN

estimation into a unified framework, making it capable of

obtaining a clearer FBN estimation and higher accuracy on

disease diagnosis.

2. The modification of the data-fitting term can be interpreted

as a traditional fitting term on a transformed data series,

making it possible tomodify a series of traditional methods to

support noise modeling. Meanwhile, such modifications can

make good use of existing optimization methods, which are

both cheap and convenient.

3. The noise pattern can be fitted with the help of extra prior

knowledge, which can be independently adjusted to adapt to

the current task.

4. The earlier two points jointly constitute a plug-and-play noise

module capable of being embedded into different methods

and adjusted according to different noise priors.

2. Materials and methods

2.1. Data acquisition and preprocessing

For the participants in this study, we simply utilize a well-

known and publicly available dataset, that is, Autism Brain

Imaging Data Exchange (ABIDE) as in several recent studies

(16, 26). The autism criteria sets in the Diagnostic and Statistical

Manual of Mental Disorders, 4th Edition, Text Revision (DSM-

IV-TR) (27) are adopted to diagnose ASD from NC. Above

all, 45 ASD subjects (36 males and nine females) and 47 NC

subjects (36 males and 11 females) between 7 and 15 year

of age are included, with gender, age, and full intelligence

quotient (FIQ) not differing significantly from ASD to NC. The

detailed demographic information of the participant is given

in Table 1.

The resting-state fMRI scanning of all subjects is conducted

using a 3T Siemens Allegra scanner within 6 min. During

the scanning procedure, all subjects were asked to relax with

their eyes open and focus on a white fixed cross in the

middle of a black background projected on a screen. These

requirements ensure the subjects to focus their attention and

prevent meditation with the eyes closed, thereby avoiding

violent neural activity. The parameters for acquiring images

include: flip angle = 90◦, 180 volumes per scan, 33 slices

per volume, TR/TE = 2, 000/15 ms, and 4.0-mm voxel

thickness (28).

After data acquisition, we conduct the statistical parametric

mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm/software/

spm8/) as the preprocessing toolbox to preprocess the fMRI
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TABLE 1 Demographic information of the subjects.

ASD
(N = 45)

NC
(N = 47)

p-value

FIQ (mean±

SD)

106.8± 17.4 113.3± 14.1 0.0510

Age (year±

SD)

11.1± 2.3 11.1± 2.3 0.7773†

Gender (M/F) 36/9 36/11 0.2135∗

ADOS (mean

± SD)

13.7± 5.0 - -

ADI-R (mean

± SD)

32.2± 14.3‡ - -

FIQ, full intelligence quotient; ADOS, Autism Diagnostic Observation Schedule; ADI-R,

Autism Diagnostic Interview-Revised.
∗The p-value was obtained by the chi-squared test.
†The p-value was obtained by a two-sample two-tailed t-test.
‡Two patients do not have the ADI-R score.

data. In particular, we remove the first 10 RS-fMRI images of

each subject. The remaining images were spatially normalized

into the Montreal Neurological Institute (MNI) template space

with the resolution 3 × 3 × 3 mm. Then, the regression of

nuisance signals (ventricle, whitematter, global signals, and head

motion with Friston 24-parameter model), signal detrending,

and band-pass filtering (0.01–0.08 Hz) (29–31) are included

for further corrections. After that, each preprocessed image

was parcellated into 116 ROIs according to the automated

anatomical labeling (AAL) atlas (32). Finally, these time

series were as the data matrix, X ∈ R
170×116, where 170

denotes the total number of temporal image volumes and

116 denotes the total number of ROIs. In our study, we

focus on the first 90 ROIs that belong to the cerebrum as

our regions of interest, which are utilized in most studies

using AAL. Thus, the data matrix size is reformed as

X ∈ R
170×90.

2.2. Related methods

After data preparation, the next task is the FBN construction.

In this study, we briefly review two FBN estimation approaches,

that is, PC (33) and SR (22), which are all closely related to this

study.

The notations used in the rest article are presented

beforehand as follows. Bold uppercase letters are used to denote

matrices, bold lowercase letters are used to denote vectors, and

normal italic letters to denote scalars. The ith column of matrix

X is denoted as xi, and the element ofX at ith row and jth column

is denoted as xij. ‖ · ‖F , ‖ · ‖2, and ‖ · ‖1 denote the Frobenius

norm, L2-norm, and L1-norm, respectively. | · | denotes the

determinant of a matrix or the absolute value of a scalar. We

further denote the transpose operator, the trace operator, and the

inverse of a matrix X as XT , tr(X), and X−1.

2.2.1. Pearson’s correlation

The Pearson’s correlation is the simplest and most

commonly used method for estimating FBNs (33). X ∈ R
T×N

denote the fMRI data matrix (i.e., the BOLD signals), where T

and N denote the number of time points in each series and the

number of ROIs, respectively. xi ∈ R
T(i = 1, · · · ,N) denote the

time series of the ith ROI, and then we can calculate the weight

wij of the network connection between the ith and jth ROIs by

PC as follows:

wij =
(xi − x̄i)

T(xj − x̄j)
√

(xi − x̄i)T(xi − x̄i)
√

(xj − x̄j)T(xj − x̄j)
, (1)

where x̄i ∈ R
T denotes a mean vector with all entries being the

mean value of all elements in xi.

Without the loss of generality, suppose that the fMRI

data have been centralized and normalized by xi = (xi −

x̄i)/
√

(xi − x̄i)T(xi − x̄i), the weight can be simplified as the

form wij = xTi xj, which corresponds to the optimal solution of

the following problem:

min
W

‖W− XTX‖2F , (2)

where W = (wij) ∈ R
N×N is the edge weight matrix of

the estimated FBN. The above remodels PC in a perspective

of optimization and benefits to develop new flexible FBN

estimation methods based on PC (16).

In general, PC-based estimation methods produce a dense

FBN, in which the ROIs are fully connected, with some

connections being noisy or uninformative. In order to filter out

such connections, thresholding or sparsity-induced constraint is

generally used to sparsify the estimated FBN. For more details of

the thresholding scheme, see Fornito et al. (34).

2.2.2. Sparse representation

Although PC is simple and empirically effective in building

FBN, it can only measure the full correlation and neglect

the interaction among multiple ROIs. Instead of measuring

full correlation, PC-based methods aim to estimate more

reliable connections between two ROIs by regressing out the

confounding effect from other ROIs (22). Nevertheless, such an

approach might be ill-posed due to the inverse calculation of

a singular sample covariance matrix. To address this issue, an

L1-norm regularizer is incorporated into the partial correlation

model, resulting in the SR-based FBN estimation (22) as follows:

min
wij

N
∑

i=1

∥

∥

∥

∥

∥

∥

∥

∥

xi −

N
∑

j=1
j 6=i

wijxj

∥

∥

∥

∥

∥

∥

∥

∥

2

2

+ λ1

N
∑

j=1
j 6=i

|wij| (3)
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which can be further rewritten as the equivalent matrix form:

min
W

‖X− XW‖2F + λ1‖W‖1

s.t. wii = 0,∀i = 1, · · · ,N
(4)

where constraint wii = 0 is used to remove xi from X to avoid

the trivial solution, λ1 is a regularized parameter that controls

the sparsity of the estimated FBN and benefits for achieving a

stable solution (35).

2.3. Proposed methods

As two typical examples, PC and SR have been demonstrated

to be more sensitive than some complex higher-order methods

(13). Nevertheless, since the original data points in the time

series possibly contain “noise”, the estimated FBNs are often

heavily influenced by the quality of the observed data and result

in the representation noise of the network connections (25).

To address this issue, in this section, we mainly focus on the

baseline method SR and introduce a noise modeling scheme for

FBN estimation.

2.3.1. SRAND: Sparse representation with
adaptive noise depression

Suppose X to be the noisy fMRI data (assumed to be

centralized and normalized), then the first term in Equation (3)

can be rewritten as follows:

N
∑

i=1

∥

∥

∥

∥

∥

∥

∥

∥

xi −

N
∑

j=1
j 6=i

wijxj

∥

∥

∥

∥

∥

∥

∥

∥

2

2

=

N
∑

i=1

∥

∥

∥

∥

∥

∥

∥

∥

(

xcleari + ni

)

−

N
∑

j=1
j 6=i

wij

(

xclearj + nj

)

∥

∥

∥

∥

∥

∥

∥

∥

2

2

=

N
∑

i=1

∥

∥

∥

∥

∥

∥

∥

∥









xcleari −

N
∑

j=1
j 6=i

wijx
clear
j









+









ni −

N
∑

j=1
j 6=i

wijnj









∥

∥

∥

∥

∥

∥

∥

∥

2

2

(5)

where the superscript clear denotes the clean data and ni denotes

the noise term of the ith ROI.

We can see that the total representation error in the objective

function can be rewritten by the sum of the representation

error on clean fMRI data and that caused by the noise of

the fMRI data. However, traditional SR takes no account of

the influence brought by such noise-caused error, and simply

assumes that the representation error terms are identically

independently distributed [i.i.d., equivalent to the L2-norm in

Equation (3)]. To this end, we introduce to model of the error

to depress the noise influence on FBN estimation. Specifically,

we consider measuring the partial correlation and assuming the

representation error between the ith ROI and the jth ROI follows

Gaussian distribution with a non-diagonal precisionmatrix, that

is,

xi ∼ N









xi

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1
j 6=i

xjwij,�
−1









, (6)

where � denotes the precision matrix (i.e., the inverse

covariance matrix). Here, non-diagonal condition on �

indicates the noise term to be non-i.i.d, which is more practical

to measure the dependent relationship between noises among

time series. Moreover, we assume that the precision matrix

is identical for noise terms between different ROIs so that to

capture the noise pattern implied in time series rather than ROIs.

Taking the negative logarithm of Equation (6), we obtain

the maximum-likelihood estimation (MLE) of wij and � by

minimizing

min
wij,�









xi −

N
∑

j=1
j 6=i

xjwij









T

�









xi −

N
∑

j=1
j 6=i

xjwij









− ln |�|, (7)

In subsequent, we consider the optimization problem

corresponding to wij by fixing �. We define a new transformed

fMRI time series yi = �
1
2 xi, then the objective term related to

wij in the Equation (7) can be rewritten as follows:









xi −

N
∑

j=1
j 6=i

xjwij









T

�









xi −

N
∑

j=1
j 6=i

xjwij









=

∥

∥

∥

∥

∥

∥

∥

∥

yi −

N
∑

j=1
j 6=i

yjwij

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.

(8)

Consequently, the optimization problem of wij embedded

with the newly added noise depression module can be

formulated as follows:

min
wij

N
∑

i=1

∥

∥

∥

∥

∥

∥

∥

∥

yi −

N
∑

j=1
j 6=i

yjwij

∥

∥

∥

∥

∥

∥

∥

∥

2

2

+ λ1

N
∑

j=1
j 6=i

|wij| (9)

or equivalently as its matrix form

min
W

‖Y− YW‖2F + λ1‖W‖1.

s.t. wii = 0,∀i = 1, · · · ,N
(10)

We can see that the above optimization problem coincides with

the traditional SR on the transformed fMRI data series yi, which

can be easily solved by existing SR-based optimization methods

(22). In contrast, the coincidence promotes us to embed such

noise modeling into other FBN estimation methods following

a similar pipeline. In other words, such transformation on
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fMRI data can be applied as a plug-and-play noise module to

elegantly modify the traditional methods, making them capable

of depressing noise.

2.3.2. Adaptive noise modeling with di�erent
priors

After the optimization of the edge weightswij, we turn to the

noise modeling term �. We first reformulate Equation (7) into

matrix form about � as follows:

min
�

tr
[

�(X− XW)(X− XW)T
]

− N ln |�| (11)

The element at the ith row and jth column of � measures

the noise relationship between the ith and jth time points. If

the value approaches to zero, then the two time points are

conditionally independent and vice versa. Such modeling can

capture the noise dependence among time series, which is more

practical than i.i.d. assumption.

However, similar to the estimation of FBN, due to the

computation of � involving inversing the covariance matrix,

directly optimizing � based on objective function (12) is often

ill-posed. Thus, it makes sense to impose a prior to constrain the

structure of �. We embed such prior via a regularizer on � and

present the following universal form for optimizing �,

min
�

tr
[

�(X− XW)(X− XW)T
]

−N ln |�|+λ2R(�), (12)

where R(�) is a regularized term, λ2 is a trade-off parameter.

Considering that only the noises which change with time

series regularly appear to be correlated in �, while irregular

noises among time series are usually independent of each other,

it is natural to impose an L1-norm penalty to model such sparse

structure, resulting in the following:

min
�

tr
[

�(X− XW)(X− XW)T
]

− N ln |�| + λ2‖�‖1,

(13)

which can be solved by existing optimization methods, for

example, the method of Meinshausen and Bühlmann (36) or the

classical graphical lasso (37).

By combining the objective functions and joining all

constraints in Equations (10) and (13), the sparse representation

based on adaptive noise depression (SRAND) with L1-norm

constraint can be summarized as follows:

min
W,�

tr
[

(X− XW)T�(X− XW)
]

− N ln |�| + λ1‖W‖1 + λ2‖�‖1

s.t. wii = 0, ∀i = 1, · · · ,N.

(14)

Consequently, the procedure of SRAND with L1-norm is

listed in Algorithm 1.

In addition to the above kind of prior that directly imposes

specific structure on the noise pattern, in the following, we

Input: Data matrix X, parameters λ1 and λ2

Output: Constructed FBN W

Initialize � = I

while not converge do

Update W by solving the problem in Equation

(10)

Update � by solving the problem in Equation

(13)

end while

Algorithm 1. SRAND with L1-norm.

introduce another prior, Wishart distribution as the prior of

� to embed structure implicitly. In particular, the Wishart

distribution is given by the following:

W(�|6, ν) = B(6, ν)|�|(ν−T−1)/2 exp

(

−
1

2
tr

(

6
−1

�

)

)

,

(15)

where

B(6, ν) = |6|−ν/2



2νT/2πT(T−1)/4
T

∏

i=1

Ŵ

(

ν + 1− i

2

)





−1

Is a scaler irrelevant to �, ν is the number of degrees of freedom

and restricted to ν > T − 1, 6 is a N × N symmetric, positive

definite matrix.

Then we assume that the precision matrix � is subject to

Wishart distribution,

� ∼ W(�|6, ν). (16)

By combining Equations (6) and (15), we obtain the

conditional distribution of � satisfying,

p(�|6, ν,W)

∝

N
∏

i=1

p(xi|X,wi,�)p(�|6, ν)

∝

N
∏

i=1

|�|1/2 exp

(

−
1

2
tr

(

(xi − Xwi) (xi − Xwi)
T

�

)

)

× |�|(ν−T−1)/2 exp

(

−
1

2
tr

(

6
−1

�

)

)

,

(17)

where wi denotes the ith column of W and the terms only

relevant to the optimization of wij is omitted. From Equation

(17), we see, Wishart prior is conjugate to the precision matrix

� of the multi-variate Gaussian distribution.

In conclusion, we reform Equation (17) and obtain the

variational posterior q(�) via approximation inference (38) that

follows:

q(�) ∝ |�|(N+ν−T−1)/2 exp

×

(

−
1

2
tr

((

(X− XW)(X− XW)T + 6
−1

)

�

)

)

. (18)
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Then, the optimal solution of � can be computed

analytically as follows:

� = (N + ν)
(

(X− XW)(X− XW)T + 6
−1

)−1
, (19)

which is equivalent to the optimal solution of the following

optimization problem,

min
�

tr
[

�

(

(X− XW)(X− XW)T + 6
−1

)]

−(N+ν) ln |�|.

(20)

According to the form of the optimal solution, the structure

of � is partially governed by the structure of the prior matrix

6; thus it is natural to embed prior structure via 6 implicitly.

Without the loss of generality, in this article, we consider 6 =

α−1I as an infinitely broad prior, so that the structure of � is

almost learned from the data entirely.

To sum up, the overall objective function joining all

constraints in Equations (10) and (20), the SRANDwithWishart

prior constraint can be summarized as follows:

min
W,�

tr
[

�

(

(X− XW)(X− XW)T + 6
−1

)]

− (N + ν) ln |�| + λ1‖W‖1

s.t. wii = 0, ∀i = 1, · · · ,N.

(21)

Consequently, the procedure of SRAND with Wishart prior

is listed in Algorithm 2.

Input: Data matrix X, parameters λ1, ν, 6

Output: Constructed FBN W

Initialize � = I

while not converge do

Update W by solving the problem in Equation

(10)

Update � by Equation (19)

end while

Algorithm 2. SRAND with Wishart prior.

3. Experiments and results

3.1. Experimental setting

3.1.1. FBN construction

In this section, we estimate FBNs on ABIDE database using

different methods, including SR and the proposed SRAND

with Wishart prior. In addition, we also conducted experiments

using PC and PCAND (i.e., PC modified via adaptive noise

depression) with Wishart prior. In this study, we fix the Wishart

distribution with equal diagonal entries as the prior to gain

an infinitely broad prior and to evaluate the influence of the

same prior on different comparison methods. The comparison

between different priors on the same method is followed in

the subsequent section. In general, each SR-based method

contains one or more hyperparameters for regularization, which

may significantly influence the network structure and then

the ultimate classification results (39). Therefore, for each

regularized parameter, we build multiple FBNs on different

parameter values in the candidate range [0.05, 0.1, · · · , 0.95, 1]

and then search the optimal parameter value via a separate

parameter selection procedure.

3.1.2. Feature selection and classification

After obtaining the estimated FBNs, we subsequently utilize

them to identify participants with ASD from NCs. In our

experiments, the upper triangular edge weights of the FBNs are

selected as the input features since the FBNmatrix is symmetric.

In particular, 90 nodes (i.e., number of ROIs) produce 90×(90−

1)/2 = 4, 005 dimensions of the feature. Compared with the

small sample size of 92, it is still too high to ensure the good

generalization ability of the classifier, which obviously affects

the final classification accuracy. To address this problem, we

adopt the simplest t-test with p = 0.01 as feature selection

method. After selection of the most-relevant features, we use

the most popular support vector machine (SVM) (linear kernel

with default parameter C = 1) as our classifier for disease

identification (40).

Furthermore, we test the involved FBN estimation methods

by the leave-one-out cross-validation (LOOCV), in which

experiments repeat forK times (i.e., the total number of subjects)

for each subject as the testing set, while the rest subjects are used

as the training set to select features and train classifier.Moreover,

in order to determine the optimal value of the regularization

parameter, an inner LOOCV is conducted on the training data

via a grid search on the candidate range of parameters, which is

based on the metric of classification accuracy.

The overall detailed pipeline of our experiments is shown in

Figure 1.

3.2. Results

3.2.1. FBN visualization

In order to compare the results of different FBN estimation

methods intuitively, we first take one subject from ABIDE

dataset as an example to visualize the adjacency matrices of the

FBNs estimated by the four comparison methods in Figure 1.

Since the FBN is generally dense for PC-based methods, in order

to show the changes more clearly, we enlarge part of the FBNs

(indicated by the black box in Figure 2) and show the enlarged

part (the second row in Figure 2).

It can be observed that the PC-based FBN is significantly

different from those estimated by SR-based methods since
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FIGURE 1

Experiment procedure based on the estimated FBNs.

FIGURE 2

Adjacency matrices of the FBNs estimated by four comparison methods. The first row shows the whole adjacency matrix and the second row

shows the enlarged part corresponding to the black box in the first row. For a convenient comparison between the visualized results, the

elements in the adjacency matrices have been normalized into the interval [−1, 1]. (A) PC, (B) PCAND, (C) SR, and (D) SRAND.

they use different data-fitting terms to capture full correlation

and partial correlation between ROIs, respectively. In contrast,

the FBNs constructed based on the same data-fidelity term

share similar topological structure, for example, PCAND

is similar to that of PC and SRAND is similar to that

of SR. Moreover, compared with PC and SR, the FBN

estimated by PCAND and SRAND can further weaken or

remove the noisy or weak connections and produce an even

clearer topological structure. Specifically, although there is

no sparsity constraint on estimating FBN by PCAND, it

can weaken some of the dense connections constructed by

the original PC (as shown by the brighter color blocks that

indicate lower connection weights). As for SRAND, it can

further remove the weak connections on the basis of the

sparsity-contrained SR.

TABLE 2 Classification performance corresponding to di�erent FBN

estimation methods on ABIDE dataset.

Method Accuracy Sensitivity Specificity

PC 0.6848 0.7333 0.6383

SR 0.5435 0.6000 0.4894

PCAND 0.7174 0.7333 0.7021

SRAND 0.6739 0.5556 0.7872

The bold values mean the best results corresponding to the performance metrics.

3.2.2. ASD identification

In this study, we adopt three quantitative metrics, including

accuracy (ACC), sensitivity or true positive rate (SEN)

and specificity or true negative rate (SPE) to evaluate
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the classfication performance of different methods. The

mathematical definitions of the first three measures are given

as follows:

ACC =
TP + TN

TP + TN + FP + FN

SEN =
TP

TP + FN

SPE =
TN

TN + FP
.

(22)

where TP, TN, FP, and FN indicate true positive, true

negative, false positive, and false negative, respectively. It

should be noted that in this study, we treat the subjects with

ASD as the positive class, while the NCs as the negative

class.

The ASD vs. NC classification results on ABIDE dataset

are reported in Table 2. As can be seen, the PC-based methods

perform better than SR-based ones in our experiment. A similar

problem has also been revealed in other studies, which can

be blamed on the ill-posed computation of inverse covariance

matrix with high feature dimension (16). Nevertheless, both

modified methods enjoy better performance than the original

ones, increasing classification accuracy by approximately 3.26

and 13.04%, respectively. The aforementioned results can be

attributed to the adaptive noise depression module that can

further filter out the noisy or weak connections in the estimated

FBN and provide clearer connections highly related to neural

disorders.

4. Discussion

4.1. Sensitivity to network model
parameters

In general, the trade-off parameters in the FBN estimation

methods play an important role to influence the ultimate

classification performance (17, 41). To investigate the sensitivity

of the proposed method to different parameter values, we repeat

ASD classification experiments based on different parameter

combinations and compute the classification accuracy via

LOOCV on all of the subjects. In addition to SRAND with

Wishart prior, in this experiment, we also include the version

with sparsity prior as compared to evaluate the influence

of different priors. For convenient, we denote the SRAND

with Wishart prior and sparsity prior as SRAND-Wishart, and

SRAND-L1, separately. In order to compare the sensitivity

of the three methods, SR, SRAND-Wishart and SRAND-L1

simultaneously and conveniently, we fix the second parameter

of SRAND-L1 as λ2 = 0.1, so that the three methods have the

same comparable parameter. Such operation is relatively fair for

SR and SRAND-Wishart. Indeed, the fixed second parameter

limits the freedom of the model and may keep SRAND-L1 away

FIGURE 3

Classification accuracy of the FBN estimated by three comparison methods on 20 regularized parameters.
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FIGURE 4

Frequency of the selected optimal values of parameter λ in the inner loops, where the horizontal axis represents the candidate parameter values,

and the vertical axis represents the frequency of the parameter value being selected via parameter selection.

from the potential higher accuracy. The results are reported in

Figure 3.

We note that most of the methods are sensitive to the

parameters. Compared with the traditional SR-based methods,

SRAND-Wishart is highly affected by varied parameters and

even gains lower accuracy than the traditional ones. Such results

are reasonable since Wishart prior actually imposes no structure

constraint on the noise distribution, and the computation of� is

determined by the fMRI data. Thus, computing� is generally ill-

posed and sensitive to the parameter due to the limited sample

size. In contrast, SRAND-L1 is less likely affected by parameters

and thus achieves more stable results. In addition, SRAND-L1

achieves an improvement of the classification performance on

most of the parameter values. Such results can be attributed to

the well chosen prior that fits the noise structure. Therefore,

we believe that appropriate adaptive noise depression module

could eliminate bad effects on the FBN estimation and benefit

the ultimate disease diagnosis.

In addition to the comparison between classification

accuracies on different parameters, we also present the value

distribution of the optimal parameters selected in the inner

loops, as shown in Figure 4. We can find that the optimal

parameters of all SR-based methods concentrate around some

fixed λ, that is, λ = 0.3 for SR, λ = 0.15 for SRAND-Wishart,

and λ = 0.65 for SRAND-L1. Such concentricity also implies the

sensitivity of all SR-based methods that they prefer some fixed

parameter value than the scattered ones.

4.2. Discriminative features

In this subsection, we use the estimated FBN of PCAND

as an example to explore which features contribute the most

to ASD identification in our experiments. Specifically, we apply

t-test with a p-value of 0.001 to select discriminative features

based on the FBN constructed by PCAND. The top 66 most

discriminative connections are visualized based on the first 90

ROIs of AAL template (32) in Figure 5, where the thickness

of the arc shows the discriminative power. From Figure 5,

we can find that the most discriminative features focus on

the brain regions, including frontal, parahippocampus and

pallidum, and so on. The frontal lobe is key to communication

and cognitive function and is known to be implicated in ASD

(42). Parahippocampus has been shown to have hypoactivation

in scene recognition, in line with the notion of peaks and valleys

of neural recruitment in individuals with ASD (43). Pallidum

enlargement has been found in ASD compared with NC and

may be a possible related factor in stereotypic behavior and

social bonding (44). Similar findings have also been presented

in previous studies (45–47).

5. Conclusion

Sparse representation is one of the most commonly used

schemes for estimating FBNs due to its simplicity and relatively

clearer network connections. Nevertheless, the SR scheme is

Frontiers in Psychiatry 09 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1100266
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ma et al. 10.3389/fpsyt.2022.1100266

FIGURE 5

Most discriminative connections between ASD and NC for the first 90 ROIs of the AAL template.

still trapped in noisy or weak connections due to the noise

introduced via data acquisition. In this study, we embed a

noise module based on which the prior of noise pattern can be

naturally incorporated in the form of regularizers. Such module

has been illustrated to be plug and play that is capable of

being embedded into different methods and adjusted according

to different noise priors. To evaluate the effectiveness of the

proposed scheme, we conduct experiments on the ABIDE

database to identify subjects with ASD from normal controls.

The experimental results demonstrate that the proposed method

can achieve better performance than the baseline method.
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