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Recent clinical studies have shown that agonists at muscarinic

acetylcholine receptors e�ectively reduce schizophrenia symptoms. It

is thus conceivable that, for the first time, a second substance class of

procholinergic antipsychotics could become established alongside the usual

antidopaminergic antipsychotics. In addition, various basic science studies

suggest that there may be a subgroup of schizophrenia in which hypofunction

of muscarinic acetylcholine receptors is of etiological importance. This could

represent a major opportunity for individualized treatment of schizophrenia

if markers can be identified that predict response to procholinergic vs.

antidopaminergic interventions. In this perspective, non-response to

antidopaminergic antipsychotics, specific symptom patterns like visual

hallucinations and strong disorganization, the presence of antimuscarinic

antibodies, ERP markers such as mismatch negativity, and radiotracers are

presented as possible in vivomarkers of muscarinic deficit and thus potentially

of response to procholinergic therapeutics. Finally, open questions and further

research steps are outlined.
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1. Introduction

For many decades, the dopamine theory has been the most influential

neurobiological concept in understanding psychosis (1) and it is argued that all

currently used antipsychotics work through directly or indirectly changing dopaminergic

neurotransmission (2). Although there is converging evidence from different lines of

research for the involvement of dopamine in the emergence of psychotic symptoms (1),

alterations in other neurotransmitter systems have also been demonstrated, and there

is growing agreement that different neurobiological etiologies can underlie psychotic

syndromes (3–5).
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Firstly, a glutamate theory of schizophrenia has been

established mainly based on the observation that antagonists

at the glutamatergic NMDA receptor, such as ketamine,

phencyclidine, or endogenously formed anti-NMDA antibodies,

directly and reliably cause psychotic symptoms and genetic

studies showing an increased risk of schizophrenia in individuals

with gene variants affecting the glutamate system (6, 7).

However, since clinical trials of glutamatergic agents developed

based on this theory have yielded only mixed results, no

primary glutamatergic drug is to date available for routine

clinical use. Currently, studies on glutamatergic drugs focus

on compounds targeting specific receptor subtypes as well as

on subgroup analyses to identify patient groups with marked

glutamatergic alterations and hence potentially increased

response to glutamatergic interventions (6, 7).

Secondly, reduced neurotransmission at acetylcholine

receptors has been proposed as a non-dopaminergic mechanism

underlying schizophrenia symptoms. Acetylcholine receptors

are generally divided into nicotinic and muscarinic receptors

according to binding ligand, and both have been implicated

in the etiology of schizophrenia. Based on the extremely high

rate of nicotine use in patients with schizophrenia, which

has been interpreted as self-medication of existing deficits,

nicotinic acetylcholine receptors, particularly the α7-subtype,

have initially become the focus of research interest (8, 9).

An important line of research in this context involves sensory

gating, i.e., the inhibition of electrophysiological brain responses

to (mostly auditory) stimuli played at close temporal intervals

after an initial stimulus. Deficits in sensory gating have been

frequently reported in schizophrenia patients and linked to

attentional deficits (8, 10, 11). Interestingly, agonists at nicotinic

receptors (e.g., nicotine) were shown to improve these sensory

gating deficits, as well as some of the cognitive deficits, in

schizophrenia patients (9, 12, 13). Moreover, post-mortem

studies confirmed a reduced density of α7—receptors in

different brain regions in deceased schizophrenia patients.

Both findings renewed interest in developing nicotinic drugs

for schizophrenia, especially for its cognitive deficits, which

are insufficiently ameliorated by conventional antipsychotics

(8, 9). However, despite promising results in preclinical

and phase 1/2 trials, phase 3 trials on nicotinic agonists

in schizophrenia have been disappointing due to lack of

efficacy and/or tolerability and no primarily nicotinic drug

is approved for schizophrenia treatment (12, 13). Current

research on nicotinic agents for schizophrenia hence focuses

on finding optimal dosage regimes and investigating allosteric

modulators (13).

A deficit at muscarinic acetylcholine receptors in at least

a proportion of patients with schizophrenia is suggested, for

example, by post-mortem studies showing reduced density

of muscarinic receptors in patients, by imaging studies

with radioligands showing reduced availability of muscarinic

receptors, and by the ability of muscarinic antagonists such as

scopolamine to elicit schizophrenia-like symptoms in healthy

individuals (14, 15). Based on post-mortem studies, it was

proposed that approximately one quarter of schizophrenia

patients belongs to a subgroup referred to as muscarinic

receptor deficit sub-group with schizophrenia (MRDS), which

shows a massive and widespread reduction in the density

of muscarinic receptors in the CNS (16–18). Based on that,

agonists and positive allosteric modulators (PAM) at muscarinic

receptors have been investigated as potential schizophrenia

treatments [Table 1 for an overview, (22) for further discussion].

Intriguingly, recent successes were reported in phase 2 (20)

and phase 3 (21) trials of xanomeline, an agonist at the

muscarinic M1 and M4 cholinergic receptors with no direct

dopaminergic effect. It should be noted that in these trials,

xanomeline was administered combined with trospium, a

peripheral muscarinic antagonist, in order tomitigate peripheral

cholinergic side effects, but for reasons of simplicity, I will

speak of xanomeline as the centrally active compound in

the following.

These developments make it seem possible that in the near

future, a second substance class of muscarinic antipsychotics

may be established alongside current antidopaminergic

antipsychotics. This would lend new urgent importance to the

question of whether there is an “antimuscarinic subtype” in

schizophrenia and, particularly, how to identify it in clinical

settings since this subtype might show non-response to

antidopaminergic medication and response to procholinergic

treatment. This perspective is intended to present several

potential in vivo markers of muscarinic deficit in schizophrenia

that ideally in the future could be used for personalized

therapy planning and help in deciding whether to initiate

treatment primarily with a dopamine antagonist or a muscarinic

acetylcholine agonist.

2. Possible biomarkers for
muscarinic dysfunction in
schizophrenia

The following sections describe markers that could indicate

a muscarinic deficit in patients with schizophrenia. A summary

is provided in Table 2.

2.1. Non-response to dopaminergic
antipsychotics

About 20% of schizophrenia patients show no improvement

at all when treated treated with common antipsychotics (23).

Currently, clozapine is the most effective antipsychotic for

patients with non-response to antidopaminergic agents (24).

Its superiority over all other antipsychotics, as well as its

particular efficacy (25) in non-responders to antidopaminergic
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TABLE 1 Ongoing and completed trials of clinical e�cacy of muscarinergic drugs in schizophrenia.

Clinicaltrials
ID

Drug Phase Patients Primary e�cacy
outcome

Results/current
status

NCT04136873 Emraclidine 20 mg

Emraclidine 30 mg

1b Schizophrenia (acute

exacerbation)

Change from baseline at

week 6 in the PANSS total

score

Significant difference of 11.9

PANSS total score points

compared to placebo (pooled

for both doses) (19)

NCT05227703 Emraclidine 15 mg

Emraclidine 30 mg

2 Schizophrenia (acute

exacerbation)

Change from baseline at

week 6 in the PANSS total

score

Ongoing, estimated study

completion June 2024

NCT05227690 Emraclidine 10 mg

Emraclidine 30 mg

2 Schizophrenia (acute

exacerbation)

Change from baseline at

week 6 in the PANSS total

score

Ongoing, estimated study

completion June 2024

NCT03697252 Xanomeline 100–125

mg/Trospium 20–30mg

2 Schizophrenia (acute

exacerbation)

Change from baseline at

week 5 in the PANSS total

score

Significant difference of 11.6

PANSS total score points

compared to placebo (20)

NCT04659161 Xanomeline 100–125

mg/Trospium 20–30mg

3 Schizophrenia (acute

exacerbation)

Change from baseline at

week 5 in the PANSS total

score

Significant difference of 9.6

PANSS total score points

compared to placebo (21)

NCT04738123 Xanomeline 100–125

mg/Trospium 20–30mg

3 Schizophrenia (acute

exacerbation)

Change from baseline at

week 5 in the PANSS total

score

Ongoing, estimated study

completion December 2022

NCT05145413 Xanomeline 50–125

mg/Trospium 20–30mg

additionally to the established

antipsychotic treatment

3 Schizophrenia (with an

inadequate response to

current antipsychotic

treatment)

Change from baseline at

week 6 in the PANSS total

score

Ongoing, estimated study

completion March 2024

PANSS, Positive and negative syndrome scale.

TABLE 2 Possible markers of muscarinic deficits in schizophrenia and brief summary of the evidence.

Marker Summary of evidence

Treatment resistance to dopamine

antagonists

Circa 25% of schizophrenia patients do not respond to antidopaminergic antipsychotics, but, partly, to clozapine, whose

main metabolite might act through M1 receptor agonism.

Visual hallucinations Muscarinic antagonists frequently induce visual hallucinations. Visual hallucinations occur in a subset of schizophrenia

patients. In some cases, visual hallucinations in schizophrenia patients can be treated with procholinergic interventions.

Marked cognitive deficits Muscarinic antagonists frequently induce cognitive deficits and disorganized symptoms. Both occur to varying degrees in

schizophrenia patients.

Reduced mismatch negativity Mismatch negativity (the electrophysiological response to a rule violation in a sequence of stimuli) is reduced in

schizophrenia patients and linked to cognitive deficits and treatment resistance to dopamine antagonists. Mismatch

negativity is reduced by anticholinergic drugs and increased by procholinergic drugs in healthy individuals.

Presence of antimuscarinic antibodies Anti M1 antibodies are more frequent in sera of schizophrenia patients compared to controls.

Reduced M1 receptor availability in

SPECT scans

M1 receptor availability is reduced schizophrenia patients compared to controls.

antipsychotics hints to a unique non-dopaminergic mechanism

of action of clozapine. In this context, it is crucial to

note that N-desmethylclozapine, the major metabolite of

clozapine, exhibits unique agonism at the M1 receptor (26,

27), potentially making it the first representative of the

“procholinergic” antipsychotics (28). Its specific efficacy in non-

responders to antidopaminergic antipsychotics together with

the procholinergic property of clozapine’s active metabolite

make it conceivable that a proportion of patients unresponsive

to antidopaminergic antipsychotics in fact have a muscarinic

deficit underlying their symptoms, which is partially revised by

N-desmethylclozapine. If this were true, the relative efficacy of

other procholinergic antipsychotics such as xanomeline could

be particularly high in patients with treatment resistance to

antidopaminergic antipsychotics.

2.2. Specific pattern of symptoms

A hypothetical subtype of schizophrenia with a predominant

underlying muscarinic deficit might show specific symptom

patterns compared with other subtypes. Information about these

Frontiers in Psychiatry 03 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1100030
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Stuke 10.3389/fpsyt.2022.1100030

clinical correlates of a muscarinic deficit may be provided

by the symptoms elicited by anticholinergic agents. First and

foremost here are cognitive impairments, which are caused by

anticholinergics (29) and are also present in a large proportion

of patients with schizophrenia (30). Moreover, intoxications

with muscarine receptor antagonists induce psychotic states

with specific characteristics which are only present in a

minority of schizophrenia patients, like visual hallucinations and

strong disorganization (31). Interestingly, case reports suggest

that visual hallucinations in some schizophrenia patients can

successfully be treated with acetylcholine esterase inhibitors,

suggesting an underlying cholinergic deficit (32). From this,

it can be hypothesized that patients with marked cognitive

deficits and disorganization and with visual hallucinationsmight

specifically benefit from procholinergic treatment.

2.3. Mismatch negativity

Mismatch negativity (MMN) refers to the

electrophysiological response to a rule violation (e.g., an

irregular pitch) in a sequence of (in most studies auditory)

stimuli. A reduction of MMN in patients with schizophrenia

compared to controls has now been shown in many studies

and is considered one of the most promising biomarkers for

predicting the risk of conversion to clinical psychosis in people

at high risk and the response to specific therapies (33–35).

In addition to the established deficits in higher cognitive

processes, schizophrenia patients also show disturbances in

basal sensory processes, such as pitch recognition (36). These

sensory deficits are associated with difficulties in detecting

linguistic subtleties such as irony or emotional coloring and

consequently linked to the psychosocial functional impairments

that are often prognostic in schizophrenia (36, 37). Measures

of MMN are correlated to the magnitude of these sensory

processing deficits (38). Consistent with that, recent studies

revealed that reduced MMN is particularly present in a

subgroup of patients with marked cognitive deficits and poor

social functioning (34, 39, 40) and predicts poor response

to therapy with common antipsychotics (41, 42). Studies on

the neurophysiological substrate of MMN reductions have

demonstrated associations to hypofunction of the glutamatergic

NMDA receptor (43). However, a reduction in MMN

through an antimuscarinic drug (scopolamine as compared to

glycopyrrolate, a peripheral anticholinergic without effects in the

CNS) has also been demonstrated in healthy individuals (44).

Importantly, it was shown in a recent preregistered trial that

only biperiden, a muscarinic acetylcholine receptor antagonist,

but not amisulpride, a dopamine D2/D3 receptor antagonist,

galantamine, an acetylcholinesterase inhibitor increasing

acetylcholine levels, nor levodopa, a dopamine precursor

increasing dopamine levels, changed mismatch negativity in

healthy individuals (45, 46). Taken together, these findings

suggest that muscarinic deficits entail reduced mismatch

negativity, possibly through dysfunctional modulation of

NMDA-dependent neurotransmission (4, 47). This would be

consistent with the finding that response to antidopaminergic

drugs is weaker in patients with strong MMN reductions.

If reduced MMN indeed indicated a cholinergic deficit, it

could be hypothesized that it predicts good response to

procholinergic treatment.

2.4. Antimuscarinic antibodies

The exact pathomechanism underlying a potential

cholinergic deficit in schizophrenia is unclear, with post-

mortem studies suggesting reduced receptor density (15).

Interestingly, antibodies targeting M1 receptors can also be

found significantly more often in the sera of schizophrenia

patients compared to controls, although this comparison

]based on few rather small studies (48). Within schizophrenia

patients, one study reported significant correlations between

M1 antibodies and specific negative symptoms (poverty of

speech) (49), which are in turn predictive of poor outcomes

under usual treatments (50). The exact effect of these antibodies

on muscarinic receptors has yet to be elucidated and agonistic

or antagonistic impacts are possible as well as an antibody-

mediated destruction of receptors or receptor-expressing cells

(48). Although data are still sparse, it seems possible that

antimuscarinic antibodies play an etiologic role in a subset

of patients. Their presence could accordingly be a predictive

marker for a good response to promuscarinic treatment.

2.5. Neuroimaging

The muscarinic M1 receptor availability can be determined

in vivo using radioactive tracers, such as 123I-IQNB for SPECT

(51). In schizophrenia, a reduced M1 receptor availability

compared to healthy controls was reported (52). With respect

to associations between M1 receptor availability and specific

schizophrenia symptoms, results have been mixed, with reports

that lower receptor availability is related to increased positive

symptoms (52) and, conversely, to increased cognitive deficits

and negative symptoms but not positive symptoms (53). The

sensitivity of in vivo assessments of M1 receptor status might

be further increased with newly developed PET tracers for the

M1 receptor such as 11C-LSN3172176 (54). Neuroimaging with

radioligands thus has the potential to determine the extent of

muscarinic deficit in schizophrenia and potentially to predict

the benefit of procholinergic treatment. Along similar lines,

the striatal dopamine synthesis capacity assessed via F-DOPA-

PET has been used to objectify a hyperdopaminergic state in

schizophrenia patients (55). Recent research indeed showed
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that absence of hyperdopaminergia according to F-DOPA-

PET predicted subsequent non-response to antipsychotics (56).

Neuroimaging markers could thus potentially inform therapy

assignment by providing primary procholinergic medication to

patients who lack an increase in striatal dopamine synthesis but

have a reduction in muscarinic receptor availability.

3. Discussion

The current success of agonists at muscarinic acetylcholine

receptors in the treatment of schizophrenia makes it seem

possible that in the future a second substance class of

procholinergic antipsychotics will be established alongside

the primarily antidopaminergic antipsychotics. In this case,

it would be important for individualized treatment to find

specific predictors of response to procholinergic (compared with

antidopaminergic) antipsychotics. Possible candidates for such

predictors include treatment resistance to antidopaminergic

treatment, the presence of severe cognitive impairment and/or

visual hallucinations, reduced mismatch negativity, the presence

of antimuscarinic antibodies, and reduced availability of

muscarinic receptors on radionucleotide imaging.

Muscarinic acetylcholine receptors can be divided into

5 subtypes (M1–M5), with mainly agonists at M1 and

M4 subtypes being considered candidates in schizophrenia

treatment, whereas stimulation ofM2 andM3 subtypes is related

to gastrointestinal and other peripheral side effects. Animal

research furthermore suggests that enforcing stimulation at

M4 receptors through positive allosteric modulators (PAM)

particularly improves proxy markers of positive schizophrenia

symptoms such as hyperlocomotion or impaired prepulse

inhibition induced by dopamine agonists or NMDA antagonists

(28, 57). In contrast, PAM at M1 receptors have mainly

been investigated for cognition-enhancing potentials across

different neuropsychiatric disorders including schizophrenia.

For instance, it could be shown that PAM at M1 receptors

improve performance in tasks designed to assess cognitive ability

(e.g. novel object recognition task) in schizophrenia mouse

models (28, 57). While xanomeline is an M1 and M4 preferring

but not fully specific muscarinic agonist, these results highlight

that possibly in the future specific schizophrenia symptom

clusters could be addressed with selective modulators. In this

case, treatment could be guided by both predominant symptoms

(positive vs. cognitive symptoms) and possibly by investigations

with subtype-specific PET tracers (58).

A crucial question in attempts to find biomarkers for

response to muscarinic agonists concerns the precise cause-

effect relationship between muscarinic deficit and psychotic

symptoms, specifically the question, if muscarinic deficiency

causes psychosis through dopaminergic or dopamine-

independent pathways. Obviously, the hope to identify

distinct predictors for the response to antidopaminergic

vs. procholinergic treatment rests on the assumption that

there are dissociable etiologies behind psychotic syndromes

(schematically, a hyperdopaminergic and a hypomuscarinergic

etiology, respecetively). A variety of complex interactions

between muscarinergic and dopaminergic neurotransmission

have been established (59), leading to the hypothesis that

muscarinic agonists ultimately work through modifying

dopamine release (14). This hypothesis is supported for

example by the finding that psychotic symptoms in M1

receptor knockout mice are related to increased dopamine

levels in the nucleus accumbens (60). Conversely, substantial

parts of the evidence summarized above like the existence

of a distinguishable subgroup with marked deficiency in

muscarinic receptors, the non-response to antidopaminergic

drugs in a proportion of patients, and the discovery that

non-responding patients show no alterations in the dopamine

system according to PET studies speak for the existence of

patient subgroup where psychotic symptoms are mainly caused

by dopamine-independent mechanisms (3). Accordingly, it

has been hypothesized that different subtypes of schizophrenia

pathophysiologically involve a disturbance in the dopaminergic

vs. cholinergic modulation of glutamate receptors, which

ultimately causes the development of psychotic symptoms

(4). This would indeed imply a primarily dopaminergic vs.

a primarily cholinergic etiology, and thus the hope that

(a proportion of) patients with inadequate response to

dopaminergic interventions could benefit from muscarinergic

agents. Fittingly, a potential synergism of antidopaminergic

and promuscarinic interventions is suggested by animal

studies showing enhanced efficacy of classical antipsychotics

by additional administration of M1 receptor PAM (61).

Results from the ongoing ARISE trial, which is evaluating

the efficacy of xanomeline-trospium as add-on therapy in

400 patients with inadequate response to antidopaminergic

antipsychotics such as risperone, paliperone, and aripiprazole

and is scheduled to be completed in March 2024 (62),

may soon provide new insights into this debate: Adding a

second antipsychotic to a first antipsychotic has generally

not been shown to be effective in randomized trials (63)

and is not a recommended strategy in the case of non-

response (64), which may be because all current antipsychotics

ultimately act through dopaminergic mechanisms and

therefore no synergistic effect occurs when combining

multiple agents. Hence, xanomeline proving effective as

an add-on treatment would be (tentative) evidence that it

indeed possesses a distinct non-dopaminergic mechanism

of action.

The most rigorous way of testing the capacity of the

suggested biomarkers to identify those schizophrenia patients

who will likely benefit more from a procholinergic as compared

to an antidopaminergic treatment would be to test their

specific ability to predict individual outcome of a clinical

trial of, for example xanomeline-trospium compared with
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amisulpride treatment. A specific predictor, as compared

to a general prognostic factor, is a pretreatment variable

(e.g., a quantification of the markers listed above), whose

influence on the treatment outcome (e.g., on the reduction

in a schizophrenia severity score such as the positive and

negative syndrome scale) differs between treatments (65).

For instance, it could be hypothesized that presence of

antimuscarinic antibodies predicts good treatment outcome

in the xanomeline arm, but bad outcome in the amisulpride

arm of a trial. Statistically, this would be captured in a

significant interaction effect between presence of antimuscarinic

antibodies and treatment in a predictive model (65). A

study testing such treatment-predictor interactions would

be quite effortful, as all potential markers would need to

be collected at baseline and the detection of treatment-

by-variable interactions requires relatively large sample

sizes (66). However, if successful, i.e., if one or more

markers prove to be specific predictors of the outcome of

procholinergic or antidopaminergic treatment, it would

represent a real milestone in the individualized treatment

of schizophrenia.
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