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Background: In schizophrenia, the structural changes in the cerebellum

are associated with patients’ cognition and motor deficits. However, the

findings are inconsistent owing to the heterogeneity in sample size, magnetic

resonance imaging (MRI) scanners, and other factors among them. In this

study, we conducted a meta-analysis to characterize the anatomical changes

in cerebellar subfields in patients with schizophrenia.

Methods: Systematic research was conducted to identify studies that compare

the gray matter volume (GMV) differences in the cerebellum between patients

with schizophrenia and healthy controls with a voxel-based morphometry

(VBM) method. A coordinate-based meta-analysis was adopted based on

seed-based d mapping (SDM) software. An exploratory meta-regression

analysis was conducted to associate clinical and demographic features with

cerebellar changes.

Results: Of note, 25 studies comprising 996 patients with schizophrenia

and 1,109 healthy controls were included in the present meta-analysis. In

patients with schizophrenia, decreased GMVs were demonstrated in the left

Crus II, right lobule VI, and right lobule VIII, while no increased GMV was

identified. In the meta-regression analysis, the mean age and illness duration

were negatively associated with the GMV in the left Crus II in patients

with schizophrenia.

Conclusion: The most significant structural changes in the cerebellum

are mainly located in the posterior cerebellar hemisphere in patients with

schizophrenia. The decreased GMVs of these regions might partly explain the

cognitive deficits and motor symptoms in patients with schizophrenia.
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1 Introduction

Schizophrenia has been widely considered a psychiatric
disorder characterized by cognitive deficits (1–6) and motor
dysfunctions (7, 8), notably in verbal memory, working
memory, processing speed, and motor control (9). A wide
range of brain structural and functional alterations (10)
have been found in magnetic resonance imaging (MRI)
studies of schizophrenia, for instance, the progressive losses
of cerebral cortical volume and thickness in the frontal,
temporal, parietal, and cingulate cortices and the thalamus
(11); decreased regional homogeneity (ReHo) in the cingulate
cortex, occipital gyrus and cuneus; and altered functional
connectivity of the salience, central executive and default-
mode networks (12–15). Although the cerebral function and
structure are of great importance in the pathophysiological
progression of schizophrenia, accumulating evidence indicates
that the cerebellum also plays a vital role in emotion,
cognition, motor, and executive functions in patients with
schizophrenia (16–18). Andreasen et al. (19, 20) first proposed
the role of the cerebellum in “cognitive dysmetria” and
raised the concept of the “cerebello-thalamo-cortical circuit” in
schizophrenia. This circuit establishes the functional pathway
of information transfer between the cerebral cortex and
cerebellum. Its hyperconnectivity was identified as a potential
biomarker for genetic risk, diagnosis, and disorder progression
in schizophrenia (21–24). In addition, a previous study using
a large adolescent cohort indicated that cerebellar morphology
was correlated with both general cognitive function and general
psychopathology and that the cerebellum might be a critical
structure in the development of grievous mental psychosis (25).
Regarding the abnormalities of cerebellar subregions in patients
with schizophrenia, decreased gray matter volumes (GMV) were
reported in the Crus I/II (26, 27) and lobule III, IV (28), V (29,
30), VI (27, 31), and VIIb/VIIIa (32). Some studies reported
no significant cerebellar structural changes when comparing
patients with schizophrenia to healthy controls (33, 34). In
general, the altered cerebellar subregions were inconsistent in
the structural MRI studies of schizophrenia.

Various reasons may account for the heterogeneity
among abnormal cerebellar structures in patients with
schizophrenia, including disorder heterogeneity, sample
size, demographic characteristics, the administration of
antipsychotic drugs, scanning parameters, and processing
methods. The heterogeneity might be explained by the fact
that previous studies mainly focused on the cerebral structures
instead of structural deficits in the cerebellum.

Previous studies demonstrated structural alterations of
the cerebellum in schizophrenia. A mega-analysis of 983
patients with schizophrenia spectrum disorders indicated that
the losses of cerebellar GMVs in the patients were mainly
located in regions concerning higher-level cognitive functions
(35). A previous meta-analysis of first-episode schizophrenia

involving both adolescents and adults suggested that the
decreased GMVs were mainly located in Crus II and lobule IV,
right lobule V, and right lobule VII (36).

To further illustrate the remarkable regional changes in
the cerebellum in patients with schizophrenia, a meta-analysis
was conducted that mainly focused on cerebellar changes in
participants aged ≥ 18 years and only patients diagnosed with
schizophrenia in terms of the Diagnostic and Statistical Manual
of Mental Disorders (DSM). An exploratory meta-regression
was performed to determine the potential relationship between
abnormal cerebellar structures and clinical variables.

2 Materials and methods

2.1 Search procedures

This meta-analysis adhered to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement. Related literature was searched in the Embase,
PubMed, and Web of Science databases from 1 August
1985 to 1 August 2022. The keywords were “schizophrenia”
and “cerebellum” and “magnetic resonance imaging” on the
condition of “All Fields”. We manually searched the reference
lists of the selected articles and related reviews. We included
studies meeting the following criteria: (1) peer-reviewed articles
published in English; (2) studies comparing cerebellar GMV
changes between patients with schizophrenia and healthy
controls using voxel-based analytical methods; and (3) studies
demonstrating cerebellar GMV alterations in the Montreal
Neurological Institute (MNI) or Talairach coordinates. Studies
were excluded if (1) they were commentaries, editorials,
case reports, or letters; (2) they included patients with a
diagnosis other than schizophrenia, such as schizoaffective
disorder, bipolar affective disorders, organic mental disorders,
substance-related disorders, or early onset schizophrenia (both
childhood and adolescent schizophrenia) in the patients’
group; (3) they did not use MRI to show gray matter
differences in the cerebellum; or (4) they carried out
image processing using only region of interest (ROI) or
manual approaches. Two investigators conducted the literature
search independently, and the results were compared. When
confronted with controversies, an agreement was reached
between the investigators during the inclusion of studies for
this meta-analysis.

2.2 Data extraction

We recorded demographic information and clinical data,
including sample size, sex, mean age, age of onset, duration
of illness, years of education, and Positive and Negative
Syndrome Scale (PANSS) scores. Basic methodological materials
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(statistical threshold and correction) and scanning parameters
[slice thickness, field strength, and full width at half maximum
(FWHM)] were well documented using Microsoft Excel. In
addition, the peak coordinates of the main results and effect sizes
were recorded for SDM calculations.

2.3 Quality assessments of the selected
studies

To assess the quality of each study, a modified 10-
point checklist was obtained from earlier studies in line with
Newcastle Ottawa Scale (37, 38). The checklist contained three
categories: five items for participant inclusion and exclusion,
three items for imaging scanning parameters and analytical
methods, and two items for results and conclusions. The scores
were separated into three levels: 7–9 was regarded as good,
4–6 was fair, and 0–3 was poor. Each item was scored as 0,
0.5, or 1 point if the criteria were unfulfilled, partially met, or
fully met, respectively, and any study scoring > 5.0 points was
included in the meta-analysis. The details of the checklist are
presented in Supplementary Table 1. However, this checklist
was only used to evaluate the quality of the studies included in
this meta-analysis rather than to judge the work or authors.

2.4 Seed-based d mapping
meta-analysis

An anisotropic effect-size version of seed-based d mapping
(AES-SDM) software (version 5.15)1 was adopted in this meta-
analysis to detect consistent GMV abnormalities in patients
with schizophrenia when compared with healthy controls. AES-
SDM uses effect sizes and permits the combination of reported
peak coordinates with statistical parametric maps, providing
elaborate and convincing meta-analyses (39, 40). According to
the AES-SDM tutorial, statistical maps and effect size maps of
the coordinates of each study were recreated (“gray matter”
numbers of randomization = 1, anisotropy = 1, isotropic full
width at half maximum FWHM = 20 mm, mask = “gray
matter”). Moreover, individual research maps were entered
into the meta-analysis. Jackknife sensitivity, heterogeneity, and
publication bias analyses were performed to assess the sensitivity
and heterogeneity of the results. The analytical parameters
obtained from previous studies (41–43) are listed as follows:
voxel threshold p = 0.005, peak height threshold z = 1.00, and
cluster size threshold = 10 voxels.

Subgroup analyses were tested according to studies reported
with corrected results, and studies used a 3.0-T MRI scanning
machine. Based on a linear model, meta-regression analysis

1 https://www.sdmproject.com/

was performed to detect the association between GMV
abnormalities and clinical data (age, age of onset, sex,
illness duration, and PANSS subscale scores). The analytical
parameters were as follows: threshold of p = 0.0005, peak
height threshold z = 1.00, and cluster size threshold = 10
voxels (37, 43). Further details of the jackknife, heterogeneity,
publication bias analyses, and meta-regression are described in
the Supplementary material.

3 Results

3.1 Included studies and clinical
information

The flowchart of the literature search is presented in
Figure 1. The demographic information, clinical data, and
scanning materials of all included GMV studies are summarized
in Supplementary Table 2. A total of 25 VBM studies (6, 27,
30, 32, 44–64) were distinguished based on our search protocol.
Two articles (52, 53) published by the same author were both
included because the cohorts did not overlap. All patients were
diagnosed with schizophrenia in line with the DSM criteria,
excluding patients with any other schizoaffective disorder,
bipolar affective disorders, organic mental disorders, or other
mental disorders. In total, 996 patients with schizophrenia (men,
572; mean age, 29.63 years; mean illness duration, 6.19 years;
mean PANSS total score, 103.70) and 1,109 matched healthy
controls (649 men, mean age 29.90 years) were analyzed. Only
five studies (45, 48, 50, 55, 59) were focused on drug-naïve
patients. The threshold of 15 studies (27, 30, 44, 46, 48–50,
56–61, 63, 64) was corrected for multiple comparisons, and 14
studies (27, 30, 32, 45–48, 50, 52, 53, 59, 60, 63, 64) used the
PANSS for psychotic symptom assessment. The field strength of
partial studies was 3.0-T MRI (9/25 datasets), and the thickness
was 1 mm (14/25 datasets). The average quality score of the 25
studies was 8.04 (range 7–9.5), which implies that the quality of
the included studies was at a high level.

Notably, 17 datasets revealed decreased GMVs involving
the bilateral cerebellum, especially in the left Crus I/II and
right lobule VI/VIIb in patients with schizophrenia. Six datasets
suggested increased GMVs in the bilateral cerebellum, involving
the anterior part of the bilateral cerebellum, bilateral cerebellum
III, and Vermis IV and V.

3.2 The results of the SDM
meta-analysis

Integrating all 25 studies in this meta-analysis, patients
with schizophrenia showed decreased GMVs in the left Crus
II (z = −1.991, p = 0.000165164), right lobule VI (z = −1.484,
p = 0.001656592), and right lobule VIII (z = −1.409,
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FIGURE 1

The flowchart for identifying studies in this meta-analysis.

p = 0.002353311; Table 1 and Figure 2) when compared with
healthy controls. No increased cerebellar GMV was identified.

In the subgroup meta-analysis, studies that reported
corrected results (15 studies) and studies that used a 3.0-T
scanning machine (9 studies) were in high accordance with the
integrated results (Supplementary Table 3).

3.3 Jackknife, heterogeneity, and
publication bias analyses

In the jackknife analysis, decreased GMV in the left Crus
II was in accordance with all combinations of the 25 datasets.
Moreover, decreased GMVs in the right lobule VI and right
lobule VIII remained statistically significant in 22/25 datasets
(Supplementary Table 4). This finding indicates that the
significant cerebellar gray volume differences showed good
robustness and consistency in this meta-analysis. No significant
statistical heterogeneity was identified in the meaningful
cerebellar GMV alterations between studies. The Egger test of

funnel plot asymmetry did not show statistical significance in
the analysis of publication bias. The forest plots are shown in
Supplementary Figure 1.

3.4 The results of the meta-regression
analysis

In the linear regression analysis, mean age (r = −0.461,
p = 0.020) and illness duration (r = −0.496, p = 0.019)
were negatively associated with GMV in the left Crus II in
patients with schizophrenia (Figure 3). No association was
found between statistically significant GMV alterations and age
of onset, PANSS total scores, or subscale scores.

4 Discussion

This study, which included 996 patients with schizophrenia
and 1,109 healthy controls, mainly investigated structural
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TABLE 1 Gray matter volume changes between patients with schizophrenia and healthy controls (25 studies).

Region MNI coordinate SDM P uncorrected Voxels Cluster breakdown (voxels)

x y z Z score

Left cerebellum, Crus II −24 −78 −44 −1.991 0.000165164 2163 Left cerebellum, Crus II (819)*

Left cerebellum, Crus I (568)

Left cerebellum, hemispheric lobule VIIB (234)

Left cerebellum, hemispheric lobule VIII (224)

Left cerebellum, hemispheric lobule VI, BA 37 (87)

Left cerebellum, Crus I, BA 37 (52)

Left cerebellum, Crus I, BA 18 (36)

Left cerebellum, hemispheric lobule VI (35)

Cerebellum, vermis lobule VII (26)

Left fusiform gyrus, BA 37 (22)

Left cerebellum, hemispheric lobule VI, BA 18 (22)

Left cerebellum, hemispheric lobule VI, BA 19 (15)

Left cerebellum, Crus I, BA 19 (12)

Middle cerebellar peduncles (11)

Right cerebellum,
hemispheric lobule VI

10 −66 −24 −1.484 0.001656592 142 Right cerebellum, hemispheric lobule VI (60)

Right cerebellum, hemispheric lobule VI, BA 37 (33)

Right cerebellum, hemispheric lobule VI, BA 18 (25)

Right cerebellum, hemispheric lobule VI, BA 19 (24)

Right cerebellum,
hemispheric lobule VIII

20 −60 −58 −1.409 0.002353311 186 Right cerebellum, hemispheric lobule VIII (133)

Right cerebellum, hemispheric lobule IX (53)

*Less than 10 voxels are not represented in the breakdown of voxels.
BA, Brodmann area; MNI, Montreal Neurological Institute; SDM, seed-based d mapping.

changes in the cerebellum and identified GMV decreases
in the left Crus II, right lobule VI, and right lobule
VIII in patients with schizophrenia. Similarly, these findings
showed good repeatability in both subgroup meta-analysis
and jackknife sensitivity analysis. The cerebellar subregional
GMV alterations discovered in our meta-analysis might be
one of the schizophrenic neuroanatomical bases, especially in
the left Crus II. Moreover, we also found that mean age and
illness duration were negatively associated with the GMV in
the left Crus II, which might suggest that schizophrenia is a
progressive disorder.

Consistent with our findings in this meta-analysis, multiple
former studies identified decreased GMVs mainly located in
the left Crus II, right lobule VI, and right lobule VIII (35,
36, 65–67). In a meta-analysis of 283 volumetric brain studies,
decreased cerebellar volume was identified in medicated patients
with schizophrenia (68). Moberget et al. (35) found regional
decreased GMVs in the bilateral Crus I, left Crus II, right lobule
VIII, and right lobule IX in a large voxel-wise level mega-
analysis and clarified that the cerebellum was a critical point
of brain connectivity in patients with schizophrenia spectrum

disorders. A worldwide multicenter study (66), including
182 patients with schizophrenia and 198 healthy controls,
suggested that GMV losses mainly occurred in lobule VIIb and
Crus II. The volume changes in the cerebellum may be the
most vigorous and stable brain imaging findings in patients
with schizophrenia.

Purkinje cells (PCs), a central component of the cerebellum,
are correlated with cerebellar function and development. In
addition, PCs provide signals in balance, motor coordination,
and cognition learning (69–71). A former animal experiment
stated that the losses of PCs may lead to motion abnormalities
and schizophrenia-like behaviors (72). In addition, the number
and size of PCs are related to extensive cognitive impairments
and psychopathological symptoms in schizophrenia patients
(73). Decreased Purkinje neuron linear density was detected
in the cerebellum, especially in the vermis, and presented
as cerebellar volume decreases in MRI (72, 74, 75). Thus, a
reduction in cerebellar GMV, shown on brain neuroimaging,
presumably results in clinical symptoms in patients with
schizophrenia, which might be explained by the abnormal
number and size of PCs.
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FIGURE 2

Regional cerebellar GMV changes in patients with schizophrenia compared with healthy controls in our meta-analysis. The blue color
represented lower gray matter volume in left Crus II, right lobule VI, and right lobule VIII compared with healthy controls in our meta-analysis.
The corresponding cerebellar regions were pointed out at the peak coordinate level.

Nevertheless, the findings of decreased cerebellar GMV in
the left Crus II in patients with schizophrenia are contrary
to those of previous studies. For instance, a former study
by Morimoto et al. (33) suggested that no differences were
found in either white matter volumes or GMVs of the bilateral
Crus I/II between patients with schizophrenia and healthy
controls. The inconsistency of results might be explained by the
differences in the study design, the heterogeneous conditions of
schizophrenia, and methodological differences.

The Crus II and lobule VI/VIII occupy a major part of the
posterior cerebellar hemisphere (76). These altered cerebellar
GMV regions were considered to connect and function together
with the cerebrum for high-level cognitive operations, such
as sensorimotor control, language, verb generation, working
memory, spatial processing, and emotion processing (67, 77–
83). More specifically, the Crus II was regarded as a critical hub
in a recent functional connectome study of healthy volunteers.
The Crus II connected with multiple resting-state networks
in the cerebrum, such as the default-mode, cingulo-parietal,
frontoparietal, ventral attention, and language networks (84).
We suggested that the GMV decreases in these cerebellar
subregions might cause the interruptions of cerebrocerebellar
communications in schizophrenia (85, 86). For patients with
schizophrenia, decreased connectivity between the Crus II and
ventral attention, salience, and default-mode networks, as well
as increased connectivity with the somatomotor network, were

shown in a cerebrocerebellar functional connectivity study (86,
87). An updated review also identified that lobule VI was related
to the default-mode network and the executive control network;
furthermore, lobule VIII was linked with the sensorimotor
network (88). Regions of anatomical abnormalities were
extensively involved in functional connectivity between the
cerebrum and cerebellum. A non-invasive transcranial magnetic
stimulation targeting the Crus I/II was adopted in humans, and
it strengthened the point of view that the cerebellum plays a
key role in cerebral functional connectivity within networks,
especially in the default-mode network (89). Moreover, the
GMVs of the bilateral cerebellum I/II were associated with the
severity of symptoms in both individuals with ultrahigh-risk
and patients with first-episode schizophrenia (33). In summary,
the Crus II and lobule VI/VIII widely participated in the
cerebrocerebellar functional connectivity and were involved
in high-level functions in patients with schizophrenia. We
hypothesized that abnormal volume changes in these regions
might be potential factors leading to cognitive dysfunction and
motor symptoms in patients with schizophrenia.

In addition, our study also found that mean age and
illness duration were negatively associated with GMV in
the left Crus II in patients with schizophrenia. This finding
indicated a further reduction of GMV in the cerebellum
with increased age and a prolonged illness course. In
accordance with the previous opinion, schizophrenia is a
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FIGURE 3

The results of the meta-regression analysis. (A) The mean age was negatively associated with GMV in left Crus II in patients with schizophrenia
(r = –0.461, p = 0.020). (B) The related significant cluster of the left crus II in this meta-regression analysis of mean age. (C) The illness duration
was negatively associated with GMV in left Crus II in patients with schizophrenia (r = –0.461, p = 0.020). (D) The related significant cluster of the
left Crus II in this meta-regression analysis of illness duration. In panels (A,C), the effect sizes to create the plot were extracted from the peak of
the maximum slope difference, and each study was represented as a dot (meta-regression signed differential mapping slope). In panels (B,D),
the decreased GMV in the left Crus II was shown in blue color.

progressive disorder (6, 90–93). However, antipsychotic
medication might contribute to changes in cerebellar
GMV (94). The progressive loss of GMV might be a
confounding consequence of antipsychotic medication,
age, and illness duration. Thus, this finding should be
interpreted with caution.

5 Limitations

There are some limitations to our meta-analysis. First,
all the included studies were VBM studies conducted mainly
from the perspective of the whole brain, and the details
of subregional cerebellar information were hard to obtain,
except for the specific peak coordinates. Technically, more
precise segmentation approaches have been applied to cerebellar
subfields (66). However, diverse novel methods (95) have
only been applied in limited studies, which do not have
enough quantity to conduct a meta-analysis. Second, we only
concentrated on the significant cerebellar changes that have
been reported, and we omitted the results with no significance
in the VBM studies. At the same time, no publication bias

was identified in our study. Third, clinical and methodological
heterogeneity among different studies could contribute to the
evaluation of GMV. To minimize the confounding factors,
the subgroup meta-analysis was performed based on studies
concerning the 3.0-T MRI and studies with corrected results.
The results of the subgroup analysis were in line with the present
research. Fourth, most of the patients with schizophrenia were
medicated or had a long illness duration in the included
studies. A meta-regression analysis was carried out to specify the
association between illness duration and significant cerebellar
GMV changes, which implicated that illness duration was
negatively associated with decreased GMV in the left Crus II.

6 Conclusion

The current meta-analysis of VBM studies provides
consolidated evidence that structural changes in the cerebellum
are consistently located in the left Crus II, right lobule VI,
and right lobule VIII in patients with schizophrenia. The
decreased GMVs of these regions might associate with the
interruptions of cerebrocerebellar communications in patients
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with schizophrenia and might partly explain cognitive deficits
and motor symptoms in patients with schizophrenia.
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