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Background: Cognitive flexibility is a core cognitive control function

supported by the brain networks of the whole-brain. Schizophrenic patients

show deficits in cognitive flexibility in conditions such as task-switching.

A large number of neuroimaging studies have revealed abnormalities in

local brain activations associated with deficits in cognitive flexibility in

schizophrenia, but the relationship between impaired cognitive flexibility and

the whole-brain functional connectivity (FC) pattern is unclear.

Method: We investigated the task-based functional connectivity of the

whole-brain in patients with schizophrenia and healthy controls during task-

switching. Multivariate pattern analysis (MVPA) was utilized to investigate

whether the FC pattern can be used as a feature to discriminate schizophrenia

patients from healthy controls. Graph theory analysis was further used to

quantify the degrees of integration and segregation in the whole-brain

networks to interpret the different reconfiguration patterns of brain networks

in schizophrenia patients and healthy controls.

Results: The results showed that the FC pattern classified schizophrenia

patients and healthy controls with significant accuracy. Moreover, the altered

whole-brain functional connectivity pattern was driven by a lower degree

of network integration and segregation in schizophrenia, indicating that

both global and local information transfers at the entire-network level were

less efficient in schizophrenia patients than in healthy controls during task-

switching processing.

Conclusion: These results investigated the group differences in FC profiles

during task-switching and not only elucidated that FC patterns are changed
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in schizophrenic patients, suggesting that task-based FC could be used as

a potential neuromarker to discriminate schizophrenia patients from healthy

controls in cognitive flexibility but also provide increased insight into the brain

network organization that may contribute to impaired cognitive flexibility.

KEYWORDS

schizophrenia, cognitive flexibility, functional connectivity, multivariate pattern
analysis, graph theory analysis

Introduction

Cognitive flexibility, the ability to adjust one’s behavior
or cognitive action in response to changing environmental
demands, is considered a core cognitive control function
(1, 2). The performance of task-switching is an important
measure of cognitive flexibility. In task-switching, participants
randomly alternate between the performance of two (or more)
tasks, with an advance cue specifying the task to perform on
the upcoming trial.

Schizophrenia is a mental disorder with deficits in cognitive
flexibility (1, 3). Specifically, people with schizophrenia need
a longer time to disengage from the previous task set and
engage in an upcoming task set, as evidenced by longer response
times and higher error rates compared to healthy controls
in task-switching tasks (4–6). In parallel, reduced activation
in the lateral prefrontal cortex anterior cingulate cortex and
in schizophrenia has been found among several cognitive
flexibility-related tasks (7–10).

Previous studies have mainly concentrated on the variation
in local brain activations associated with deficits in cognitive
flexibility in schizophrenia. Notably, recent research has
suggested that the neural activities recorded during the
performance of a task are reflected not only by a change
in neural activity in specific regions of the brain but
also by an interaction across large-scale brain systems via
region activity (11–14). Moreover, given that task-switching
consists of a series of functions, including selecting goal-
relevant information, maintaining goal-relevant information,
and inhibiting goal-irrelevant information (15–17), logically,
it involves a wide variety of brain regions. Accordingly,
whole-brain measures should provide a more comprehensive
measure of cognitive flexibility than activity in a single brain
region. In addition, a prominent hypothesis for the origin
of cognitive deficits in schizophrenia is that of anatomical
and functional brain dysconnectivity at multiple scales of
space and time, ranging from neurochemical dysconnectivity
to emerged functional dysconnectivity (18, 19). This hypothesis
posits that schizophrenia can be conceived as a disorder of
connectivity between large-scale brain networks (19–21). Using
resting state functional magnetic resonance imaging (fMRI),

increasing evidence has shown that alterations in whole-brain
functional connectivity (FC) are reliable predictors of cognitive
changes related to brain diseases including schizophrenia (12,
13, 22, 23). Most previous studies using FC analysis methods
have been conducted with participants during the resting
state, while how the task-modulated connectivity of large-
scale brain networks is altered in schizophrenia during task-
switching tasks and whether the altered FC could be used
to distinguish schizophrenic patients from healthy controls
remains largely unknown.

Motivated by the aforementioned consideration, we
analyzed the fMRI data of the task-switching task to determine
how FC is altered in schizophrenia patients relative to healthy
controls during the switch condition. Specifically, the beta
series correlation technique (24) was first performed to analyze
the FC between schizophrenia patients and healthy controls
during task-switching. An increasing number of studies have
shown that the brain functions of network differences between
patients with psychiatric disorders and healthy controls were
determined by its connectivity patterns rather than connection
strength (13, 22). Multivariate pattern analysis (MVPA),
a method sensitive to fine-grained spatial discriminative
patterns and the exploration of the inherent multivariate
nature from high-dimensional neuroimaging data, was then
conducted to classify the schizophrenia and control groups and
identify FC differences.

Moreover, recent studies using graph-theoretical analysis
methods suggested that patients with schizophrenia during
resting state present abnormalities in topological properties
of the brain network connectivity, including less hierarchical,
less small-world, less clustered, and less efficient connectivity
(19, 25–27). These differences might be expected to impair
higher-order cognitive functions (28). For example, the task-
induced reconfiguration of FC during an auditory oddball task is
characterized by less immediate communication between nodes
in schizophrenia vs. controls (29). Accordingly, we infer that the
abnormal FC patterns during task-switching in schizophrenic
patients are caused by abnormal topological properties. To
assess the different topological properties of brain networks
in schizophrenia patients and healthy controls in cognitive
flexibility, we then calculated the degrees of integration and
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segregation in the whole-brain networks by using graph theory
analysis, which could capture the features of the brain network
architecture and was applicable to explore brain network
organization in various cognitive processes (30, 31).

Materials and methods

Participants

Data used in this study were obtained from the OpenNeuro
database with accession number of ds000030. The dataset
contains multimodal brain imaging and behavioral data from
patients with schizophrenia (n = 50) and healthy controls
(n = 130). Diagnoses were based on the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition-
Text Revision (DSM-IV) and per the Structured Clinical
Interview for DSM-IV (SCID-I). All participants gave written
informed consent during the data collection of the UCLA
Consortium for Neuropsychiatric Phenomics LA5c Study. More
information about participant and study procedures can be
found in the corresponding data paper (32). After removing
participants with missing files and large head motions (total
displacement > 3 mm), fMRI data from a sex- and age-matched
subset of the healthy control (n = 46, mean age = 36.35 years,
SD = 8.71, 14 females) and schizophrenia (n = 46, mean
age = 36.54 years, SD = 8.95, 14 females) cohorts were used in
the final analysis.

Task-switching task

During cued task-switching, participants were cued to
perform one of two alternative tasks (shape task vs. color task)
on each trial. In the shape task, the cues presented included
either “SHAPE” or “S” on trials where participants had to decide
if the shape feature of the stimulus was a circle or triangle. In
the color task, the cues presented included either “COLOR”
or “C” on trials where participants had to decide whether the
color feature of the stimulus was red or green. In total, 96 trials
presented in a pseudorandomized order, including 24 switch
trials (where the cued task for the current trial differed from that
on the previous trial) and 72 repeat trials (where the cued task
for the current trial was the same as that on the previous trial).

Data acquisition and preprocessing

Functional magnetic resonance imaging data were collected
using a Siemens Trio 3 T scanner and a Siemens 32-channel
head coil. Functional images were acquired using echo-planar
imaging with the following parameters: TR = 2,000 ms,
TE = 30 ms, flip angle = 90◦, acquisition matrix = 64 × 64,

slice number = 34. T1-weighted scans were acquired with the
following parameters: TR = 1,900 ms, TE = 2.26 ms, acquisition
matrix = 256× 256, slice number = 176.

The preprocessing of fMRI data was done using the SPM12
software1 on the MATLAB platform. Functional images were
preprocessed for slice-timing correction, motion correction
(realignment), coregistration, gray/white matter segmentation,
normalization to the MNI template and spatial smoothing using
a 6 mm full-width half-maximum Gaussian kernel.

Brain network partition

The whole-brain was divided into 264 regions of interest
(ROIs) according to the Power atlas (33). This network partition
has been shown to provide higher test–retest reliability for brain
network properties. Cole et al. assigned 227 of the original 264
ROIs from Power et al. to 10 different brain networks (34). On
the basis of Cole et al. five nodes were eliminated due to low
signal, and the other 222 ROIs were used in the subsequent
analyses. For each of these 222 ROIs, a sphere with a radius of
6 mm was defined.

Functional connectivity

For connectivity analysis, we obtained the beta map for each
trial and estimated the correlations of trial-by-trial variabilities
among the 222 ROIs for the switch condition. More specifically,
the single-trial response estimations were first performed using
the least-square separate method to obtain the beta map for each
trial (35). The general linear model (GLM) of a trial included
two regressors: The trial of interest and all other trials. Again,
stimuli were modeled as stick functions at the onset of cue
presentation, and each regressor was convolved with a canonical
hemodynamic function. The six motion parameters and the
mean time series in the white matter and cerebral spinal fluid
were included in each GLM as confounding regressors. After
estimating beta maps for different trials, the mean beta values
of each ROI were extracted to create a beta series for each
participant. Pearson’s correlation coefficients were computed
between all pairs of ROIs, resulting in (222 × 221)/2 = 24,531-
dimensional FC feature vectors for each participant. These FC
feature vectors were used in subsequent analyses.

Multivariate pattern analysis

A support vector machine (SVM) classifier with a linear
kernel and C = 1 (36) was applied for classification. The FC
vector for each individual was fed into the classification analyses

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm12

Frontiers in Psychiatry 03 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1069036
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1069036 November 15, 2022 Time: 17:49 # 4

Wang et al. 10.3389/fpsyt.2022.1069036

as features. Because the feature size was significantly larger than
the sample size, feature reduction was first carried out to prevent
overfitting. In this study, we selected features using the F score
method (37), which has been applied in previous studies and is
simple and generally quite effective (13, 38, 39). Specifically, this
method selects features that have high similarity within groups
and large variance between-groups, as shown in the following.
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where xk represents the training vector containing both
positive and negative instances, and n+/n− is the number
of positive/negative instances. The mean value of the ith
feature of the whole, positive, and negative datasets are x̄i,
x̄(+)
i , and x̄(−)

i ; x(+)
k,i /x(−)

k,i represents the ith feature of the
kth positive/negative instance. The numerator measures the
between-group differences, and the denominator represents
the within-group differences. A higher F score indicates that
this feature is more discriminative between-groups; hence, this
criterion was used for feature selection.

We then applied the leave-one-out cross-validation
(LOOCV) method to assess the performance of the classifier
(38). For each LOOCV iteration, the F score of all 24,531
features was computed and ranked within the training set,
where a higher F score indicates larger group differences.
The feature number was first tested from 20 to 24,520 with a
step length of 20. The smallest step that achieved the highest
accuracy was chosen, and the corresponding classification
results were reported. To test the performance of the classifier,
the accuracy, sensitivity, specificity, and area under the curve
(AUC) were computed.

Accuracy =
TP+ TN

TP+ FN+ TN+ FP

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN+ FP

Where TP represents the number of schizophrenia
patients who were correctly classified; TN represents the
number of healthy controls who were correctly classified; FN
represents the number of schizophrenia patients who were
incorrectly identified as healthy controls; and FP represents the
number of healthy controls who were incorrectly identified as
schizophrenia patients.

Moreover, the permutation test was employed to measure
whether the calculated classification accuracy was statistically
significant (40). For each permutation test, labels for the
schizophrenia and healthy control groups were shuffled

and then replicated the same classification procedure. The
permutation test with LOOCV was performed 1,000 times,
and the significance was estimated by dividing the number
of permutations that displayed a larger value than the actual
accuracy by the total number of permutations.

Graph theory analysis

We performed graph theory analysis to examine the
integration and segregation of the brain network by using the
GRETNA toolbox.2 Using the connectivity matrix obtained in
the FC analysis, a weighted, undirected graph was constructed.
The weighted network was thresholded at various levels of
sparsity (5–50% in 5% increments) to avoid any thresholding
bias. The global efficiency (Eg) and local efficiency (Eloc) were
calculated to measure the brain network topologies. In the
present study, N represents all nodes in the network, and n
represents the number of nodes (i, j), represents a link between
nodes i and j, and (i, j?N) and links (i, j) are related to the
connection weights wij.

Global efficiency (Eg) measures the degree of integration
of brain networks. It is the average reciprocal of the shortest
path length of all node pairs in the brain network. A larger
global efficiency value of the brain network represents a higher
information transmission efficiency and a higher the integration
degree of the brain network. Global efficiency is defined as
follows:

Eg =
1
n

∑
i∈N

Eg,i =
1
n

∑
i∈N

∑
j∈N,j 6= i

(
dw

ij

)−1

n−1

Where Eg,i represents the efficiency of node i and dw
ij

represents the weighted shortest path length between i and j.
Local efficiency (Eloc) measures the degree of segregation

of brain networks. The local efficiency of a node refers to
the average reciprocal of the shortest path length of all node
pairs in a subgraph composed of the node’s neighbors. The
local efficiency of the brain network is the average of the local
efficiency of all nodes in the brain network.

Eloc =
1
n

∑
i∈N

Eloc,i

=
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[
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jh (Ni)
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)1/3
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(
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)
Where Eloc,i represents the local efficiency of node i, ki

represents the number of links connected to i, and dw
jh (Ni)

represents the weighted shortest path length between nodes j
and h, which consists only of the neighbors of i.

2 https://www.nitrc.org/projects/gretna/
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The global efficiency and local efficiency were computed
separately for each sparsity threshold. The area under the
curve (AUC) of such metrics was then computed to produce
a summarized scalar, which was independent of a specific
threshold selection. The AUC values of global efficiency and
local efficiency were compared between-groups using two-
sample T-tests.

Results

Demographics and task behavior

The schizophrenia and healthy control groups were matched
for sex (14 females for the schizophrenia group, 14 females for
the healthy control group) and age (36.54 ± 8.95 years for the
schizophrenia group, 36.35 ± 8.71 years for the healthy control
group; p = 0.92). Compared with healthy controls, schizophrenia
patients had significantly impaired task-switching performance,
reflected in significantly increased response time [t (90) = 4.19,
p < 0.001] and reduced accuracy [t (90) = 4.52, p < 0.001].

Functional connectivity pattern and
graph analysis

To display the FC pattern, we averaged the connectivity
matrix of participants within the schizophrenia and healthy
control groups. Figure 1A shows the strength values of the
connections between the 222 ROIs in the whole-brain in the
two groups. Graph theory analysis was further used to calculate
global efficiency and local efficiency to explore the distinct
degree of functional integration and segregation of such a 222-
node network in the two groups. We found that the global
efficiency was significantly greater in the healthy controls than in
the schizophrenia patients [t (90) = 2.69, p = 0.009] (Figure 2).
The local efficiency was also greater in the healthy controls than
in the schizophrenia patients, but this effect was marginally
significant [t (90) = 1.95, p = 0.054] (Figure 2).

Classification

Different feature numbers were first examined to determine
the optimal feature size and maximize the classification
accuracy. Figure 1B shows the corresponding accuracy values.
The result demonstrated that the highest accuracy corresponded
to 4,140 features (at step 207). In addition, the SVM
classifier also collected the discriminative score of each
testing participant. The receiver operating characteristic (ROC)
curve of the classifier was produced using the discriminative
score of each participant as a threshold. Figure 1C shows
the ROC curve of the maximum accuracy condition, with

AUC = 0.6635, accuracy = 66.30%, sensitivity = 63.04%,
and specificity = 71.74%, which indicates that it has good
classification power. The permutation test indicated that
the maximum accuracy was higher than random (1,000
permutation tests, p < 0.001).

Discussion

In the present study, we investigated abnormal FC patterns
during task-switching in schizophrenic patients compared
with healthy controls, which is related to underlying impaired
cognitive flexibility in schizophrenia. Behaviorally, we found
increased response time and decreased accuracy during the
processing switch trial in patients with schizophrenia compared
to healthy controls, revealing impairments in cognitive
flexibility in schizophrenia. Multivariate pattern analysis
showed that the FC pattern could distinguish schizophrenia
patients and healthy controls with high classification accuracy,
suggesting that the differences in the cognitive flexibility
between schizophrenia patients and healthy controls involve
distinct FC patterns. Moreover, the results of the graph analysis
showed decreased global and local efficiency in schizophrenia
patients compared to healthy controls, indicating a lower
degree of network integration and segregation in schizophrenia
patients during disengagement from the previous task set and
engagement in an upcoming task set.

The human brain is a complex network that continuously
integrates information from various brain regions associated
with the neural basis of perception and cognition (11, 33,
41–43). Increasing evidence has shown that such integration
(so-called FC) can be employed as a potential feature to
discriminate patients from controls, which would be useful in
comprehending the pathophysiology of patients with disease
(12, 23, 38, 44, 45). Schizophrenia studies have employed
whole-brain connectome resting-state fMRI found the altered
FC which was related to cognitive deficits and negative
symptoms in schizophrenia (46–48). For instance, Skudlarski
et al. found that patients with schizophrenia have lower brain
global connectivity which was correlated with clinical symptom
severity (47). In this study, the results of brain connectome-
based multivariate classifications reflected abnormal FC related
to cognitive flexibility in schizophrenia patients relative to
healthy controls. To the best of our knowledge, this study
is the first to employ MVPA to discriminate the FC pattern
related to cognitive flexibility of patients with schizophrenia
from healthy controls.

Abnormal FC patterns may indicate impaired
communication between distinct brain regions, potentially
harming the ability to connect separate psychological and
neurobiological constructs into a cohesive whole necessary
for daily functioning (46). For example, schizophrenia
patients present lower level of local connectedness, longer
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FIGURE 1

(A) Task-modulated connectivity matrices for the schizophrenia group and healthy control group and different connectivity matrices between
these two groups. (B) The classification accuracy for different steps, from 20 to 24,520 with a step length of 20, the maximum ACC was
obtained at step 207, which corresponds to 4,140 features. (C) ROC curve of the classifier.

FIGURE 2

Differences in the integration and segregation of whole-brain network for the schizophrenia group and healthy control group. (A) The left panel
displays AUC values of global efficiency, the right displays global efficiency in different sparsity thresholds (5–50% in 5% increments). (B) The left
panel displays AUC values of local efficiency, the right displays local efficiency in different sparsity thresholds (5–50% in 5% increments).
*Indicates p ≤ 0.05, **indicates p < 0.01.

global processing length, and lower small-worldness during
performing auditory oddball task when compared to the healthy
control (29), suggesting that information interactions in the
normal brains are more efficient at both local and global scales

than in the brains with schizophrenia when performing a
cognitive task. Accordingly, our results revealed that altered
FC patterns during cognitive flexibility processing were driven
by a lower degree of network integration and segregation in
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schizophrenia. This finding is consistent with previous resting-
state fMRI reports (48, 49), which found significantly decreased
local and global efficiency in schizophrenia. The principles of
integration and segregation are fundamental to understanding
dynamic network reconfigurations in the brain (31, 50, 51).
Specifically, the integration of brain networks is crucial for
efficient communication across entire cognitive systems (52,
53). For instance, the degree of integration typically increases
when the brain processes a cognitively demanding task, which
is appropriate for efficient communication among the sensory,
motor and cognitive control systems (31). In contrast, the
segregation of brain networks is essential for automatic (i.e.,
well-learned) tasks and helps to preserve resources for high-
cognitive-demand events (50, 54). For instance, the degree
of segregation tends to increase over time as the brain learns
specialized skills, which allows the automatic processing of
a habitual task without effortful cognitive control (11). To
perform goal-directed behavior, the brain adjusts its network
configurations (i.e., integration and segregation) to support
highly efficient information transfer. Therefore, the greater
integration and segmentation of brain networks is significant
for improved task-switching performance. Our results indicated
that both global and local information transfers at the entire-
network level are less efficient in schizophrenia patients than
in healthy controls during task-switching processing, giving
rise to deficits in cognitive flexibility. This conclusion was
also supported by other studies which have revealed that
schizophrenia involves a disrupted small-world functional
network characterized by reduced distributed information
processing efficiency (49, 55).

The current results have a number of limitations that
should be noted. First, recent network studies showed that
the topological properties of the resting schizophrenic brain
(e.g., global efficiency values) were positively correlated with the
severity of schizophrenic symptoms (48). But we did not assess
the relationship between FC alterations and clinical variables,
which should be explored in future studies. Second, the sample
size was relatively small to process classification. Smaller
samples permit more homogeneous participants, restricting
generalizability and necessitating replication (56, 57). This
limitation does not influence how we interpret our findings, but
it is critical to keep in mind when examining brain-behavior
associations in neuroimaging research.

Conclusion

In conclusion, we applied FC-based classification to
discriminate schizophrenia patients from controls with high
accuracy during task-switching processing. During task-
switching processing, altered FC patterns were identified
in which both global and local information transfers at the
entire-network level were less efficient in schizophrenia patients
than in healthy controls. These results provide insights into

how the dysfunctional brain relates to abnormal cognitive
flexibility induced by schizophrenia. Furthermore, we propose
the use of FC as a feature to investigate the pathophysiology in
schizophrenic patients.
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