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Introduction: Psychosis is usually preceded by a prodromal phase in which patients

are clinically identified as being at in an “At Risk Mental State” (ARMS). A few studies

have demonstrated the feasibility of predicting psychosis transition from an ARMS

using structural magnetic resonance imaging (sMRI) data and machine learning (ML)

methods. However, the reliability of these findings is unclear due to possible sampling

bias. Moreover, the value of genetic and environmental data in predicting transition

to psychosis from an ARMS is yet to be explored.

Methods: In this study we aimed to predict transition to psychosis from an ARMS

using a combination of ML, sMRI, genome-wide genotypes, and environmental risk

factors as predictors, in a sample drawn from a pool of 246 ARMS subjects (60 of

whom later transitioned to psychosis). First, the modality-specific values in predicting

transition to psychosis were evaluated using several: (a) feature types; (b) feature

manipulation strategies; (c) ML algorithms; (d) cross-validation strategies, as well as

sample balancing and bootstrapping. Subsequently, the modalities whose at least

60% of the classification models showed an balanced accuracy (BAC) statistically

better than chance level were included in a multimodal classification model.

Results and discussion: Results showed that none of the modalities alone, i.e.,

neuroimaging, genetic or environmental data, could predict psychosis from an ARMS

statistically better than chance and, as such, no multimodal classification model

was trained/tested. These results suggest that the value of structural MRI data and

genome-wide genotypes in predicting psychosis from an ARMS, which has been

fostered by previous evidence, should be reconsidered.
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1. Introduction

Psychosis is a severe condition usually within the context of a
mental disorder such as a schizophrenia, some neurological disorders
(e.g., Alzheimer’s disease) or other medical conditions (e.g., induced
by drugs or illicit substances), characterized by a disconnection
from reality (1). The onset of psychosis, when in the context of a
mental disorder, is typically preceded by a prodromal phase that
lasts months to years (2); and usually starts early during adolescence
and precedes the onset of psychotic symptoms by 10 or more years
(3). In this prodromal phase, subtle and subjectively experienced
disturbances in mental processes emerge (basic symptoms). These are
the first manifestations of the neurobiological processes underlying
psychosis and are mainly distinguished from other symptoms (i.e.,
positive or negative symptoms) by their self-experience nature
(4). As the course of the psychotic illness evolves, increasingly
disabling behavioral symptoms start to emerge, generally called
negative symptoms, in particular a reduction of motivation and/or
expressiveness (5). Additionally, cognitive deficits in attention,
memory, reasoning, lack of concentration and executive functioning
appear (6). Lastly, positive symptoms emerge, such as hallucinations,
delusions, disorganized speech, and behavior (1).

A patient may be clinically identified as being at a late prodromal
phase of psychosis or having an “At Risk Mental State” (hereinafter:
ARMS) if they present a functional decline in association with one or
more of the following commonly used criteria (2, 7): (1) attenuated
psychotic symptoms (APS), such as delusions, hallucinations, or
disorganized speech with a frequency of at least once per week in
the past month; (2) a brief limited intermittent psychotic (BLIP)
episode lasting less than 1 week which resolves without antipsychotic
medication; or (3) a genetic liability to psychosis or schizotypal traits,
i.e., having either a first-degree relative with psychosis or a schizotypal
personality disorder.

Transition to psychosis from an ARMS may be evaluated based
on the severity, frequency, and total duration of the psychotic
symptoms, i.e., when the subject experiences a first episode of
psychosis (FEP). Subjects with an ARMS and seeking help have a
transition rate to psychosis of about 9% in the first 6 months and
25% in the first 3 years (8) and, in particular, an increased risk
of transition to schizophrenia of 15.7% within an average period
of 2.35 years, as shown by a meta-analysis (9). Thus, most of
the people with an ARMS who later develop a psychotic illness
will be diagnosed with schizophrenia. Furthermore, since about
70% of subjects diagnosed with an ARMS never develop a full-
blown psychotic illness (9), these people may benefit from a less
intensive treatment to ameliorate symptoms or need no treatment
at all. Such increase in treatment cost-effectiveness would represent
a substantial decrease in healthcare costs, and treatment burden to
patients, including pharmacological side effects. However, there is no
method for distinguishing between individuals with an ARMS who
will subsequently develop a psychotic illness from those who will not
(i.e., before a FEP onset).

Given the above need, an effective, precise, and quantitative tool
for the prediction of transition to psychosis from an ARMS has been
sought by several studies employing machine learning (ML) methods
and structural magnetic resonance imaging (sMRI). Indeed, several
studies have consistently showed prediction of transition to psychosis
from as ARMS with accuracies ranging between 74 and 84% (10–
15). Transition to psychosis from an ARMS using only sMRI and

ML was first predicted using whole-brain gray matter volume metrics
with an accuracy of 82% [(15 ARMS who transitioned to psychosis
(ARMS-T) and 18 who did not (ARMS-NT)] (10). This finding was
later replicated: (a) in an independent sample by the same group
[balanced accuracy (BAC) = 84%, 16 ARMS-T and 21 ARMS-NT]
(11); (b) combining both these samples (BAC = 80%, 33 ARMS-T and
33 AMRS-NT) (12); (c) using also one of the above samples for graph-
extracted network metrics from cortical gyrification (BAC = 81%, 16
ARMS-T and 63 ARMS-NT) (15), and regional gray matter metrics
(BAC = 74%, 16 ARMS-T and 19 ARMS-NT) (14); and (d) using
regional gray matter metrics in an independent sample (BAC = 77%,
17 ARMS-T and 17 ARMS-NT; specificity of a replication sample of
individuals with an ARMS who did not develop psychosis = 68%, 40
ARMS-NT) (13). To date, only two, relatively small, ARMS samples
have been used for sMRI and ML analysis: FETZ (10, 12, 15) and
FePsy (11, 12, 14). Thus, the robustness and generalizability of
the above findings are still unclear due to possible specific sample
characteristics, i.e., small sample sizes (from 33 individuals to at
most 79 individuals with ARMS), with several studies stemming
from a single site (10, 11, 13–15) or a combination of previously
studied sites (12), which makes them not actual replications, with one
exception (13).

Interestingly, to the best of our knowledge, genetic data has been
explored for the prediction of the transition to psychosis from an
ARMS only once (16). In this study, a schizophrenia polygenic risk
score (PRS) was able to predict transition to psychosis in individuals
with an European [area under the curve (AUC) = 0.65; 32 ARMS-
T and 92 ARMS-NT] and with a Non-European (AUC = 0.59;
48 ARMS-T and 156 ARMS-NT) ancestry, respectively. This is
despite there being several classification studies showing that genetic
markers can predict schizophrenia (17–22), FEP (23) or ARMS (23),
both of individual polymorphisms (18, 19, 21, 23) or, composite
polygenic scores (20–22), and gene expression profiles (24). From
an environmental exposure perspective, and to the best of our
knowledge, environmental data have never been explored for
predicting individual transition to psychosis from an ARMS.

The combination of neuroimaging measures and genetics or
environmental measures, using ML, has, to the best of our knowledge,
been explored once to predict ARMS prognosis (i.e., transition
to psychosis from an ARMS) in a study running in parallel to
ours (25). Therein, a large sample from the PRONIA project (26
ARMS-T and 308 ARMS-NT from 7 sites) was used to build a
sequential stacked multimodal model using clinical-neurocognitive
(including environmental data), genetic (in the form of a PRS for
schizophrenia) and neuroimaging (in the form of voxel-based gray
matter volume maps) data and - unlike the present study–human
prognostic ratings, showing a final balanced accuracy in predicting
transition to psychosis of 86%.

In the present longitudinal prognostic biomarker study, we
aimed to explore the use of ML models trained with sMRI, genetic,
and environmental baseline data to predict the individual-level
transition to psychosis from an ARMS within a 2-year follow up.
While providing such preliminary (given the unprecedented data
combinations/features and a limited sample size) evidence at the
multimodal level, we took the opportunity to attempt to replicate
previous promising sMRI-ML findings of studies using similar or
smaller sample size (10–15). Methods-wise, we used naturalistically
diverse samples but balanced them for demographic (age and sex)
and imaging (scan acquisition sMRI protocol) variables. We set out
to train and test modality-specific models first and then, provided

Frontiers in Psychiatry 02 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1086038
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1086038
January

13,2023
Tim

e:17:35
#

3

Tavare
s

e
t

al.
10

.3
3

8
9

/fp
syt.2

0
2

2
.10

8
6

0
3

8

TABLE 1 Socio-demographic and clinical information of the At Risk Mental State (ARMS) sample with structural MRI data.

Protocol 1 Protocol 2 Protocol 3 Group comparison

ARMS-T
(n = 14)

ARMS-NT
(n = 19)

ARMS-T
(n = 3)

ARMS-NT
(n = 16)

ARMS-T
(n = 6)

ARMS-NT
(n = 41)

Age at baseline (years) 23.2± 3.4
[15.6 26.9]

24.5± 4.8
[19.2 34.5]

26.2± 7.0
[20.1 33.8]

24.5± 5.2
[17.8 35.3]

23.4± 4.5
[17.5 29.2]

21.8± 4.3
[17.1 33.1]

Protocol: p = 0.271
Transition: p = 0.592
Protocol× Transition: p = 0.447

Age at follow-up or transition (years) 25.6± 4.2
[17.3 33.4]

32.7± 5.2
[22.6 43.9]

29.2± 5.4
[20.2 38.8]

28.8± 5.6
[22.9 43.1]

25.2± 4.8
[18.3 31.0]

25.6± 4.8
[20.3 41.2]

Protocol: p = 0.027*
Transition: p = 0.099
Protocol× Transition: p = 0.025*

Age at scan (years) 23.0± 3.6
[17.5 27.8]

23.9± 4.8
[18.5 34.8]

27.0± 8.2
[20.2 36.1]

25.1± 5.4
[18.6 37.4]

24.1± 4.8
[18.3 30.8]

22.4± 4.6
[17.7 38.3]

Protocol: p = 0.261
Transition: p = 0.499
Protocol× Transition: p = 0.541

Interval between baseline and scan age
(years)

–0.2± 1.4
[–2.3 1.9]

–0.5± 1.1
[–2.3 2.1]

0.9± 1.3
[0.1 2.4]

0.5± 0.5
[0.1 2.1]

0.6± 0.5
[0.2 1.6]

0.6± 1.0
[0.0 5.1]

Protocol: p < 0.001***
Transition: p = 0.419
Protocol× Transition: p = 0.795

Sex (male/female) 11/3 9/10 2/1 14/2 3/3 19/22 Protocol× Transition:
Protocol 1: p = 0.070
Protocol 2: p = 0.422
Protocol 3: p = 1

Handednessa (right/left/ambidextrous) 12/0/1 16/0/0 3/0/0 13/1/0 4/0/0 36/4/0 Protocol× Transition:
Protocol 1: p = 0.448
Protocol 2: p = 1
Protocol 3: p = 1

Self-reported ethnicity
(White/Black/Asian/other)

7/5/1/1 11/5/1/2 2/1/0/0 13/1/1/1 4/1/1/0 19/19/1/2 Protocol× Transition:
Protocol 1: p = 0.933
Protocol 2: p = 0.530
Protocol 3: p = 0.212

Years of education 13.4± 2.1
[10 18]

13.1± 1.9
[10 17]

11.7± 2.3
[9 13]

14.1± 2.6
[11 20]

15.2± 2.5
[11 18]

13.0± 2.2
[9 20]

Protocol: p = 0.298
Transition: p = 0.966
Protocol× Transition: p = 0.024*

IQ (z-standardized)b –1.1± 1.1
[–2.1 1.0]

0.0± 1.1
[–2.1 1.8]

0.1± 0.1
[0.0 0.2]

0.5± 0.9
[–1.3 1.6]

−0.1± 1.3
[–2.1 1.6]

0.1± 1.1
[–2.1 3.5]

Protocol: p = 0.427
Transition: p = 0.252
Protocol× Transition: p = 0.923

GAF at baseline 52.9± 16.0
[35 90]

57.8± 11.4
[35 75]

58.7± 3.2
[55 61]

58.6± 9.9
[41 75]

50.3± 11.4
[35 65]

53.6± 14.8
[0 75]

Protocol: p = 0.402
Transition: p = 0.475
Protocol× Transition: p = 0.877

GAF at follow-upc 49.3± 18.6
[10 69]

58.5± 17.9
[20 94]

27.3± 6.8
[22 35]

62.3± 13.5
[46 93]

52.5± 20.0
[30 78]

66.2± 13.6
[33 87]

Protocol: p = 0.064
Transition: p < 0.001***
Protocol× Transition: p = 0.095

CAARMS at baselined 33.2± 13.0
[9 56]

28.4± 15.3
[8 58]

29.3± 21.9
[12 54]

23.2± 14.3
[0 51]

39.7± 24.1
[0 69]

28.5± 16.7
[0 81]

Protocol: p = 0.505
Transition: p = 0.153
Protocol× Transition: p = 0.824

CAARMS at follow-upe 19.6± 23.0
[0 63]

11.6± 10.9
[0 31]

42.0± 43.3
[6 90]

14.7± 18.4
[0 54]

42.7± 42.1
[0 102]

15.5± 17.2
[0 60]

Protocol: p = 0.082
Transition: p = 0.001***
Protocol× Transition: p = 0.262

Data format: mean ± standard deviation [min max]. Information not available for a1 ARMS-T and 3 ARMS-NT (Protocol 1), 2 ARMS-NT (Protocol 2), 2 ARMS-T and 1 ARMS-NT (Protocol 3); b1 ARMS-T and 1 ARMS-NT (Protocol 2), 1 ARMS-NT (Protocol 3); c2
ARMS and 5 ARMS-NT (Protocol 1), 4 ARMS-NT (Protocol 2), 8 ARMS-NT (Protocol 3); d2 ARMS-T and 7 ARMS-NT (Protocol 1), 3 ARMS-NT (Protocol 2), 2 ARMS-NT (Protocol 3); e3 ARMS-T and 6 ARMS-NT (Protocol 1), 3 ARMS-NT (Protocol 2), 8 ARMS-NT
(Protocol 3). ARMS, at-risk mental state; ARMS-T, individuals at ARMS that did not transition to psychosis; ARMS-NT, individuals at ARMS that did not transitioned to psychosis. *p < 0.05; ***p < 0.001.
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these performed above chance-level, a multimodal one. For the sMRI
data, we used state-of-the-art preprocessing and ML pipelines; and
explored several unprecedented combinations of brain structural
measures, feature manipulation and cross-validation (CV) strategies.
For the genetic data, we explored several approaches: a schizophrenia
PRS (26), individual GWA-implicated SNPs (27), and a brain-
specific expression Quantitative Trait Loci (eQTL) score. For the
environmental data, we employed a schizophrenia environmental
risk score (ERS) (28), and individual risk factors.

2. Materials and methods

2.1. Sample description

The total sample consisted of 246 individuals with an ARMS,
recruited at first presentation from consecutive referrals to the
Outreach and Support in South London (OASIS) high-risk service,
South London and Maudsley NHS Foundation Trust (29). The
presence of ARMS was assessed using the CAARMS, a detailed
clinical assessment (30). When the subjects were first diagnosed as
having an ARMS (i.e., baseline) a set of data were acquired: (a)
a sMRI scan; (b) genome-wide genotypes; and (c) assessment of
environmental risk exposures. Subjects were labeled as transitioned
to psychosis (ARMS-T) if they later presented a FEP or as not-
transitioned to psychosis (ARMS-NT) if they did not present a
FEP within a period of at least 2 years. For a detailed description
of the recruitment, inclusion and exclusion criteria please refer
to the Supplementary material. Additional socio-demographic
and clinical measures were also assessed at baseline, including:
age; sex; handedness; self-reported ethnicity; full scale intelligence

TABLE 2 Socio-demographic and clinical information of the At Risk Mental
State (ARMS) sample with genetic data and an European ancestry.

ARMS-T
(n = 21)

ARMS-NT
(n = 54)

Group
comparison

Age at baseline (years) 23.8± 5.3
[15.6 33.8]

22.5± 4.0
[14.6 34.5]

p = 0.284

Age at follow-up or
transition (years)

25.3± 5.9
[17.3 38.8]

27.9± 5.1
[18.5 43.9]

p = 0.069

Sex (male/female) 14/7 30/24 p = 0.380

Years of education 13.0± 2.2
[10.0 18.0]

12.0± 4.4
[0 18.0]

p = 0.292

IQ (z-standardized)a 0.1± 1.0
[–2.1 2.2]

0.2± 1.0
[–2.1 1.8]

p = 0.678

GAF at baseline 54.0± 15.7
[0 80]

53.6± 16.0
[0 78]

p = 0.923

GAF at follow-upb 47.8± 24.3
[0 79]

59.2± 21.0
[0 94]

p = 0.050

CAARMS at baselinec 37.6± 17.5
[6 69]

29.9± 16.2
[0 81]

p = 0.097

CAARMS at follow-upd 24.4± 27.9
[0 90]

12.4± 14.0
[0 60]

p = 0.019*

Data format: mean ± standard deviation [min max]. Information not available for a2 ARMS-T
and 9 ARMS-NT; b4 ARMS-NT; c1 ARMS and 9 ARMS-NT; d1 ARMS-T and 3 ARMS-NT.
ARMS, at-risk mental state; ARMS-T, individuals at ARMS that did not transition to psychosis;
ARMS-NT, individuals at ARMS that did not transitioned to psychosis.
*p < 0.05.

quotient measured by the National Adult Reading Test (31); years
of education; and global assessment of function using the GAF
instrument tool at baseline and at follow-up (32), and CAARMS
(at baseline and follow-up) (30). Regarding the sMRI, genetic and
environmental sub-samples: 99, 135 and all the 246 individuals
with an ARMS had a baseline sMRI scan (Table 1), genome-wide
genotyped data (Table 2), and environmental risk factors assessment
data (Table 3), respectively (more details in the Supplementary
material). Over the 2-years follow-up period, 23, 41, and 60
individuals at an ARMS from each of the previous sub-samples
developed psychosis (AMRS-T) and the remaining 15, 94, and 186
did not (ARMS-NT), respectively. Moreover, part of the study’s data
collection occurred under the Genetic and Psychosis (GAP) umbrella
project (33). Ethics approval was obtained by the NHS South East
London Research Ethics Committee (Project GAP; Ref. 047/04),
consistent with the Helsinki Declaration of 1975 (as revised in 2008)
and all subjects gave written informed consent.

Socio-demographic and clinical variables were analyzed using a
two-tailed independent t-test or a Univariate Analysis of Variance
(ANOVA) for continuous data and a chi-square test or Fisher’s exact
test (if there were less than 5 subjects in one group) for ordinal data
(Tables 1–3). These statistical analyses were performed using the
Statistical Package for the Social Sciences 26 (SPSS 26 for Windows,
Chicago, IL, USA).

2.2. Structural neuroimaging data

2.2.1. Structural magnetic resonance imaging
acquisition

Structural magnetic resonance imaging (sMRI) scans were
acquired with one of two scanners (one with a field strength
of 1.5T, the other 3T) using one of three 3-Dimensional
enhanced fast gradient echo protocols (detailed description in
Supplementary material).

2.2.2. Image processing
High spatial resolution volumetric T1-weighted images were

processed with the Computational Anatomy Toolbox for Statistical
Parametric Mapping (SPM) –12 (CAT12; v10921), an SPM12 add-
on (v69092) using default settings and MATLAB (9.3) as we have
described elsewhere (34) (detailed description in Supplementary
material). In summary, gray and white matter volumes for 64
regions-of-interest (ROIs; description of each ROI is in the
Supplementary Table 1) were extracted using the Hammers atlas
(35). Additionally, regional-based cortical thickness and surface
measures (i.e., folding measures)–gyrification index, the depth of
sulci and the measurement of local surface complexity were extracted
for 68 ROIs (description of each ROI is in the Supplementary
Table 2) defined by the Desikan–Killiany atlas (36).

2.2.3. Image quality control
The quality of each processed image was empirically assessed

using the quality assurance framework of CAT12 (detailed
description in the Supplementary material). We set the subject’s
image inclusion threshold at D (sufficient), i.e., only subjects whose

1 http://www.neuro.uni-jena.de/cat/

2 http://www.fil.ion.ucl.ac.uk/spm/
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images had an image quality rate of A (excellent) to D (sufficient)
(in a scale that goes up to F–unacceptable/failed) were included in
the final sample, as it has been shown that typical scientific (clinical)
data get good-to-satisfactory ratings (37). All this study’s images
passed the above criteria and thus were included in all analyses (see
Supplementary material for more details).

2.3. Genetic data

Genotyping procedures have been previously described (26, 38).
In summary, samples were genotyped at two different sites with
two distinct chips (Illumina HumanCore Exome BeadChip and
Genome-wide Human SNP Array 6.0). A standard quality control
screening (exclusion of SNPs with low minor allele frequency, high
genotypic failure and not in Hardy Weinberg equilibrium) followed
by imputation procedures were conducted. Then, samples from
both sites were merged by keeping only the overlapped imputed
SNPs followed by a second quality control screening. Finally,
a population stratification analysis was conducted with principal
component analysis (PCA) to select only subjects with a European
ancestry (the number of subjects per self-reported ethnicity is in
the Supplementary Table 3). For a detailed description see the
Supplementary material.

2.4. Environmental data

Each subject was assessed on at least one of eight environmental
risk factors: (1) tobacco and (2) cannabis consumption; (3) being

TABLE 3 Socio-demographic and clinical information of the At Risk Mental
State (ARMS) sample with environmental data (with less than 20% of the
environmental risk factors missing).

ARMS-T
(n = 37)

ARMS-NT
(n = 97)

Group
comparison

Age at baseline (years) 23.6± 4.8
[15.6 33.6]

21.9± 3.7
[14.6 33.1]

p = 0.027*

Age at follow-up or
transition (years)a

25.6± 5.6
[17.3 39.2]

27.1± 4.7
[18.5 41.2]

p = 0.131

Sex (male/female) 22/15 50/47 p = 0.411

Years of educationb 13.2± 2.7
[8 18]

13.3± 2.0
[9 18]

p = 0.686

IQ (z-standardized)c
−0.3± 1.0
[–2.1 2.2]

0.1± 1.0
[–2.1 3.5]

p = 0.049*

GAF at baselined 55± 12.5
[35 90]

56.7± 8.6
[40 80]

p = 0.523

GAF at follow-upe 50.4± 19.9
[10 88]

63.2± 14.2
[20 94]

p =< 0.001*

CAARMS at baselinef 30.9± 19.4
[0 78]

28.3± 16.0
[0 81]

p = 0.478

CAARMS at follow-upg 29.7± 31.2
[0 102]

13.3± 14.2
[0 60]

p =<0.001*

Data format: mean± standard deviation [min max]. Information not available for a1 ARMS-T;
b5 ARMS-T and 6 ARMS-NT; c7 ARMS-T and 13 ARMS-NT; d5 ARMS-T and 4 ARMS-NT;
e5 ARMS-T and 8 ARMS-NT; f6 ARMS-T and 13 ARMS-NT; g4 ARMS-T and 8 ARMS-NT;
subject. ARMS, at-risk mental state; ARMS-T, individuals at ARMS that did not transition to
psychosis; ARMS-NT, individuals at ARMS that did not transition to psychosis.
*p < 0.05.

migrant; (4) belonging to an ethnic minority; (5) the upbringing
urbanicity level; (6) the parental age at birth; (7) the presence of
childhood trauma; and (8) the season of birth (detailed description
of how the risk for psychosis was assessed in each factor is in
Supplementary material).

2.5. Machine learning approach

Several ML strategies to generate prediction models for transition
to psychosis from sMRI data using our ARMS sample were
investigated (Figures 1, 2). These include: (a) sample balancing
and bootstrapping; and testing several: (b) feature types; (c) feature
manipulation approaches; and (d) CV approaches. The analyses
were conducted using the neuroimaging ML tool NeuroMiner v1.0
ELESSAR3 for sMRI data, chosen given that it was used in the
previous above-mentioned ARMS prognosis studies and provided
therein high accuracy results (12, 39, 40), and R software 4.0.5 (41)
for genetic (16) and environmental data. As detailed below, we have
used SVM on the neuroimaging data since that is the approach which
not only is more often employed with sMRI data but also that which
has shown higher accuracies in psychiatric diagnostic classifications
using sMRI data including in the ARMS population (10–14) which we
herein attempt to replicate. We have used elastic-net algorithm for the
genetic data (SNPs and eQTL scores) and environmental risk factors
as it a well-suited method for dealing with high-dimensional data
and possibly correlated data; and it performs an embedded feature
selection and model fitting at once. The PRS and the environmental
risk score were analyzed with logistic regression, given that only one
feature was used.

2.5.1. Sample balancing and bootstrapping
The final sample used in the ML analyses was defined by all

the ARMS-T subjects available (23 subjects for the sMRI predictors,
19 for the PRS predictor, 21 for the SNP’s alleles predictors,
21 for eQTL scores predictors, 37 for the ERS predictor, and
17 for the individual environmental predictors), and the same
number of ARMS-NT subjects randomly selected to match the
ARMS-T for age and sex (for each data modality), and for scan
acquisition protocol (for sMRI data). The matching criteria for age
and sex were based on the non-rejection of the null hypothesis
(i.e., p > 0.05) that the ARMS-T and ARMS-NT groups had
the same median age (tested with a two-sided Mann–Whitney
U-test) and sex proportions (tested with a two-sided chi-square
statistic). The matching for the scan acquisition protocol was done
in a one-to-one manner, i.e., the number of ARMS-NT subjects
within each protocol is the same as the number of ARMS-T.
Of note, we have considered the approach of applying a class-
weighted support vector machine for our neuroimaging measures
and have detected that differences in terms of accuracies between a
model with weights vs. no-weights (considering the full unbalanced
samples) were practically null (results not shown)–and therefore
we did not pursue that approach. Then, each subsampling was
repeated five times, i.e., 5 bootstrapped samples were created,
and the subsequent ML analyses were conducted for each of the
bootstrapped sample.

3 http://proniapredictors.eu/neurominer/index.html
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FIGURE 1

Overall machine learning approach taken for assessing the predictive value, i.e., the accuracy, of each type of extracted neuroimaging, genetic or
environmental feature in predicting transition to psychosis from an At Risk Mental State (ARMS). ERS, environmental risk score; eQTL score, expression
quantitative trait loci; PRS, polygenic risk score; ROIGM, regional-based gray matter volumes; ROISurface, surface-based regional cortical thickness, and
gyrification, sulci, and complexity indexes; ROIWM, regional-based white matter volumes; SNP, single nucleotide polymorphism; VMGM, voxel-based
gray matter volume maps; VMWM, voxel-based white matter volume maps.

2.5.2. Feature types
2.5.2.1. Structural magnetic resonance imaging data

Individual ML models were trained and validated for each of the
following brain measures: (a) voxel-based gray matter (VBGM) maps
(297,811 initial features); (b) voxel-based white matter (VBWM)
maps (204,706 initial features); (c) regional-based gray (ROIGM) and
(d) white (ROIWM) matter volumes (each with 64 initial features)
scaled to the total intracranial volume (TIV); and (e) surface-based
regional cortical thickness, and gyrification, sulci, and complexity
indexes (ROISurface; 272 initial features). Each feature is scaled
between 0 and 1 before entering a support vector machine (SVM)
classification algorithm.

2.5.2.2. Genetic data

We tested whether a PRS which we have previously found
to predict (R2 = 0.94) a cross-sectional diagnosis of FEP (vs.
healthy controls) would be a good longitudinal predictor for ARMS
prognosis. Following the same methodology (26), this PRS was
computed as the sum of SNPs alleles statistically associated with
schizophrenia in a GWAS meta-analysis study (42) weighted by
the effect size of that association (more details in Supplementary
material). In addition, two other novel prediction models using the
present ARMS sample were trained and tested. One used SNPs’ alleles
(79,247 SNPs) as predictors and the other used eQTL scores of genes
expressed in brain tissue (141 genes across several brain tissues). Both
SNPs and genes’ eQTL scores were chosen as the ones most associated

with psychosis as ascertained in a recent meta-analysis (27). The
eQTL score of each gene was extracted with the eGenScore which
we developed and published previously (43) and it was computed
as the sum of the alleles of SNPs showing a statistically significant
association with the brain gene expression in a standard genomic
and transcriptomic sample weighted by the size of that effect (further
details available in Supplementary material).

2.5.2.3. Environmental data

We tested whether an ERS for psychosis which we have previously
developed (28) would be a good longitudinal predictor for ARMS
prognosis. Only subjects with less than 20% of missing information
(i.e., missing data for less than 2 environmental risk factors) were
considered for the ERS-based ML analysis. Therefore, the final sample
included 37 ARMS-T subjects and 97 ARMs-NT subjects. Then,
each environmental risk factor (see Section “2.4. Environmental
data”) was used as an individual feature in the model. For this ML
analysis only subjects with information for all the environmental risk
factors (i.e., with no missing information) were considered (i.e., 17
ARMS-T and 49 ARMS-NT subjects). Further details available in
Supplementary material.

2.5.3. Feature manipulation
Feature manipulation was performed only in ML analyses using

sMRI data. In particular, feature dimensionality reduction was
performed for VBGM and VBWM features using robust PCA (44,
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FIGURE 2

Scheme of the cross-validation (CV) approach taken to train, test, and validate classification models trained with (A) neuroimaging data and support
vector machines (SVM); genetic (single nucleotide polymorphisms or expression quantitative trait loci) or environmental (environmental risk factors) data
and elastic-net; or (B) genetic (polygenic risk score) or environmental (environmental risk score) data and logistic regression.

45). Here the robust PCA was applied during the inner CV cycle
(see Section “2.5.5. Cross-validation”). The number of principal
components that were retained explained up to 80% of the variance
in the data and were limited by the inner CV cycle’s sample size, n,
i.e., a maximum of only n/2 components could indeed be extracted.
Supplementary Table 5 shows the maximum number of principal
components that can be extracted for each inner CV cycle in each
CV scheme that was used (see also Section “2.5.5. Cross-validation”)
(for detailed description see the Supplementary material).

Feature selection was performed on regional brain features (i.e.,
ROIGM, ROIWM, and ROISurface) using a greedy forward search
feature selection algorithm. This is a stepwise algorithm that starts
with an empty set of features and then tests the predictive value
of every single feature, selecting the ones improving the overall
accuracy across the inner CV cycle folds (see Section “2.5.5. Cross-
validation”). The final set of features is, then, composed by the
10% most predictive variables. Additionally, no feature selection, i.e.,
using the total number regional brain features, was also tested.

2.5.4. Machine learning algorithm
Binary classification of transition to psychosis from an ARMS

(i.e., ARMS-T vs. ARMS-NT) was performed using linear SVM for
sMRI data, and logistic regression and elastic net for both genetic and
environmental data.

2.5.4.1. Support vector machine classification

Binary classification of transition to psychosis from an ARMS
(i.e., ARMS-T vs. ARMS-NT) using sMRI data was performed using
linear SVM (46, 47). In this study we exclusively used a linear
kernel SVM to reduce the risk of overfitting the data (given our
final sample size being relatively small). Furthermore, the linear
SVM classifier has a penalty parameter C that controls the trade-
off between having zero training error and allowing misclassification.
Herein, a parameter search was carried out to identify the optimal C
value (i.e., 2l, l [−5 : 1 : 4]) in the inner CV cycle (see Section “2.5.5.
Cross-validation”).

2.5.4.2. Logistic regression for classification

Binary classification of transition to psychosis from an ARMS
(i.e., ARMS-T vs. ARMS-NT) using genetic (PRS) or environmental

(ERS) data was performed using simple logistic regression.
A threshold of 0.5 was applied to the probability of observing
the outcome, i.e., an ARMS-T (see Supplementary material
for more details).

2.5.4.3. Elastic net for classification

Binary classification of transition to psychosis from an
ARMS (i.e., ARMS-T vs. ARMS-NT) using genetic (psychosis-
associated SNPs or eQTL scores of psychosis-associated genes) or
environmental (environmental risk factors) data was performed
using logistic regularized regression with elastic net (48) using
hyperparameters search to identify the optimal l1 and λ values
(regression weights shrinkage) (i.e., l1 0 : 0.1 : 1; λ 0.01 : 0.01 : 1)
in the inner CV cycle (see Section “2.5.5. Cross-validation”) (for
detailed description see the Supplementary material). The elastic
net was implemented using the “glmnet” v4.0 R package.

2.5.5. Cross-validation
Each model (trained with sMRI, psychosis-associated SNPs or

eQTL scores of psychosis-associated genes and environmental risk
factors) was trained in a nested-CV scheme for hyperparameter
tuning (in the inner CV cycle) and to estimate the generalizability
of the trained prediction model and its performance (in the outer CV
cycle) (Figure 2A). For more details see the Supplementarymaterial.
For sMRI models, we tested three different nested-CV schemes: (a)
leave-one scan acquisition protocol-out (LSO); (b) leave-one per
group from the same scan acquisition protocol-out (LPO); and (c)
classic 5-fold CV. For the remaining sMRI, genetic (trained with
psychosis-associated SNPs or eQTL scores of psychosis-associated
genes data) and environmental (trained with environmental risk
factors data) models, nested-CV was defined with an inner 5-
fold and an outer leave-one per group-out (LPO) CV schemes.
Furthermore, the logistic regression (trained with genetic–PRS–and
environmental–ERS–data) was trained and tested in a simple LPO
CV scheme (Figure 2B).

2.5.6. Performance measures
Each model’s performance was evaluated using measures derived

from the confusion matrix: sensitivity; specificity; BAC; positive
likelihood ratio; negative likelihood ratio; and diagnostic odds ratio
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(DOR). Moreover, permutation testing was used to test if the
BAC was higher than chance–50%–with a statistical significance
of 5% (For a detailed description of each measure see the
Supplementary material).

The prediction ability of each tested combination of feature type,
feature manipulation, and CV scheme was defined as significant if the
BAC was higher than chance–50% in at least 3 out of 5 bootstrapped
samples. evaluated by testing the statistical significance of the median
BAC across bootstrapped samples using a one-tailed Wilcoxon signed
rank test (i.e., to test if the median BAC across bootstrapped samples
is higher than chance– 50%, with a statistical significance level of
5%). P-values were not adjusted for multiple comparisons due to
non-independence of the samples used in each statistical test.

3. Results

Overall, the BAC of the classification models trained and
validated using each combination of feature type (i.e., ROIGM,
ROIWM, ROISurface, VBGM, or VBWM–for sMRI data; PRS,
psychosis-associated SNPs or psychosis-associated brain eQTL score
genes scores–for genetic data; or ERS or individual environmental
risk factors–for environmental data), feature manipulation (i.e.,
feature dimensionality reduction through PCA; no feature selection;
or forward feature selection), CV scheme (i.e., LSO CV; LPO CV;
or 5-fold CV), and bootstrapped sample (i.e., one of the 5 samples)
ranged from 37 to 67% for the classification models trained with
sMRI (Tables 4, 5 and Figures 3, 4), from 26 to 62% for the models
trained with genetic data (Table 6 and Figure 5) and from 38 to 61%
for models trained with environmental data (Table 6 and Figure 6).
The prediction ability of each model was not significant as less than 3
bootstrapped samples per each feature type showed a BAC statistically
higher than chance–50%.

4. Discussion

This study aimed to predict transition to psychosis from an
ARMS using ML applied to quantitative data across modalities–
i.e., neuroimaging (sMRI), genetics (genome-wide genotypes), and
environment–collected when subjects first sought clinical help (i.e.,
at baseline) and were identified with an ARMS. This is, to the
best of our knowledge, the first study: (1) of longitudinal design
exploring sMRI, genetic and environmental data to predict the
development of a psychotic disorder from a prodromal stage; and
(2) when considering each modality individually, exploring a range
of approaches (for genetics and environmental data) and/or feature
combinations (for sMRI data).

4.1. Prediction of transition to psychosis
using structural neuroimaging data

In this study we applied ML to structural neuroimaging data
using a relatively larger sample and an ML approach, improved to
the best of our ability, to detect transition to psychosis from an
ARMS and to replicate previous positive findings of accuracies 74
to 84% of six studies, which together used 3 independent samples
(10–15). For this, we decided: to: (1) use only the most recent

versions of the image processing tools (i.e., CAT12) and ML tools
(i.e., NeuroMiner); (2) replicate as accurately as possible the methods
that were described in the abovementioned MRI papers since it was
not possible to access their processing and ML pipelines; (3) add a
layer of ML generalizability by bootstrapping and fitting a model to
each subsample; and (4) overcome previous studies’ limitations (e.g.,
sample unbalancing for demographics). Furthermore, we explored,
for the first time, the use of whole brain white matter volume and
regional white matter volume, cortical thickness, and surface-based
brain gyrification, sulci depth, and complexity indexes with ML to
predict transition to psychosis.

Unexpectedly, we did not replicate previous findings. After
balancing the samples for binary classification of transition to
psychosis accounting for age, sex, and the three different scan
acquisition protocols to avoid overoptimistic results, the performance
of all tested combinations (i.e., of feature type–ROIGM, ROIWM,
ROISurface, VBGM, or VBWM; feature manipulation–feature
dimensionality reduction through PCA, no feature selection, or
forward feature selection; and CV scheme–LSO CV, LPO CV, or
5-fold CV) were not significantly better than chance level.

Compared to the previous studies reporting high balanced
accuracies (74 to 84%) in predicting transition to psychosis from
sMRI maps (10–15), the current study has some advantages. First, this
study’s sample is drawn from a more naturalistic ARMS population
as it includes subjects whose sMRI images were acquired using
three different scan acquisition protocols. Training a classification
model with data from different centers potentially increases its
generalizability. Only one of the previous transition to psychosis
prediction studies used a two-site group balanced sample (12),
combining the samples reported in two previous studies by the same
authors (10, 11). The main differences between this report and our
study are the following: (a) Their sample was larger than our balanced
bootstrapped samples (i.e., 36% larger than ours, measured as the
absolute value of the change in sample size, divided by the average of
the size of the two samples). However, we tested our ML models on
five balanced subsamples (i.e., through bootstrapping), allowing us
to obtain a measure of generalizability of these models’ performance.
Moreover, they do not present a measure of the statistical significance
of the model’s BAC, which we do herein. (b) They controlled the
effect of site on the classification using partial correlations during the
training phase of the CV cycle, whereas we controlled it by keeping
the same proportion of subjects at an ARMS that transitioned to
psychosis and those who did not in each scan protocol during the
training phase of the CV cycle (i.e., when using the LPO CV scheme
as the previous study did). Additionally, we also guaranteed that the
pair of subjects left out for testing/validation were from the same
site. This potentially increases the generalizability of the classification
model by training it with a more heterogeneous sample (and, as
explained above, more naturalistic) and diminishing the effect of site
on the testing/validation classification accuracy, which is not taken
into account in the previous report (12).

Second, we trained our classification models with samples
balanced for group (subjects at an ARMS who later transitioned
to psychosis and who did not), age at scan and sex. Balancing
for group is important to avoid biasing the classification model
to the most represented group and it was not taken into account
by three out of six previous reports (10, 11, 14). Moreover, the
effects of age (49) and sex (50) on brain structure, rate of transition
to psychosis from ARMS (2), and prevalence of psychosis (3, 51),
have been consistently reported and, therefore, should be taken into
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TABLE 4 Performance measures of each structural magnetic resonance imaging (sMRI) classification model based on brain regional features across
bootstrapped samples.

ROIGM ROIWM ROISurface

No-FS FFS No-FS FFS No-FS FFS

LSO CV scheme

SE (%) 55.7± 6.4
[47.8, 65.2]

59.1± 11.7
[47.8, 78.3]

57.4± 19.1
[30.4, 82.6]

62.6± 13.3
[52.2, 82.6]

41.7± 14.6
[26.1, 60.9]

39.1± 20.6
[17.4, 65.2]

SP (%) 55.7± 10.4
[43.5, 69.6]

40.9± 10.5
[26.1, 52.2]

46.1± 14
[21.7, 56.5]

27.8± 22.3
[0.0, 56.5]

61.7± 17.8
[34.8, 82.6]

63.5± 12.1
[43.5, 73.9]

BAC (%) 55.7± 5.5
[47.8, 63.0]

50.0± 3.8
[43.5, 52.2]

51.7± 5.6
[43.5, 58.7]

45.2± 6.6
[37.0, 54.3]

51.7± 7.4
[43.5, 63.0]

51.3± 9.8
[43.5, 67.4]

PLR 1.3± 0.3
[0.9, 1.9]

1.0± 0.1
[0.8, 1.1]

1.1± 0.2
[0.7, 1.4]

0.9± 0.2
[0.7, 1.2]

1.2± 0.4
[0.8, 1.8]

1.1± 0.6
[0.6, 2.1]

NLR 0.8± 0.2
[0.6, 1.1]

1.0± 0.2
[0.8, 1.4]

0.9± 0.2
[0.7, 1.2]

1.5± 0.7
[0.8, 2.5]

1.0± 0.3
[0.6, 1.4]

1.0± 0.3
[0.5, 1.2]

DOR 1.7± 0.8
[0.8, 3.0]

1.0± 0.3
[0.6, 1.3]

1.3± 0.5
[0.6, 2.0]

0.6± 0.5
[0.0, 1.4]

1.4± 0.9
[0.6, 2.9]

1.5± 1.6
[0.5, 4.3]

Significant models 1 0 0 0 1 1

LPO CV scheme

SE (%) 47.8± 6.1
[43.5, 56.5]

67.0± 7.9
[56.5, 73.9]

49.6± 8.5
[39.1, 60.9]

39.1± 9.2
[26.1, 47.8]

53.9± 6.6
[43.5, 60.9]

52.2± 6.9
[43.5, 60.9]

SP (%) 54.8± 6.6
[47.8, 60.9]

44.3± 10.8
[34.8, 60.9]

52.2± 5.3
[43.5, 56.5]

50.4± 12.5
[34.8, 69.6]

54.8± 5.0
[47.8, 60.9]

54.8± 12.9
[39.1, 69.6]

BAC (%) 51.3± 4.8
[45.7, 58.7]

55.7± 7.1
[45.7, 65.2]

50.9± 5.2
[43.5, 56.5]

44.8± 6.6
[37.0, 54.3]

54.3± 4.3
[50.0, 60.9]

53.5± 7.5
[43.5, 60.9]

PLR 1.1± 0.2
[0.8, 1.4]

1.3± 0.3
[0.9, 1.8]

1.0± 0.2
[0.8, 1.3]

0.8± 0.3
[0.5, 1.3]

1.2± 0.2
[1.0, 1.6]

1.2± 0.3
[0.8, 1.6]

NLR 1.0± 0.2
[0.7, 1.2]

0.8± 0.3
[0.5, 1.3]

1.0± 0.2
[0.8, 1.3]

1.3± 0.3
[0.9, 1.5]

0.8± 0.1
[0.6, 1.0]

0.9± 0.3 [0.6, 1.3]

DOR 1.2± 0.5
[0.7, 2]

1.9± 1.1
[0.7, 3.6]

1.1± 0.4
[0.6, 1.7]

0.7± 0.4
[0.3, 1.5]

1.5± 0.6
[1.0, 2.4]

1.5± 0.8 [0.6, 2.4]

Significant models 0 0 0 0 1 0

5-fold CV scheme

SE (%) 42.6± 3.6
[39.1, 47.8]

40.9± 5.8
[34.8, 47.8]

59.1± 6.6
[52.2, 69.6]

45.2± 8.5
[34.8, 56.5]

53.0± 10.4
[39.1, 65.2]

57.4± 8.4
[47.8, 69.6]

SP (%) 54.8± 12.5
[34.8, 65.2]

40.9± 7.3
[30.4, 47.8]

40.9± 8.5
[30.4, 52.2]

53± 11.3
[34.8, 65.2]

54.8± 6.6
[47.8, 60.9]

53± 11.7
[39.1, 65.2]

BAC (%) 48.7± 6.6
[39.1, 56.5]

40.9± 2.4
[37.0, 43.5]

50.0± 5.1
[45.7, 56.5]

49.1± 2.5
[45.7, 52.2]

53.9± 5.2
[47.8, 60.9]

55.2± 9.3
[47.8, 67.4]

PLR 1.0± 0.3
[0.7, 1.4]

0.7± 0.1
[0.6, 0.8]

1.0± 0.2
[0.9, 1.2]

1.0± 0.1
[0.9, 1.1]

1.2± 0.2
[0.9, 1.6]

1.3± 0.5
[0.9, 2.0]

NLR 1.1± 0.3
[0.8, 1.6]

1.5± 0.2
[1.3, 1.9]

1.0± 0.3
[0.7, 1.3]

1.1± 0.1
[0.9, 1.3]

0.9± 0.2
[0.6, 1.1]

0.9± 0.3
[0.5, 1.1]

DOR 1.0± 0.5
[0.4, 1.7]

0.5± 0.1
[0.3, 0.6]

1.1± 0.5
[0.7, 1.8]

0.9± 0.2
[0.7, 1.2]

1.5± 0.6
[0.8, 2.4]

2.0± 1.6
[0.8, 4.3]

Significant models 0 0 0 0 0 1

Measures for each tested combination of brain regional feature type [i.e., regional-based gray (ROIGM) and white (ROIWM) matter volume; and surface-based regional cortical thickness,
gyrification, sulci, and complexity indexes (ROISurface)], feature selection [i.e., no feature selection (No-FS); and forward feature selection (FFS)], and cross-validation (CV) scheme [i.e., leave-one
scan acquisition protocol-out (LSO) CV; leave-one per group-out (LPO) CV; and 5-fold CV] are presented. Statistical significance of the balanced accuracy (BAC) for each bootstrapped sample
was tested using permutation testing with a significance level of 5%. Data format: mean ± standard deviation [min max]. DOR, diagnostic odds ratio; NLR, negative likelihood ratio; PLR, positive
likelihood ratio; SE, sensitivity; SP, specificity. Significant models: number of models with statistically significant BAC higher than 50%.

account in these studies. All previous reports (and the current study)
matched transition proportion for age and sex (10–14), except for
one (15). Das and colleagues reported a statistically significant and
better than chance level BAC in predicting transition to psychosis

using a sample unbalanced for both group and sex. Although they
used a ML algorithm with class (i.e., group) weighing–which in
summary increases the influence of the minority class when training
the model by assigning higher weights to rare cases, the authors
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TABLE 5 Performance measures of each structural magnetic resonance imaging (SMRI) classification model based on voxel-wise features across
bootstrapped samples.

LSO CV scheme LPO CV scheme 5-fold CV scheme

VBGM VBWM VBGM VBWM VBGM VBWM

SE (%) 20.9± 34.8
[0, 82.6]

46.1± 38.2
[4.3, 78.3]

47.0± 10.4
[34.8, 60.9]

50.4± 11.3
[34.8, 60.9]

30.4± 10.2
[21.7, 43.5]

41.7± 8.5
[34.8, 56.5]

SP (%) 72.2± 35.7
[8.7, 91.3]

53± 35.4
[21.7, 95.7]

55.7± 8.4
[43.5, 65.2]

53.0± 7.1
[47.8, 65.2]

51.3± 7.8
[43.5, 60.9]

52.2± 6.1
[43.5, 60.9]

BAC (%) 46.5± 3.6
[43.5, 52.2]

49.6± 2.4
[45.7, 52.2]

51.3± 7.5
[45.7, 63.0]

51.7± 2.8
[47.8, 54.3]

40.9± 2.4
[37.0, 43.5]

47.0± 6.8
[41.3, 58.7]

PLR 0.6± 0.6
[0.0, 1.5]

0.9± 0.3
[0.3, 1.1]

1.1± 0.4
[0.8, 1.8]

1.1± 0.1
[0.9, 1.2]

0.6± 0.1
[0.5, 0.8]

0.9± 0.3
[0.7, 1.4]

NLR 1.3± 0.4
[1.0, 2.0]

1.0± 0.1
[0.9, 1.1]

1.0± 0.3
[0.6, 1.2]

0.9± 0.1
[0.8, 1.1]

1.4± 0.1
[1.3, 1.5]

1.1± 0.3
[0.7, 1.4]

DOR 0.7± 0.9
[0.0, 2.2]

0.8± 0.4
[0.1, 1.1]

1.3± 1.0
[0.7, 3.1]

1.1± 0.2
[0.8, 1.4]

0.4± 0.1
[0.2, 0.6]

0.9± 0.7
[0.5, 2.1]

Significant models 0 1 0 0 0 0

Measures for each tested combination of voxel-wise feature type [i.e., voxel-based gray (VBGM) and white (VBWM) matter volume maps], feature dimensionality reduction through principal
component analysis and cross-validation (CV) scheme [i.e., leave-one scan acquisition protocol-out (LSO) CV; leave-one per group-out (LPO) CV; and 5-fold CV] are presented. Statistical
significance of the balanced accuracy (BAC) for each bootstrapped sample was tested using permutation testing with a significance level of 5%. Data format: mean ± standard deviation [min
max]. DOR, diagnostic odds ratio; NLR, negative likelihood ratio; PLR, positive likelihood ratio; SE, sensitivity; SP, specificity. Significant models: number of models with statistically significant BAC
higher than 50%.

FIGURE 3

Balanced accuracy across bootstrapped samples for each tested combination of regional feature type [i.e., regional-based gray and white matter
volume; and surface-based regional cortical thickness, gyrification, sulci, and complexity indexes (surface-based regional measures)], feature selection
[i.e., no feature selection; and forward feature selection (FFS)], and cross-validation (CV) scheme [i.e., leave-one scan acquisition protocol-out (LSO) CV;
leave-one per group-out (LPO) CV; and 5-fold CV]. Dots represent the balanced accuracy value in each of the five bootstrapped samples and are red
colored if the balanced accuracy is statistically significant (i.e., p < 0.05) or blue colored if it is not (i.e., p > 0.05). The statistical significance of the
balanced accuracy in each bootstrapped sample was evaluated through permutation testing.

performed an unspecified correction for sex effect (as well as for
age and TIV effects) to the data during the training CV cycle. This
approach may not be the most appropriate given the known effect
of sex on brain structure (50) and the, abovementioned, empirically
tested association between sex and group (i.e., transition to psychosis
from an ARMS vs. no transition) (15), which makes sex a potential
confounder in this analysis. Furthermore, in three of the six previous
reports, the effects of age and sex were corrected before entering

the ML analysis (10), and during the training CV cycle (11, 15)
using partial correlations (10, 11) or an unspecified method (15)–
which we did not perform. Correction for age effects in ML analysis
has been previously shown to increase classification accuracy in
Alzheimer’s disease, when it is estimated from healthy subjects (52).
Correction for effects of no interest in ML analyses should be done
with extreme caution as it can easily remove relevant subject-specific
information (53). This is especially important when the correction
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FIGURE 4

Balanced accuracy across bootstrapped samples for each tested combination of voxel-wise feature type [i.e., voxel-based gray (VBGM) and white
(VBWM) matter volume maps], feature dimensionality reduction through principal component analysis and cross-validation (CV) scheme [i.e., leave-one
scan acquisition protocol-out (LSO) CV; leave-one per group-out (LPO) CV; and 5-fold CV. Dots represent the balanced accuracy value in each of the
five bootstrapped samples and are red colored if the balanced accuracy is statistically significant (i.e., p < 0.05) or blue colored if it is not (i.e., p > 0.05).
The statistical significance of the balanced accuracy in each bootstrapped sample was evaluated through permutation testing.

TABLE 6 Performance measures of: (1) a genetic schizophrenia polygenic risk score (PRS), (2) a list of psychosis-associated single nucleotide polymorphisms
(SNPs), (3) expression quantitative trait loci (eQTL) scores (43) of a list of psychosis-associated genes expressed in the brain; (4) an environmental
schizophrenia risk score (ERS), and (5) a list of schizophrenia-associated environmental risk factors, classification models across bootstrapped samples.

PRS SNP eQTL score ERS Environmental risk
factors

SE (%) 42.1± 20.0
[21.1, 63.2]

41.9± 13.6
[23.8, 61.9]

61.0± 17.0
[47.6, 85.7]

44.9± 5.1
[29.7, 56.8]

10.6± 4.9
[5.9, 17.6]

SP (%) 46.3± 11.4
[31.6, 57.9]

50.5± 16.4
[28.6, 66.7]

31.4± 23.2
[4.8, 57.1]

50.8± 8.2
[45.9, 64.9]

70.6± 7.2
[64.7, 82.4]

BAC (%) 44.2± 15.3
[26.3, 60.5]

46.2± 10.7
[33.3, 61.9]

46.2± 4.9
[40.5, 52.4]

47.8± 8.8
[37.8, 60.8]

40.6± 2.5
[38.2, 44.1]

PLR 0.9± 0.5
[0.3, 1.5]

0.9± 0.4
[0.5, 1.6]

0.9± 0.1
[0.8, 1.1]

1.0± 0.4
[0.6, 1.6]

0.4± 0.1
[0.2, 0.5]

NLR 1.4± 0.8
[63.6, 2.5]

1.3± 0.6
[0.6, 2.2]

1.9± 1.1
[0.9, 3.0]

1.1± 0.3
[0.7, 1.5]

1.3± 0.1
[1.1, 1.4]

DOR 1.0± 1.0
[0.1, 2.4]

1.0± 1.0
[0.2, 2.6]

0.7± 0.4
[0.3, 1.2]

1.0± 0.8
[0.4, 2.4]

0.3± 0.1
[0.2, 0.4]

Significant models 0 0 1 0 0

Statistical significance of the balanced accuracy (BAC) for each bootstrapped sample was tested using permutation testing with a significance level of 5%. Data format: mean ± standard deviation
[min max]. DOR, diagnostic odds ratio; NLR, negative likelihood ratio; PLR, positive likelihood ratio; SE, sensitivity; SP, specificity. Significant models: number of models with statistically significant
BAC higher than 50%.

is being performed in a non-healthy (i.e., non-standard) population,
because the effect of external variables such as age and sex might be
modulated by the presence of the disease (e.g., being at ARMS or
having schizophrenia).

Third, this study’s sample is composed of subjects whose
clinical diagnosis of an ARMS was based on having a schizotypal
personality disorder or on the subject’s familial-high risk coupled
with functioning decline and on the CAARMS (54), which mainly
evaluates positive symptoms. These were not the same criteria
as those used in the previous studies predicting transition to
psychosis from an ARMS. These previous studies all used samples of
subjects clinically assessed with tools that evaluate not only positive
symptoms, but also basic and negative symptoms (10–12, 14, 15),
except one (13), which included only familial-high risk subjects in
its sample. This potentially increases the inclusion of subjects in
the early phase of the psychosis prodrome (characterized by the

presence of basic and negative symptoms), whereas our sample
includes mainly subjects in the late prodromal phase of psychosis
(characterized mainly by the presence of positive symptoms) (2).
Therefore, our results suggest that previously reported accuracies in
predicting transition to psychosis may be population-specific, poorly
generalizable to differently clinically characterized populations
(as ours herein).

4.2. Prediction of transition to psychosis
using genetic data

In this study we applied ML to genetic data and used three types
of genetic features to detect transition to psychosis from an ARMS:
(a) a schizophrenia PRS that we have previously shown to distinguish
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FIGURE 5

Balanced accuracy across bootstrapped samples for each model trained with the polygenic risk score, the list of psychosis-associated single nucleotide
polymorphism (SNPs) or with the list of psychosis-associated genes for which an expression quantitative trait loci (eQTL) score was extracted. Dots
represent the balanced accuracy value in each of the 5 bootstrapped samples and are red colored if the balanced accuracy is statistically significant (i.e.,
p < 0.05) or blue colored if it is not (i.e., p > 0.05). The statistical significance of the balanced accuracy in each bootstrapped sample was evaluated
through permutation testing.

FIGURE 6

Balanced accuracy across bootstrapped samples for each model trained with the environmental risk score or with each environmental risk factors as
features. Dots represent the balanced accuracy value in each of the 5 bootstrapped samples and are red colored if the balanced accuracy is statistically
significant (i.e., p < 0.05) or blue colored if it is not (i.e., p > 0.05). The statistical significance of the balanced accuracy in each bootstrapped sample was
evaluated through permutation testing.

FEP patients from healthy controls (26) and ARMS-T from ARMS-
NT (16), (b) a set of psychosis-associated SNPs previously associated
with schizophrenia in a recent GWAS meta-analysis (27), and (c)
a brain-specific expression Quantitative Trait Loci (eQTL) score
including the latter genes.

Genetic data showed a poor performance in predicting transition
to psychosis from an ARMS. SNPs-based classification models have
been previously shown to classify schizophrenia (18, 19, 21), and
FEP patients (23) (vs. healthy controls) better than chance level,
but not subjects at an ARMS vs. healthy controls or FEP patients
(23). Furthermore, one of these studies has selected a list of SNPs
from the Psychiatric Genomics Consortium 2 (PGC2) (21, 42), which
potentially overlaps with the ones selected in this study (27).

Despite the (scarce) evidence of the potential of PRS for
schizophrenia (20–22) to classify schizophrenia patients (vs. healthy
controls) and the one report showing the schizophrenia PRS’s ability
to predict transition to psychosis (16) we were not able to predict
transition to psychosis from an ARMS using this type of genetic
feature. Although the latter study (16) used a larger sample (i.e.,

106% higher than ours, measured as the absolute value of the
change in sample size, divided by the average of the size of the
two samples) to train the PRS-based model, sample balancing in
terms of group and age or sex were not taken into account or
that was unclear, respectively. Furthermore, herein we applied a
bootstrapped sample approach to estimate generalizability of the
PRS-based model by assuring that each bootstrapped sample met
the balancing conditions for group, age, and sex–which does not
seem to be the case in that study (16). Furthermore, another possible
explanation for the PRS negative results is that although the genetic
architecture, conveyed through a PRS, has been shown to differ
between patients with schizophrenia and healthy controls, one cannot
exclude the possibility that it is specific to schizophrenia (a fully
developed psychotic disorder), and might even be present in all
subjects at an ARMS, i.e., those who later transition to psychosis and
those who do not. The constellation of genetic variations (i.e., SNPs)
that might confer susceptibility to transition to psychosis already
from a prodromal stage is not necessarily the same as the one for
schizophrenia (when drawn in comparison to healthy controls). This
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may justify the advantage of using a less hypothesis-based approach
for the selection of genetic features (as we did by pre-selecting a large
list of SNPs and performing an embedded feature selection using
elastic net regression). Lastly, using a PRS formula made specifically
for transition to psychosis from an ARMS would require a larger
and independent sample to estimate SNP effect sizes, which might
be better provided by multicenter projects, such as NAPLS 2 (55) and
PRONIA4 over the next years.

Expression Quantitative Trait Loci (eQTL) scores for psychosis
associated genes expressed in the brain were also not able to predict
transition to psychosis from an ARMS. Only one previous study
has shown the predictive value of gene expression profiling in the
frontal brain region in classifying schizophrenia patients (vs. healthy
controls) (17). In the present study, instead of actual gene expression
measures we used a proxy for a-genetically regulated component
of the expression of genes, the eQTL scores. Although we have
computed eQTL scores only for the genes having a validated eQTL
score model (43), this does not guarantee that the estimated gene
expression represents (or correlates perfectly with) the real levels of
the expression. Furthermore, although we have selected the initial list
of genes as the ones most associated with schizophrenia (vs. healthy
controls), this selection did not take into account the expression
profile of these genes in the brain, and we have computed an eQTL
score for several brain tissues. A future improvement of this step
would be to test an eQTL scores-based model with a selection of genes
that: (a) are highly expressed in the brain in healthy subjects, and (b)
their expression is associated to a schizophrenia diagnosis, or even
better with the transition to psychosis from an ARMS.

4.3. Prediction of transition to psychosis
using environmental data

In this study we applied, for the first time, ML to environmental
data using two types of features to detect transition to psychosis from
an ARMS: (a) a schizophrenia ERS which we have previously reported
(28), and (b) a set of environmental risk factors as predictors. Overall,
neither environmental risk assessment, could predict transition to
psychosis from an ARMS with an averaged accuracy, i.e., across
bootstrapped samples, better than chance level. Although we know
of no similar longitudinal ARMS transition study, the closest other
report using ML and environmental data to diagnose schizophrenia
(vs. healthy controls) (22) also found a BAC not statistically better
than chance level, even having included features such as the presence
of obstetric complications and of developmental anomalies, the
parental socio-economic status; and –without feature selection–
trained and tested the model in a 13 times larger, albeit age, sex,
and group -unbalanced, sample (103 patients and 337 controls) than
ours (22). However, due to the still poorly understood environmental
risk mechanisms one cannot exclude the lack of statistical power as a
potential explanation for these negative findings including ours.

The ML model trained with the ERS for schizophrenia, which we
have tested as an (admittedly limited) exploratory predictor of the
transition to psychosis from an ARMS, showed a poor performance,
i.e., a BAC similar to chance level. Indeed, ERS is a composite score
of individual risk factors computed under the assumption that the
risk factors are completely independent (28), which has been shown

4 http://pronia.eu

not to be the case (56)–i.e., intercorrelated risk factors may inflate
the ERS estimation. This crude approach may limit the ability of the
ERS to capture the detailed environmental architecture underlying
psychosis. Moreover, just as for a PRS, an ERS for schizophrenia may
not be a good substitute of a potential ERS for transition to psychosis
from an ARMS (57).

Lastly, our criterion for training and testing a fully multimodal
ML model with modalities that would show an ML model
performance statistically better than chance (i.e., 50%) predicting
transition to psychosis from an ARMS in at least 3 of 5 bootstrapped
samples was not fulfilled given that none of the modality-based
ML models survived that threshold. This conservative criterion
was chosen given the already small sample size available for the
training of the multimodal ML model, i.e., only 6 ARMS-T and 23
ARMS-NT (only this subset of subjects had data for the three data
modalities, simultaneously). The decrease in sample size, remarkably
impairs the prediction power of the model, i.e., its accuracy. Without
previous evidence of the ability to predict transition to psychosis from
an ARMS by modality supporting its integration in a multimodal
ML model, negative results from this multimodal model would be
highly difficult to explain, as they could theoretically be explained
by the increase of noise in the model due to the inclusion of
features that did show previous predictive ability or by the lack
of predictive power due to the very small sample size. Moreover,
the parallel-to-ours, multi-site study, albeit very group-unbalanced
(only 26 ARMS-T patients vs. 308 ARMS-NT), from the PRONIA
project, showed that a stacked model combining similar data to our
study’s plus human prognostic ratings could predict transition to
psychosis with a balanced accuracy of 86% and a good geographical
generalizability (25). This multimodal approach was showed to
improve biological-based unimodal models by 15% (VBGM volume
maps-based model) and 20% (PRS for schizophrenia-based model).
As such, the replication of this promising finding, following the same
multimodal approach as that study, using in our study’s sample and
data features co-existing in both samples, would be interesting as an
additional method to ascertain whether our negative findings are due
to lack of power or to no discriminability with our feature sets.

4.4. Limitations

This study was limited by several factors. First, and foremost, the
small sample size may have limited the performance of classification
models, even though our sample size was informed by previous
ML studies showing 74–84% accuracies in predicting transition
to psychosis from an ARMS (10–15). Indeed, this is a critical
limitation when dealing with high dimensional data, such as
neuroimaging and genetics–which we have used herein. Although we
have taken measures to avoid overfitting and an overestimation of
the classification models’ performance such as artificially increasing
the sampling through bootstrapping and employing CV strategies,
this might not be enough to overcome this limitation. Indeed, our
complementary analysis comparing the models’ training and testing
performance (results in the Supplementary material) is indicative
that some of the tested classification models (mainly trained with
neuroimaging or with SNPs) might suffer from some degree of
overfitting. Ultimately, we cannot determine whether our negative
findings were due to lack of power to obtain a good performance
or due to a true lack of association between the predictors and the
transition to psychosis from an ARMS (and hence inflated findings
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from previous studies). This is one of the reasons why replication
studies in independent datasets are essential in ML literature. As a
final note, a power analysis for this study design would have been the
most informative way to define the sample size needed to achieve an
accuracy in predicting transition to psychosis from an ARMS better
than chance level. However, this is not a trivial task in ML analysis
and there is no established method to perform this analysis as there is
for univariate analysis [for examples of studies exploring innovative
ways of computing sample size for classification problems see Refs.
(58, 59)] and, therefore, it was not performed.

Second, in order to dilute possible confounding effects in the
developed classification models we have restricted the samples used to
train the models to: (a) be class-balanced, i.e., with the same number
of ARMS-T and ARMS-NT subjects; (b) be matched for age, sex,
scanning acquisition protocols for neuroimaging data; (c) include
subjects with European ancestry only for genetic data; and (d) limit
the proportion of missing data for the environment data. Although
this has artificially homogenized the study sample thus avoiding the
presence of statistical confounders, it has deemed the sample to be less
representative of the ARMS population. Third, overall, the findings of
this study are only valid to young help-seeking individuals, i.e., that
are clinically screened for ARMS criteria, and whose ARMS diagnosis
was based on having a schizotypal personality disorder or on the
subject’s familial-high risk coupled with functioning decline and on
the CAARMS (54), which mainly evaluates positive symptoms.

5. Conclusion and future directions

In this study, we explored the value of using exclusively
quantitative and multimodal data (i.e., as predictors) to predict
transition to psychosis from an ARMS. Overall, we found that,
contrary to what has been previously reported, sMRI could not
predict transition to psychosis from an ARMS. We have employed
several ML strategies aiming to replicate the highly promising
previous positive sMRI findings (74–84%) (10–15). This is even
though our sample was larger than four of the above 6 studies (10,
11, 13, 14), respectively (Conversely, our sample was smaller than
two of the above studies [Das et al. (15); Koutsouleris et al. (12),
respectively]. This points to the need for a cautious interpretation
of small sample size studies. Also, we could not replicate the one
previous evidence of the value of the schizophrenia PRS in predicting
transition to psychosis. Moreover, and to the best of our knowledge,
we explored for the first time the value of environment in the
prediction of psychosis already from a prodromal stage. Lastly, the
genetic and the environmental data used could not predict transition
to psychosis from an ARMS. In summary, the present study should
serve as a call for caution and skepticism regarding the currently
achievable prognostic and diagnostic biomarker development goals,
with the existing modeling tools and data measurement tools.
Additionally, our study’s methodological approaches tailored to
each data modality, may serve as suggestive proofs-of-concept for
the exploration of future multimodal datasets, either for novel
discovery or replication of previous promising findings, across
psychiatric disorders, not exclusive to ARMS. We further suggest
larger samples (in the several hundreds) should be employed for
both model training and testing, given the inherent high data
dimensionality (specially of neuroimaging and genetics) and the
still little established relevance of individual features. Although

heterogeneity in phenotypic measurements is increased in larger
samples, they bring not only statistical power but ecological
generalizability, and thus carry a higher potential to be clinically
useful. This is best achieved with consortia multi-center studies
which are increasingly common albeit not without challenges (60).
Alternatively, methods for synthetic generation of data such as the
Generative Adversarial Networks (GAN)-based are also a promising
avenue for sample size augmentation, now starting to be applied in
the clinical research field (61). Last, but not least, we recommend
the use of objective and quantitative criteria-based tools for the
assessment of a ML biomarker’s clinical applicability, once high
effect size and accuracy estimates are achieved, such as one we have
previously proposed (62).
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