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Background: Major depressive disorder (MDD) is one of the most common

psychiatric disorders with multifactorial etiologies. Metabolomics has recently

emerged as a particularly potential quantitative tool that provides a

multi-parametric signature specific to several mechanisms underlying the

heterogeneous pathophysiology of MDD. The main purpose of the present

study was to investigate possibilities and limitations of breath-based

metabolomics, breathomics patterns to discriminate MDD patients from

healthy controls (HCs) and identify the altered metabolic pathways in MDD.

Methods: Breath samples were collected in Tedlar bags at awakening, 30

and 60 min after awakening from 26 patients with MDD and 25 HCs. The

non-targeted breathomics analysis was carried out by proton transfer reaction

mass spectrometry. The univariate analysis was first performed by T-test to

rank potential biomarkers. The metabolomic pathway analysis and hierarchical

clustering analysis (HCA) were performed to group the significant metabolites

involved in the same metabolic pathways or networks. Moreover, a support

vector machine (SVM) predictive model was built to identify the potential

metabolites in the altered pathways and clusters. The accuracy of the SVM

model was evaluated by receiver operating characteristics (ROC) analysis.

Results: A total of 23 di�erential exhaled breath metabolites were significantly

altered in patients withMDD comparedwith HCs andmapped in five significant

metabolic pathways including aminoacyl-tRNA biosynthesis (p = 0.0055),

branched chain amino acids valine, leucine and isoleucine biosynthesis (p

= 0.0060), glycolysis and gluconeogenesis (p = 0.0067), nicotinate and

nicotinamide metabolism (p = 0.0213) and pyruvate metabolism (p = 0.0440).

Moreover, the SVM predictive model showed that butylamine (p = 0.0005,

pFDR=0.0006), 3-methylpyridine (p = 0.0002, pFDR = 0.0012), endogenous

aliphatic ethanol isotope (p = 0.0073, pFDR = 0.0174), valeric acid (p =

0.005, pFDR = 0.0162) and isoprene (p = 0.038, pFDR = 0.045) were potential

metabolites within identified clusters with HCA and altered pathways, and

discriminated between patients with MDD and non-depressed ones with

high sensitivity (0.88), specificity (0.96) and area under curve of ROC (0.96).

Frontiers in Psychiatry 01 frontiersin.org

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2022.1061326
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2022.1061326&domain=pdf&date_stamp=2022-12-14
mailto:laila.gbaoui@ovgu.de
https://doi.org/10.3389/fpsyt.2022.1061326
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.1061326/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Gbaoui et al. 10.3389/fpsyt.2022.1061326

Conclusion: According to the results of this study, the non-targeted

breathomics analysis with high-throughput sensitive analytical technologies

coupled to advanced computational tools approaches o�er completely new

insights into peripheral biochemical changes in MDD.

KEYWORDS

major depressive disorder, breath gas analysis, volatile organic compounds, proton

transfer reaction mass spectrometry, metabolomics, breathomics, amino acids, gut

bacterium

Introduction

Major depressive disorder (MDD) is one of the most

common psychiatric disorders that can drastically affect

individual’s daily life, social functioning as well as health systems

worldwide. It is a complex and heterogeneous disease affecting

around 350 million people worldwide (1), the lifetime incidence

of depression is more than 12% in men and 20% in women
and will become the leading cause of disability worldwide by

2030 (2–5). Even today, it is challenging to diagnose MDD
with an objective and quantitative method. Furthermore, only
one third of depressed persons receives an adequate treatment.

Unfortunately, failure in early diagnosis and treatment of
MDD can be associated with a high suicidal tendency rate
and relapse. Approximately 50% of 800,000 suicide deaths

annually occur within a depressive episode (6) and up to

half of patients under therapy relapse despite the progress of

antidepressant drugs. Therefore, tremendous efforts have been

undertaken during the last few decades, in order to identify

reliable diagnostic biomarkers for MDD. Several mechanisms

have been associated with MDD, including monoamine

deficits, inflammatory, neurodegenerative alterations (3, 7),

hypothalamic-pituitary-adrenal (HPA) axis dysfunction (3, 8, 9),

gut microbiota dysregulation (10–12) and energy metabolism

deficiency (13, 14). However, no single established mechanism

can explain all aspects of this multifactorial disorder. The

pathophysiology of MDD depends on alterations in a wide

range of biological systems interacting with each other and

their perturbation can be successfully assessed only by multi-

parametric biomarkers signature. In this context, metabolomics

coupled with high-throughput analytical technologies and

advanced computational tools such as machine learning

approaches offer completely new insights into the heterogeneous

pathophysiology of MDD. Metabolomics has recently emerged

as a particularly potential quantitative tool that provides specific

multi-parametric biomarker signatures reflecting alteration in

an array of biochemical processes that underpin MDD (15)

and the effects of drugs therapies on those biological processes

(16). Metabolomics is the end point of the omics cascade and

has the potential to sample endogenous and exogenous small

molecule metabolites directly. It represents the downstream

products from the alterations that occur at the genetic,

transcriptional, and translational levels, as well as perturbation

in gut microbiome metabolic and global metabolic response of

environmental influence.

Former research suggested that MDD is associated with

metabolic disturbances and that metabolomic profiling based on

different biological matrices such as blood, plasma, urine or feces

may have utility in differentiating MDD from bipolar disorder

or healthy controls (HCs) (17, 18). Other studies reported

that biochemical change during treatment can predict response

to antidepressant medication. Some pharmacometabolomic

studies reported perturbation in by-products of tricarboxylic

acid cycle, urea cycle, amino acids, and lipids in depressed

patients exposed to sertraline (19, 20). Mounting metabolomics

studies reported alteration in amino acids. In a cross-sectional

study, the branched chain amino acids (BCAAs) valine, leucine,

and isoleucine were significantly lower in MDD patients

compared to HCs (21). In a rat model of depression, L-aspartic

acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-

amino-adipic acid have been reported as possible potential

biomarkers for future diagnosis of depression and development

of antidepressant (22). Another rat model study suggested

that biogenic amino acids were significantly reduced in the

hippocampus of stressed rats compared to non-stressed ones

(22). Most of these studies, however, employed a targeted

metabolomics approach or restricted their analyses to specific

biochemical response to drug therapies.

In the present study, we proposed breathomics as one

of the newest branches of metabolomics to explore the

metabolic change that are related to MDD. Compared

to other biomatrices-based metabolomics, breathomics offer

practical advantages. Breath samples are suitable for long-

term and frequent monitoring of biomarkers related to disease

progression, treatment response or treatment resistance, can be

monitored in real time and analyzed in a matter of minutes

making it rapid and cost-effective. Additionally, breath gas

analysis (BGA) offers the possibility of non-target analysis

allowing the detection of a multi-parametric signature that

can identify a whole array of chemical changes in MDD

patients. Further, due to the advanced throughput sensitive

mass spectrometry devices, breathomics is rapidly becoming
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a discovery tool for early screening, diagnostics, disease

monitoring and drug metabolism in a wide range of contexts.

These include viral (23, 24) and bacterial infectious diseases

(25), metabolic conditions such as diabetes (26), breast cancer

(27, 28), lung cancer (29, 30), head-neck cancer (31, 32) and

neurological and psychiatric disorders (33–35), Asthma (36),

physical and mental stress (37, 38). Despite the advanced

mass spectrometry devices, BGA is still in its infancy and the

methodology still lacks standardization.

The exhaled breath is a complex matrix with more than

3,000 volatile organic compounds (VOCs), arising from

exogenous sources (environmental factors / microbiome) or

from endogenous biochemical processes taking place in the

lung, air way or in other part of the body as well as at different

omics levels (Genes, proteins, etc.). Independent of their origin,

metabolites can penetrate from the blood stream to the lung

lining fluid where they enter the breath by the alveolar gas

exchange mechanisms. Depending on their solubility and

volatility, metabolites appear in exhaled breath gas or exhaled

breath condensate. Therefore, we hypothesized in the present

study that exhaled metabolites could mirror the metabolic

alterations in MDD and provide a multi-parametric signature

specific to several mechanisms underlying the heterogenous

pathophysiology of MDD including disrupted metabolic

systems, gut microbiome alteration, energy metabolism

disbalance, amino acids deficiency, increased inflammation, and

oxidative stress in major depression.

In a previous investigation in our workgroup, random forest

and logistic regression were performed to identify markers in

exhaled breath that differ between MDD patients and controls.

Several masses were significantly different between the cohort

groups. Among them the masses m/z = 69, 74, 93, and 94

were the potential markers with a high accuracy (39). However,

no interplay of the volatile metabolites in pathophysiological

pathways was taken in account in this previous study. Thus,

within the present study, we performed an advanced non-

targeted breathomics profiling from MDD patients and healthy

volunteers by proton transfer reaction mass spectrometry

(PTR-MS) coupled to machine learning approaches as well as

metabolic pathway analysis to investigate the metabolomics

pattern changes that occur in patients with MDD and explore

their interaction within metabolic pathways or networks.

The main purpose of the present study was to investigate

whether the patients with MDD and HCs could be differentiated

according to their breathomics patterns and their altered

metabolic pathways using PTR-MS as well as the association

of the disrupted metabolites with the already hypothesized

mechanisms contributing to MDD. The awakening was chosen

in the present research as a natural stress stimulus because

awakening-induced processes play an important role in the

modulation of several biological and activation of stress-

responsive systems such as hypothalamic-pituitary-adrenal

(HPA) axis.

TABLE 1 Demographical and clinical characteristics of patients with

MDD and HCs.

Characteristics HCs

(n = 25)

MDD

(n = 26)

p-value

Gender (w/m) 13/12 16/10 0.49

Age (years) 34.40± 8.15 38.04± 12.90 0.24

BMI (kg/m2) 24.67± 3.96 27.36± 7.99 0.21

Education (years) 12.04± 3.20 12.15± 2.60 0.89

Smoking 0 8 0.003

Alcohol drinking 5 5 0.95

BDI 1.72± 3.80 32.56± 10.79 1.27 x 10−19

HAMD-17 0.12± 0.44 17.2± 4.9 5.66 x 10−25

Medication n.a n.a

None 7

SSRI 7

SNRI 4

NASSA 5

Others 3

HAMD, Hamilton Depression Rating Scale; BDI, Beck Depression Inventory-II; SSRI,

serotonin reuptake inhibitors; SNRI, serotonin and noradrenaline reuptake inhibitors;

NASSA, noradrenaline and selective serotonergic antidepressants; others, valdoxane,

nortiptiline, and bupropione.

To our knowledge, this is the first breathomics study

to explore alteration of biochemical patterns and metabolic

pathways in patients with MDD relative to HCs using PTR-MS.

Methods and materials

Study population

A total of 26 patients with MDD were recruited at the

Clinic for Psychiatry and Psychology, Medical Faculty, Otto-

von-Guericke University in Magdeburg, Germany. Patients

were evaluated according to diagnostical and statistical manual

of mental disorders (DSM-IV). Exclusion criterion of MDD

patients included a known alcohol or drug dependency,

neurological disorders and diseases affecting the brain function.

The control group included age, sex and BMI matched 25

healthy subjects between 20 and 60 years without psychiatric

or endocrinologic diagnosis, normotensive, non-diabetics, not

addicted to tobacco and showed no evidence of any acute

or chronic infection. HCs were recruited through local

advertisements. The demographical and clinical characteristics

of MDD and HCs are listed in Table 1.

The study protocol was approved by the Institutional

Review Board of the Otto-von-Guericke University, Magdeburg.

All procedures used in the study were conducted as per

international ethical standards. Written informed consent was

obtained from all participants after they had received a full

explanation of the study procedures.
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Clinical data assessment

Depression severity assessments were conducted using

the self-rating Beck Depression Inventory-II (BDI-II) (40),

and the observer-rating scale 17-items Hamilton Rating Scale

for Depression (HAMD-17) (41). BDI-II is one of the

most commonly used scale to assess severity of depression

experienced during the past 2 weeks. It consists of 21 questions

that measure cognitive, affective and somatic components of

depression. The total values of the BDI-II range between 0 and a

maximum of 63 points. Interpretation of the total score varies

according to different recommendations. BDI-II values below

13 points are regarded as no or minimal depressive symptoms.

Values between 14 and 19 points indicate a mild expression

of depressive symptoms, values between 20 and 28 points a

moderate severity and scores between 29 and 63 are regarded

as evidence of severe depressive disorder. HAMD-17 is the

most widely used clinician-administered depression assessment

scale. It is a multiple-choice questionnaire with 17 questions

aiming to detecting core symptoms of depression, including

depressed mood, loss of interest, feeling of guilt, psychomotor

retardation, insomnia, weight change, suicidal tentation, and

impairment of functioning. The total score can range from 0 to

52. Interpretation of the total score varies according to different

recommendations; e.g., scores below 7 are regarded as normal

or remission; values between 8 and 13 indicate mild depression,

scores between 14 and 18 moderate depression and values more

than 19 are regarded as severe depression.

Breath sample collection

After an overnight fasting, three mixed breath samples

per volunteer were collected in 3L-Tedlar bags (SKC Inc.

Eighthy Four, PA) directly after awakening, 30 and 60min

after awakening. The sampling device and its accuracy are

described in detail elsewhere (42, 43). Subjects were carefully

instructed to refrain from drinks, consumption of coffee or

alcohol, brushing their teeth, or smoking before breath sampling

in order to minimize the impact of exogenous VOCs on the

concentration of the exhaled gas compounds. Seated volunteers

breathed out normally up to complete filling 80% of Tadlar bags.

Additionally, no reusable sampling bags were used in this study

to avoid samples contamination with old VOCs. The breath

samples were processed at the Hospital Clinic for Psychiatry and

Psychotherapy Otto-von-Guericke University, Magdeburg after

the breath gas collection in order to avoid loss of gas compounds

in the sampling bags.

Breathomics profiling by PTR-MS

The breathomics profiling was performed with high

sensitivity quadrupole PTR-MS apparatus produced by

IONICON Analytic GmbH, Innsbruck. PTR-MS operated at

standard conditions: drift tube voltage: 600V, drift tube pressure:

2.0 mbar, drift tube temperature: 60◦C. The hydronium ion

H3O+ was used as reagent ion in all measurements. A detailed

description of the instrument is reported in literature (44).

Briefly, PTR-MS is a chemical ionization mass spectrometry

technique based on proton transfer reactions from reagent ion

H3O+ to gaseous organic compounds R:

H3O
+
+ R → RH+

+ H2O (1)

On each collision with H3O+ ion, the organic molecules R

with higher proton affinity than water is ionized by transfer of

the proton H+. The produced ions (RH+) in this reaction are

subsequently mass analyzed in a quadrupole mass spectrometer

and detected by a secondary electron multiplier/pulse counting

system in order to determine the concentration of this

volatile compound in the breath sample. No time-consuming

pre-concentration procedures are required by PTR-MS. This

technique is also suited for real time andmultiplemeasurements.

However, PTR-MS quadrupole systems can not differentiate

between substances contributing to the same mass. PTR-MS

time of flight (PTR-MS TOF) was used parallel to PTR-

MS quadrupole (PTR-QMS) in six patients to identify the

overlapped compounds. Moreover, the tentative identification

of the detected VOCs with PTR-QMS was based on previous

works using PTR-MS and the chemical library created using

different trace gases detected by PTR-MS and selected-ion flow-

tubemass spectrometry (SIFT-MS) using the soft ionization with

hydronium ions (45). Additionally, the mass calibration and

compound identification as well as isotope correction with PTR-

MS TOF were performed with the interface of the software PTR-

MSViewer (version 3.3, IONICONAnalytic GmbH, Innsbruck).

Statistical analysis

All data in the present study was evaluated using the

Statistical and Machine Learning Toolbox in MATLAB. The

statistical difference in study population characteristics was

determined using independent sample t-test and Fischer’s exact

test. In a pre-processing step, the concentration of raw data

was averaged over several spectra belonging to the same sample

to reduce the background noise, centered, scaled, non-linear

transformed using the Log-transformation. Missing values that

exist in more than 20% of samples were removed and missing

values that exist in <80% of samples were corrected with

a determined small value such as 2 (46). The distribution

of the data was investigated using Kolmogorov-Smirnov test.

Additionally, the effect size for group differences between

MDD patients and HCs was calculated by Cohen’s D approach

based on the results of this study, and the power analysis

was performed using the G-Power tool (http://www.gpower.
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hhu.de) to estimate the required population size for future

validation (47).

To investigate the metabolomic change in MDD patient,

we adopted a several-pronged approach. Univariate analysis

was first carried out to obtain an overview and a rough

ranking of potentially altered VOCs in MDD patients relative

to HCs and to establish features applicable to unsupervised

and supervised multivariate approaches in subsequent analysis.

Student t-test on the log-transformed data was carried out

to discriminate between the cohorts’ groups. The VOCs

with p-value lower than 0.05 were considered statistically

significant. To account for multiple testing, p-values were

adjusted according to Benjamin Hochberg approach to control

the false discovery rate (FDR). The exogenous compounds

related to smoking and VOCs available in lower than 70% of

samples were excluded.

In order to investigate the metabolites with similar response

to awakening stress that could be involved in same pathways

or networks, we focused on identifying clusters of significant

VOCs that showed similar alteration from baseline to 60min

after awakening as response to awakening stress. In a first

step, a matrix with the changes of metabolites concentrations

in logarithmic scale from baseline to 60min was created

and the correlation matrix between these alterations was

calculated by Spearman correlation. In a further step, the

hierarchical clustering analysis (HCA) was applied on the

matrix of Spearman’s correlation coefficients (48). HCA is an

unsupervised machine learning approach that provide intuitive

visualization of the data sets/clusters in order to understand

the redundancies of the chemical compounds and to identify

clusters of volatile metabolites that could be involved in the same

metabolic pathways or biological networks.

Additionally, to examine metabolomics changes manifested

in MDD patients more comprehensively, we investigated

chemical changes occurring in metabolic pathways and

networks using the metabolic pathway enrichment analysis

(PEA) and pathway topological analysis (PTA). The significant

volatile breath metabolites were mapped into metabolic

pathways using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways database (49). The PEA compares a list

of detected metabolites in each pathway of interest with the

metabolites expected to be found in the given pathway. P-values

for each pathway are calculated based on the hypergeometric

distribution (50). PTA was conducted using the relative

betweenness centrality and out degree centrality measures to

estimate the importance of each metabolite within a specific

pathway (51). Pathway impact is the cumulative value of the

centrality measures of each matched metabolites normalized by

the sum of centrality of all metabolite in a particular pathway.

Furthermore, to investigate the most significant breath

metabolites in the identified pathways and clusters, a supervised

machine learning analysis was performed by support vector

machine (SVM) predictive model. The objective of the SVM

algorithm is to find a hyperplane in a high dimensional space

that distinctly classifies the data points by maximization of

the margin (distance) between the hyperplane and the closest

points (52). The receiver operating characteristic (ROC) curves

were attained to verify which breath metabolites signature

had the highest sensitivity and specificity for a potential

MDD diagnosis. The bootstrap technique with 1,000 iterations

was used to calculate the bootstrap-corrected AUC and 95%

confidence interval (95% CI) of the AUC. Finally, the association

between the metabolites of interests and depression severity

scores of HAM-D17 and BDI-II was measured by Spearman

correlation coefficients.

Results

Baseline characteristics of study
population

In total, 26 MDD participants (38% men, 62% women),

with a mean age of 38.04 ± 12.90 years and BMI of 27.36

± 7.99 kg/m2 were included in this study. The prevalence of

mild, moderate and severe depression according to HAMD-17

was 50, 38, and 12%, respectively. No significant differences

in age, gender, BMI, alcohol consumption and education were

identified between the cohort groups. Patients with MDD show

significant higher depression severity compared to HCs (p <

0.001). The smoking status was significantly different between

the cohort groups (p = 0.003). Demographic, lifestyle and

clinical information of the study population is summarized in

Table 1.

Breathomics metabolites identification

A total of 132 breath metabolites were identified in 153

samples of a cohort of 51 subjects in range between m/z =

18 to m/z = 150. Out of which, 23 VOCs were statistically

different between MDD patients and HCs at level p <

0.05. These VOCs belong to various chemical classes, namely

alcohols, aldehydes, amino acids, biogenic amines, benzoic acids,

hydrocarbons compounds, pyridines, unsaturated hydrocarbon,

short chain fatty acids (SCFAs), short chain fatty acids esters

(SCFAEs). Table 2 summarizes the significant exhaled VOCs.

The significant exhaled metabolites discriminating between

Patients with MDD and HCs after exclusion of smoking VOCs

and and compounds available in lower than 70% of samples

are illustrated in Figure 1. Additionally, the most significant

different VOCs between MDD and HC with the univariate

analysis (p < 0.01) were butylamine at m/z = 74 (p = 0.0005,

PFDR = 0.0006), methylpyridine at m/z= 94 (p= 0.0002, PFDR
= 0.0012), endogenous aliphatic ethanol isotope at m/z = 65 (p

= 0.0073, PFDR = 0.0174) and valeric acid (interference with
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TABLE 2 Significant breath metabolites that discriminate between patients with MDD and HCs at significance level p < 0.05.

Ion m/z Tentative

identification

Class p pFDR Regulation

42 Acetonitrile Aromatic hydrocarbons 0.009 0.035 Up

44 Ethenamine Amine 0.026 0.037 Down

45 Acetaldehyde Aldehyde 0.036 0.040 Up

46 Ethylamine Amine 0.004 0.012 Down

47p /65* Ethanol Alcohol 0.040/0.007 0.047/0.017 Down/up

60 Acetate

Trimethylamineint

SCFAs

Amine

0.047 0.048 Down

69 / 70* Isoprene unsaturated hydrocarbons 0.038/0.020 0.045/0.038 Down/down

74 n-Butanamine Amine 0.0005 0.0006 Down

93*(75p) Propionic acid (Benzeneint) SCFAs 0.0004 0.0048 Up

79* (61p) Acetic acid (Benzeneint) SCFAs 0.024 0.039 Up

85a (103p)

85a (147p)

Valeric acid isotope Lysine

isotopeint

SCFAs

Amino acid

0.005 0.016 Down

87 2,2-Dimethylbutane

2,3-Butandioneint

Alkane

Alcohol

0.015 0.038 Down

88 n-Butyrate SCFAs 0.041 0.041 Down

89 (iso)Butyric acid

Methyl propionate

SCFA

SCFAEs

0.029 0.035 Down

90 Alanine Amino acid 0.025 0.037 Down

91 2,3-Butandiol Alcohol 0.048 0.048 Down

94 3-Methylpyridine Pyridine 0.0002 0.001 Down

102 2-Methylbutyrate

1-Butanamine, N,N- dimethyl

SCFAEs

Amine

0.0232 0.040 Down

106p (88a) Serine Amino Acid 0.040 0.041 Down (down)

116 1-Propane-amine,

N,N-dimethyl

Amine 0.037 0.044 Down

123 Nicotinamide Pyridine 0.0269 0.0336 Down

132 /86a (Iso)leucine Amino Acid 0.0384/0.033 0.0477/0.039 Down

138 Anthranilic acid Benzoic acid 0.038 0.047 Up

aAbundant at this mass; int interference; pprecursor VOCs; *fragment or isotope; SCFAs, short chain fatty acids; SCFAEs, short chain fatty acid esters.

The pFDR values are the adjusted p-values for multi-testing. The bold value indicate the most significant metabolites (p < 0.01).

lysine) at m/z= 85 (p= 0.005, PFDR = 0.0162), where PFDR the

adjusted p-value for multi-testing.

The significant exhaled metabolites showed lower

responsiveness to the awakening stress and were decreased

in the breath of patients with MDD compared with HCs

except ethanol, acetaldehyde and anthranilic acid. Further,

levels of all exhaled VOCs were affected by smoking habits.

The concentration of all VOCs was decreased but not

significantly in the breath of MDD smoker compared to

non-smoker patients except isoprene at m/z = 69, isoprene

fragment at m/z70, and lysine/valeric acid fragment at m/z

= 85 that were relatively increased in smoker MDD patients

compared to non-smoker ones. Additionally, no significant

impact of the medication on the VOCs concentration was

observed. Moreover, as shown in Tables 2, 3 and Figure 2,

the composition of altered metabolites in MDD breath

was clearly dominated by volatile amino acids (AAs) and

gut microbiota metabolic byproducts such SCFAs and

acetaldehyde as well VOCs involved in the metabolism of

AAs by intestinal tract gut microbiota including intermediate

metabolites of the essential amino acid tryptophan and

biogenic amines.

Additionally, based on the metabolites of interest in this

study, an effect size of d = 1.26 for group differences between

MDD patients and HCs using Cohen’s Dmethod was calculated.

Assuming a middle effect size of d = 0.6, an error of 0.05 and

a statistical power 0.95 to be enough, 60 subjects per group

are required for the difference between patients with MDD and

HCs. In order to investigate the effect of medication, nutrition,

smoking and hormonal status in females on the VOCs, we aim

to recruit in total 80 patients at baseline and 80 HCs in the

test sample.
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FIGURE 1

Significant exhaled VOCs discriminating between patients with major depression (black) and healthy controls (gray) after exclusion of smoking

VOCs, compounds with inter- and intra-variability and compounds available in lower than 70% of samples. (A) At awakening, (B) 30min after

awakening, and (C) 60min after awakening. All exhaled VOCs were decreased in the breath of MDD patients except VOCs at acetaldehyde at

m/z = 45 and ethanol isotope at m/ = 65. All concentrations of the VOCs are plotted in median and geometric standard deviation.

Hierarchical cluster analysis of
metabolomic profile

As illustrated in Figure 2, HCA revealed the presence of

seven metabolite modules in which the respective metabolites

showed statistically significant correlation (p < 0.05) among

each other in their perturbation patterns from baseline to

60min after awakening. The detected clusters were represented

by metabolites belonging primarily to the same biochemical

class or involved in a specific metabolic network/pathway

and have functional relationships with each other. Cluster 1

(C1) included mainly biogenic amines produced by microbial

decarboxylation of amino acids. Ethylamine and butylamine are

decarboxylase products of non-essential alanine and norvaline,

respectively and their derivates including 1-Butanamine,N-N-

dimethyl and 1-Propane-amine, N,N-dimethyl as derivate from

propanamine that is decarboxylate product of the amino acid

alpha-aminobutyrate (16). Cluster 2 (C2) contained mainly

essential volatile amino acids and intermediate metabolites

involved in the metabolism of the essential amino acid

tryptophan via tryptophan-nicotinate pathway. Cluster 3 (C3)

encompassed isoprene and its fragment at m/z = 70. The

association of the compound at m/z = 91 to isoprene cluster

is not clear. Cluster 4 (C4) included primarily fragments of

acetic acid and propionic acid that showed strong interference

with the smoking VOCs benzene and toluene at m/z = 79

and m/z = 93 respectively. Cluster 5 (C5) included volatiles

involved in pyruvate metabolism and cluster 6 (C6) included

SCFAs propionic, acetic and valeric acids and their isotopes.

The presence of (iso)butyrate at m/z = 89 in C1 and not

in C6 could be indicator that this SCFA was not produced

by anaerobic fermentation of fiber, but rather by bacterial

fermentation of proteinaceous material such as amino acids.

The results of the inter-correlation between the metabolites

and hierarchical clustering are visualized in a heat map and

dendrogram cluster tree in Figure 2 and clusters details are

presented in Table 3.

Metabolomic pathway analysis

The metabolic pathway analysis (PA) revealed that 16

pathways could be affected in MDD patients compared

with controls, as shown in Figure 3. However, the most

significant pathways (p < 0.05) were (1) aminoacyl-tRNA

biosynthesis; (2) BCAAs valine, leucine, isoleucine biosynthesis;

(3) glycolysis/gluconeogenesis; (4) nicotinate and nicotinamide

metabolism as well as (5) pyruvate metabolism at level
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TABLE 3 Clusters of di�erential breath metabolites with similar responsiveness to awakening stress from baseline to 60min after awakening

clustered by HCA and the corresponding primarily dominant chemical class or probable pathway.

Cluster m/z Metabolites Class / pathway

Cluster #1 44

46

74

87

102

116.14

Ethenamine

Ethylamine

1-Butanamine

2,2-Dimethylbutane

1-Butanamine,

N,N-dimethyl

1-Propane-amine, N,N-

dimethyl

Biogenic amines:

Microbial

decarboxylation products

of amino acids

88

89

90

n-butyrate

(Iso)Butyric acid

Alanine

SCFAs

Amino acids

Cluster #2 147p , 84*,85*a

106p , 88*

132p , 86 *a

Lysine

Serine

Iso(Leucine)

Amino acids

123

138

94

Nicotinamide

Anthranilic

3-Methylpyridine

(precursor of nicotinamide)

Breakdown metabolites of

tryptophan metabolism in

Tryptophan-

Nicotinic pathway

Cluster #3 69p/70*

91

Isoprene

2,3-Butandiol

mevalonate pathway

Cluster #4 42

79*

93*

Acetonitrile

Acetic acid (Benzeneint)

Propionic acid (Toluene int)

SCFAs fragments

(interference with

aromatic smoking VOCs)

Cluster #5 47p/65*

45

60

Ethanol

Acetaldehyde

Acetate

Pyruvate metabolism

Glycolysis

Cluster #6 61p , 43*

75p , 57*

103 p

Acetic acid

Propionic acid

Valeric acid

SCFAs

aVOCs are more abundant at this mass; *fragment/isotope of VOCs; intinterference; pprecursor VOC (main Compound).

p = 0.0033, 0.0047, 0.0046, 0.0165, 0.0343, respectively.

The pathway impact changed depending on the centrality

measure used by TPA. Aminoacyl-tRNA biosynthesis and

branched chain amino acids (BCAAs) valine, leucine,

isoleucine biosynthesis showed the highest impact using

out degree centrality, whereas nicotinate/nicotinamide

metabolism and pyruvate metabolism showed the highest

impact using relative betweenness centrality. A detailed

summary of the most relevant pathways is given in

Table 4.

Supervised multivariate analysis

According to the ROC analysis, the predictive model

with SVM showed that the combination of butylamine,

3-methylpyridine, isoprene, ethanol and valeric acid

defined the best breathomics signature with a bootstrap

corrected AUC value of 0.96, bootstrap adjusted 95% CI

of AUC 0.861–0.990, specificity 0.96 and sensitivity 0.88

for class separation between study cohorts, as shown

in Figure 4. Interestingly, butylamine, 3-methylpyridine,

isoprene, ethanol and valeric acid represented the most

significant VOCs within clusters of biogenic amines (C1),

amino acids and tryptophan metabolism (C2), isoprene

(C3), pyruvate (C5), and SCFAs (C6) revealed by HCA,

respectively. Adding propionic or acetic acid fragments from

C4 that showed overlapping with the aromatic smoking

compounds toluene and benzene at m/z = 93 and m/z =

79, respectively, we found better bootstrap-corrected AUC

value of 0.98 (95% CI: 0.931–0.997) and specificity 1 but lower

sensitivity 0.84.
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FIGURE 2

Heatmap visualization and hierarchical clustering analysis of Pearson’s distance between significant altered breath metabolites of MDD patients

compared to healthy controls (p < 0.05) from awakening to 60min after awakening. The HCA showed the presence of six clusters of breath

metabolites in which the member VOCs showed statistically significant correlation among each other in their perturbation from baseline to

60min after awakening. The clusters are primarily predominated with the same chemical class or metabolites involved in the same

pathway/network. The cluster C1 (dark blue) contained mainly amines, C2 (gray) amino acids and breakdown metabolites of amino acid

tryptophan, C3 (red) isoprene and its fragment at m/z = 70, C4 (violet) fragments of SCFA that are overlapped with aromatic smoking VOCs, C5

(green) metabolites involved in pyruvate metabolism and C6 (light blue) included SCFAs and their fragments. The metabolites in C2 showed

lower correlation with each other due to the intra- and inter-variability of amino acids in exhaled bread using PTR-MS.

Metabolite association to depression
severity

To evaluate whether the volatile metabolites are related to

the severity of depressive symptoms, we performed Spearman

correlation analysis using a total score of BDI-II and HAMD-

17 and concentration of breath metabolites from baseline to

60min after awakening. We found a significant correlation

between HAMD’s total score and exhaled valeric acid (r =

−0.42, p = 0.04) at awakening, butylamine (r = 0.38, p = 0.05),

acetaldehyde (r = −0.71, p = 0.05), butyric acid (r = 0.44, p =

0.03), n-butyrate (r = 0.43, p= 0.03) at 30min after awakening,

as well as a significant correlation between BDI-II total score and

butylamine (r = −0.040, p = 0.045). However, after correction

for multiple testing of the correlations, they did not survive

this adjustment.

Discussion

There is an unmet clinical need for understanding the

heterogeneous pathological events occurring in MDD and

for objective markers to monitor disease progression and

treatment response. In this study, we used a non-targeted

breath-based metabolomics approach to identify biochemical

changes that occur in patients with MDD. Our results showed

that five metabolic pathways were significantly affected and

enriched in MDD patients. In total, 23 differential metabolites

were assigned in these pathways. Among these metabolites,
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FIGURE 3

The metabolome view map of altered metabolic pathways identified in breath samples from MDD patients compared with healthy controls

conducted by MetaboAnalyst tool. The significant pathways with the enrichment analysis are (1) Valine, leucine and isoleucine biosynthesis, (2)

Aminoacyl-tRNA biosynthesis, (3) Glycolysis and gluconeogenesis, (4) Nicotinate and nicotinamide and (5) Pyruvate metabolism. The

topological pathway analysis shows di�erent impact factors of the significant altered pathways using (A) out-degree centrality and (B) relative

betweenness centrality. The matched nodes show varied heat map colors and is based on p-value while the node radius is determined based on

the pathway impact values. The bold lines indicate the significance level of a p-value = 0.05. The pathways under the bold line are probable

altered pathways but not significant (6) Valine, leucine and isoleucine degradation, (7) Biotin metabolism, (8) Butanoate metabolism, (9) Lysine

degradation, (10) Glyoxylate and dicarboxylate, (11) alanine, aspartate and glutamate metabolism, (12) Selenocompound metabolism, (13)

Propanoate metabolism, (14) Glycerophospholipid metabolism and (15) Tryptophan metabolism.

isoprene, methylpyridine, ethanol, lysine/valeric acid, and

butylamine were identified by SVM predictive model as

potential metabolite signature discriminating between MDD

patients and HCs with a high AUC of 0.96, sensitivity of

0.96, and specificity of 0.88. Whereas, the other volatiles have

been already identified as potential metabolite fingerprints of

major depression in previous bio-fluids and fecal metabolomics

works. Additionally, our findings showed that breath gas

analysis provided a wide range of metabolites involved in

several mechanisms that have been already hypothesized in

former works to contribute to the pathophysiology of MDD

including alteration of gut microbiota (11), dysregulation of

amino acids that are generally free in plasma and their

breakdown products (21, 53), alteration of intermediate volatiles

involved in the metabolism of the slightly volatile amino acid

tryptophan, increased inflammation, elevated oxidative and

nitrosative stress (54, 55) and energy metabolism imbalance

(14). Furthermore, the significant exhaled chemical compounds

in the breath of MDD patients belong mainly to three

groups; (1) volatile amino acids, (2) volatile gut microbiota by-

products produced via several fermentation pathways (Pyruvate

breakdownmetabolites, SCFAs, 2,3-butanediol, 2,3-butandione)

and (3) volatile gut microbiota compounds involved in amino

acid metabolisms such as microbial decarboxylation products of

amino acids such as butylamine, and microbial deamination of

amino acids into fatty acids.

The alteration of gut microbiota derived metabolites in

depressed persons in this study was in line with previous

biomatrices based metabolomics works. A growing body of

literature supports associations between major depression and

alteration of gut microbiota as well its derived metabolites in

intestinal tract (11, 12, 56). Fecal and blood based metabolomics

studies demonstrated correlation between bacterial fingerprints

with depression (57). Decreases in the diversity and abundance

of the gut microbiota was linked to depression and psychological

stress in human and animal models exposed to mild, chronic

or prolonged stressors (58, 59). Several bacterial metabolic

by-products are often considerate as key mediators of gut-

brain crosstalk (2, 60). SCFAs acting within intestinal endocrine

cells stimulate the production of neuroactive molecules such

as serotonin and γ-aminobutyric acid (61). Accumulating

evidence supported by several studies in humans and animals
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TABLE 4 Significant altered metabolic pathways in patients with MDD compared with healthy subjects (p < 0.05) using pathway enrichment analysis

(PEA) and pathway topological analysis (PTA).

Pathway name Match

status

Detected metabolites PEA PTA

p-value -Log10(p) OD RB

Aminoacyl-tRNA biosynthesis 4/48 Alanine, lysine, isoleucine, leucine 0.0033 2.4827 0.1379 0

Valine, leucine and isoleucine biosynthesis 2/8 Leucine, isoleucine 0.0047 2.3314 0.25 0

Glycolysis/Gluconeogenesis 3/26 Acetaldehyde, Ethanol, Acetate 0.0046 2.3406 0.0857 0.0442

Nicotinate /nicotinamide metabolism 2/15 Nicotinamide, nicotinate 0.0165 1.7822 0.0476 0.1943

Pyruvate metabolism 2/22 Acetaldehyde, Acetate 0.0343 1.4645 0.0741 0.0607

The pathway analysis was based on the altered breathomics metabolites. PTA was performed using out-of-degree (OD) and relative betweenness (RB) centrality measures to calculate the

impact factor of the pathway.

FIGURE 4

Bootstrap adjusted receiver operating characteristic (ROC) curves for support vector machine (SVM) predictive model built with volatile breath

metabolites with highest ability to discriminate MDD patients against healthy persons. (A) SVM model with the fingerprint ethanol, isoprene,

butylamine, lysine/valeric acid, and 3-methylpyridine showed a sensitivity of 0.88, specificity 0.96, and bootstrap adjusted area under curve AUC

of 0.96 (95% CI: 0.8606–0.9903) and (B) SVM model with the signature ethanol, isoprene, butylamine, valeric acid and 3-Methylpyridine, and

propionic acid fragment showed higher bootstrapped-corrected AUC of 0.98 (95% CI: 0.9318 −0.9971) and specificity of 1 but lower sensitivity

0.88. The Bootstrap technique with 1000 iterations was used to calculated the adjusted AUC and 95% confidence intervals. The arrows in the

panels indicates the point on the ROC curve with the optimal sensitivity and specificity.

reported that alteration of SCFAs is linked to behavioral and

neurological pathologies, such as depression (57), Alzheimer’s,

Parkinson’s diseases and autism spectrum disorders (60) as

well metabolic disorders such as type 2 diabetes and obesity

(62). Moreover, SCFAs play a very important role in regulating

energy metabolism and energy supply as well as maintaining the

homeostasis of the intestinal tract (63), regulating mitochondrial

function (64), regulation of inflammatory processes, emotional

state and cognition through the gut-brain axis (65, 66). The

levels of exhaled butyric (116 ± 3.10 vs. 169 ± 3.54), acetic

(124 ± 2.44 vs. 146 ± 2.31), and valeric acid (4 ± 2.07 vs. 8 ±

2.16) were decreased in MDD patients in comparison to HCs.

This is in accordance with previous metabolites studies based

on other bio-matrices (66) and animal models (67). Propionic

acid was found to be lower in MDD patients relative to HCs

(28 ± 3.33 vs. 30 ± 2.2) but not significant. However, its level

was significantly decreased in smoker MDD patients (p= 0.031)

and increased in non-smoker relative to HCs. The alteration

of propionic acid concentration in major depression have been

confirmed in several researches, however the results concerning

the concentration were conflicting. Moreover, SCFAs are mainly

absorbed by colonocytes. Only a part of colon-derived acetate,

propionate and butyrate reaches the systemic circulation and

other tissues. In this context, it is important to note that

detected SCFAs in the breath are related to blood SCFAs

concentration and cannot be used as a proxy of the production

in the colon. Despite the small part of free SCFAs in systemic

circulation, the impact of these metabolites on the health was
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reported in several studies (68, 69). Additional dysregulated

bacterial downstream metabolites produced by the significantly

altered glycolysis and also involved in pyruvate metabolism

in this study are acetaldehyde and endogenous ethanol (EE)

at m/z = 65. The levels of these VOCs were significantly

increased in the breath of patients with MDD compared to

non-depressed ones. EE is constantly formed from acetaldehyde

within the human body through metabolic processes. Generally,

the concentration of EE in blood of healthy persons is very

low. However, intestinal dysbiosis increases EE production,

which also affects gut permeability, disrupting intestinal tight

junctions and allowing the endotoxins and ethanol to reach the

liver and activate pro-inflammatory response. Additionally, EE

increases the activity of enzyme cytochrome P450 2E1 which

catalyzes the oxidation of ethanol and promotes oxidative and

nitrosative stress (70). Increased EE has been reported in several

conditions and metabolic disorders such as diabetes mellitus

(60), non-alcoholic fatty liver disease (71) and obesity (72).

The increased alveolar elimination of endogenous ethanol in

exhaled breath of patients with MDD can be attributed to both

its increased production and decreased metabolic breakdown

associated with altered intestinal microbial activity that is well-

known in psychological and chronical stress. Former researchers

reported unusually high concentrations of EE in blood and

cerebrospinal fluid from hospitalized patients suffering from

various psychiatric disorders (73). On the other hand, increased

ethanol production was linked to significant abundance of

Candida albicans in antibiotic-disrupted bacterial community of

the murine cecum in mice (74). Additionally, the dysregulation

of glycolysis and gluconeogenesis in this pilot study is in

accordance with previous omics publications. Mounting omics

studies suggested a link between pathogenesis of depression

and imbalanced energy metabolism (13, 14). MDD patients

have generally mitochondrial energy metabolism obstacles and

energy imbalance in the brain (14, 75).

The second group of altered metabolites comprised the

volatile amino acids. HCA revealed that two of five significant

altered clusters (excluding cluster 4 due to interference with

smoking VOCs) were linked to amino acids and their

intermediate break down products in MDD patients relative

to HCs. Additionally, metabolic PA showed that three out of

five significant altered pathways are associated with amino acids

including aminoacyl-tRNA biosynthesis and BCAAs valine,

leucine and isoleucine metabolism as well as nicotinate and

nicotinamide metabolism. Increasing evidence suggested that

amino acids and their metabolites are basic substrates and

regulators in many metabolic pathways. Accumulating evidence

showed that dysregulation of amino acids contributed to the

pathophysiology of depression (19, 21, 76, 77) and is associated

with mental and physical stress in animal models (76, 78).

Consistent with these previous metabolomics reports based

on different bio-matrices, we found in the present study

a wide range of disrupted levels of amino acids in MDD

patients including lysine, alanine, proline, serine, cysteine,

leucine/isoleucine as well as intermediate metabolites involved

in the metabolism of the essential amino acid tryptophan

via Kynurenine-nicotinic pathway. However, leucine/isoleucine

and alanine were the most abundant and significantly reduced

in MDD group compared to controls. Lysine and valeric

acid fragments were overlapped at m/z = 85 and should be

investigated in further works with PTR-TOF. The other amino

acids showed a strong intra-variability and inter-variability or

were detectable in <70% of the measured samples. Cysteine

was detected in 65% of MDD and was significantly decreased

(p = 0.037) compared to HCs. Glycine was increased in MDD

patients but not statistically significant. These AAs should be

investigated in future breathomics studies with more sensitive

instrument. García-Gómez and workers have reported that

slightly volatile amino acids namely alanine, valine, isoleucine,

leucine, glycine, proline, lysine, phenylalanine, and ornithine

can be quantified in the human breath condensate in real

time using secondary electrospray ionization coupled to high-

resolution mass spectrometry and that their concentrations

correlate with plasma concentrations. High variation occurred

particularly in amino acids with a low plasma concentration

(79, 80).

Decreased concentration of BCAAs leucine/isoleucine in

depressive patients has been linked to reduced activation of the

Mammalian Target of Rapamycin pathway, leading to depressive

symptomology and lower mitochondrial energy metabolism

that is common in psychoneurological disorders (14, 21).

Moreover, pharmacologic studies reported that BCAAs were

increased in depressed patients responding to antidepressant

medication compared to the treatment failure group (19).

Alanine is a non-essential amino acid that occurs in high levels

in plasma. It is produced from pyruvate by transamination

and can be also synthesized from BCAAs. It is directly

involved in gluconeogenesis and regulates glucose and acid

metabolism (https://pubchem.ncbi.nlm.nih.gov/), while leucine

and isoleucine participate in the production of energy. Alanine

provides energy for muscle tissue, brain and central nerve

system. Alanine also plays an important role in lymphocyte

reproduction, immunity and is an inhibitory neurotransmitter

in the brain. The decreased level of the exhaled alanine in MDD

patients in this study could be correlated with deficiency of

plasma free alanine that is often related to deficiency of BCAAs

or pyruvate that is in turn associated with reduced quality of

life (https://hmdb.ca). Despite the critical role of alanine in

energy balance, immunity and neurotransmitters production,

the association between this amine and depression still requires

more research.

Lysine is also involved in the significantly altered aminoacyl-

tRNA biosynthesis. Its level at precursor m/z = 147 was

significantly upregulated in the exhaled breath of MDD patients

compared to non-depressed ones (p = 0.049) but showed

strong intra- and inter-variability. This is may be due to limit
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of detection at this mass with the used PTR-MS. Lysine was

more abundant at m/z = 85 and decreased in the breath of

MDD patients analyzed with PTR-MS TOF, but overlapped with

valeric acid and should be investigated with PTR-MS TOF in

a larger population. A blood-based metabolomics study with

animal model exposed to mild and chronic stress reported that

a differential metabolites fingerprint including lysine clearly

distinguished resilient rats from susceptible rats. Lysine level

was found to be significantly reduced in resilient rats (81) and

animals exposed to heat stress (78).

The third group of disrupted exhaled VOCs in the breath

of MDD patients in the present research included primarily

metabolites involved in metabolism of AAs by gut bacterium.

Anthranilic acid (AntA), 3-methylpyridine and nicotinamide

are metabolites involved in tryptophan metabolism via

tryptophan-nicotinic pathway. AntA is intermediate metabolite

via the Kynurenine pathway, whereas 3-methylpyridine and

nicotinamide are involved in the significantly altered nicotinic

and nicotinamide pathway. Tryptophan metabolism yields the

generation of several neuroactive agents within the central nerve

system (CNS) including the neurotransmitter serotonin (82).

The activation of sympathetic nervous system has been shown to

contribute to upregulation of brain tryptophan concentrations

after stress-related and immune challenges in experimental

animals. HPA may activate tryptophan metabolism using

corticosteroids due to awakening stress. AntA was found

significantly upregulated in the exhaled breath of all MDD

patients with severe depression and in one patient with the

highest moderate depression score according to HAMD-17 and

BDI-II. No difference was observed between HCs and MDD

volunteers with mild depression. This finding may suggest that

AntA level could mirror the depression severity and should be

investigated in a larger population. Increased AntA levels have

been reported in different mental disorders such schizophrenia

(83) and MDD (55) as well as metabolic disorders including

chronic hepatitis C, rheumatoid arthritis and osteoarthritis

(84) and type 1 diabetes (85, 86). A clinical study reported

that blood serum level of AntA may predict the onset and

progression of clinical depression (55). Interestingly, an increase

in AntA concentration was associated with decreased levels of

anti-inflammatory factors in high riskMDD subjects. Pawolwski

et al. (86) provided first direct evidence of a role for anthranilic

acid in the pathogenesis of inflammation-induced MDD

(86). Generally, downstream metabolites of the kynurenine

pathway and availability of tryptophan play critical role for

the functioning of efferent nerve system and CNS and thus in

the gut-brain communication. Moreover, Kynurenine pathway

was revealed with PA as a probable but not significant altered

pathway. This is primarily due to the slight volatility nature of

the metabolites involved in this part which require mass range

up to m/z = 265, which is beyond the mass range limit of the

used PTR-MS instrumentation (∼150–200). Only anthranilic

acid was detected in this pathway by PTR-MS. A previous

study detected 20 low volatile metabolites of this pathway in

exhaled human breath condensate using secondary electrospray

ionization coupled to high-resolution mass spectrometry (1).

3-methylpyridine is the main precursor to nicotinic acid

(NA), also known as B3 or niacin, whose derivates play critical

role in energy metabolism in the living cell and DNA repair. NA

deficiency is known to manifest various psychiatric symptoms

and is associated with Alzheimer, Parkinson, Huntington

diseases, cognitive impairment, schizophrenia or depression

(87). A cross section study suggested that increased daily dietary

vitamin intake including B3 might protect the public against

depression. Although the role of this compound in depression

remains unclear.

PA was based on the KEGG library that is originally for

genome analysis. Some metabolites might not be identified

in humans and require manually checking. There are some

significant VOCs reported in Table 2 that were not taken

into account or not identified in KEGG pathway library

and worth further discussion for their associations with

MDD status. Isoprene is thought to be a by-product of

cholesterol biosynthesis along the mevalonate acid pathway

(88). However, its physiological meaning has not yet been

established, although it is known that this VOCs has an

endogenous origin and it is not produced in the airways.

There is evidence of isoprene production being a protective

stress response to toxins and temperature change, as seen

in plants but not yet validated in humans (89, 90). The

reduced level of isoprene in depressed persons may indicate

decreased responsiveness to awakening stress compared with

non-depressed ones. Downregulated exhaled isoprene levels

have been found in several conditions including cystic fibrosis

(91) and cancers (92). Furthermore, numerous studies have

suggested that exhaled isoprene can be utilized as a non-invasive

and quick established biomarker for blood cholesterol alteration

(93, 94) that has been associated with various psychiatric

disorders includingMDD (95).Moreover, cholesterol is required

for correct functioning of neurotransmission in the CNS,

and low serum total cholesterol level alters the metabolism

of the neurotransmitter serotonin which is involved in the

energy metabolism and is negatively correlated with depression

severity, poor control of aggressive impulses and increased risk

of suicides (96, 97). Thus, the downregulation of the exhaled

isoprene in depressed participants in comparison to controls in

this study could be a marker for decreased serum cholesterol,

reduced serotonin function or reduced storage of tryptophan

that is a building block to proteins from which serotonin

is made.

The main volatile biogenic amines (VBAs) that were found

significantly disrupted in MDD patients compared to HCs

are ethenamine, ethanamine, butylamine, and trimethylamine.

Trimethylamine is the precursor of the trimethylamine N-

oxidase (TMAO) that has a negative association with a broad

range of diseases including neurological, metabolic and brain
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disorders (98, 99). Although the link between TMAO levels

and neurological disorders has been previously hypothesized

(10, 100), its role in the disease etiology has not been fully

explored. Additionally, there is convincing evidence suggesting

an association between TMAO and inflammation that is

well-known to contribute to the pathophysiology of MDD.

Butylamine is one of the four isomeric amines of butane that

is known as biomarker of lipid peroxidation (26). However, to

our knowledge no direct association between this amine and

lipid peroxidation or depression was reported in the literature.

However, the dysregulation of butylamine was associated in few

works with liver diseases (101).

Additionally, VBAs are produced as a consequence of

microbial decarboxylation of amino acids in low pH intestinal

tract environment (16, 102). The low pH decarboxylase

enzymes act on AAs producing carbon dioxide and free VBAs.

Decarboxylase activity was through to be protective mechanism

against acid stress across a broad range of naturally occurring

acidic circumstances (16). Thus, the downregulation of VBAs in

this pilot study could be a potential indicator for low protective

mechanism of gutmicrobiota as response to their environmental

change (e.g., pH change) induced by the psychological stressor at

awakening through the GBA or due to the chronic and persistent

activation of HPA system in rest and in response to short-term

exposure to environmental stress in major depression (9).

Altered levels of butane and their derivates such as 2,2-

Dimethylbutane have previously been observed in increased

amount in exhaled breath of patient with mental disorders,

such as schizophrenia and bipolar disorder (34, 35, 103).

Butane results from protein oxidation and was considerate

as biomarker for lipid peroxidation (26), but the association

of 2,2-Dimethylbutane with mental disorders etiology has not

been explored.

In summary, the results of our pilot study showed that breath

gas analysis by sensitive PTR-MS coupled to advanced machine

learning approaches and metabolic pathway analysis can be a

powerful tool discriminatingMDD patients fromHCs with high

sensitivity and specificity. Additionally, breathomics offered the

possibility for a non-targeted metabolites analysis providing

a broad range of altered metabolites and metabolic pathways

which were already identified as potential MDD biomarkers

in previous bio-fluid and fecal based metabolomics studies

that have been linked to the well-known MDD mechanisms

including dysregulation of gut microbiome, tryptophan-

kynurenine pathway, imbalance of energy metabolism,

increased inflammation and oxidative stress and dysfunction

of amino acids acting as inhibitory neurotransmitters. On the

other hand, the altered VOCs showed decreased responsiveness

to awakening stress. This is believed to be related to the impaired

functions of the biological systems involved in the gut-brain

communication such as HPA.

Despite the aforementioned findings, our study has several

limitations. First, the findings of the present study are of

correlational nature in a cross-sectional design and thus

conclusions about the mechanisms behind MDD cannot

be drawn. Moreover, the association between changes in

metabolites from breath and metabolites from blood as well

brain function has still to be determined. Secondly, the relatively

small study population did not allow an accurate analysis of

the impact of patient data and habits on the concentration

of the metabolites as well categorical comparisons of the

MDD subgroups, particularly the difference between treatment

outcome groups as well the patient groups with and without

medication. We did not observe any significant influence of the

medication on the VOCs concentration. However, we cannot

rule out that antidepressant drugs could impact themetabolomic

profiles. Additionally, smoking was the most important factor in

the present study influencing the level of all exhaled VOCs of

smoker MDD patients compared to non-smoker ones, but not

significantly. However, smoking may enhance oxidative stress

through the high concentration of free radicals and oxidants

in cigarette smoke or through weakening of the antioxidant

defense systems (104). Thus, the impact of smoking habit

should be investigated in a larger population in order to

rule out that any significant VOCs are due to the oxidative

stress enhanced by smoking. In a follow-up study, the sample

size needs to be extended for precise predictive performance

estimation. We intended thus to recruit 80 patients and 80

controls to investigate the impact of medication, smoking,

nutrition, and hormonal status in females on the level of

breath metabolites. However, an adequate determination of

sample sizes for metabolomic experiments is a complex task

due to the unknown nature of the expected effect, the unknown

number of the detected metabolites that is highly dependent

on the analytical platform, the high-dimensionality, and the

strong multi-collinearity of the metabolites. Despite recent

efforts, there are currently no standard methods for sample

size estimation in metabolomic phenotyping. Third, PTR-

MS quadrupole cannot distinguish between substances which

contribute to the samemass such as leucine and isoleucine.More

sensitive instrumentation such PTR-MS TOF should be used

in future investigations to solve the interference problem. The

third limitation is related to the low range limit of the used

PTR-MS device (<150). Several amino acids and tryptophan-

kynurenine pathway metabolites are slightly volatile and are

detectable in a range beyond the range mass limit (∼150–

200) of PTR-MS. Thus, more sensitive instrumentation with

larger masse ranges should be used in the future to detect

more compounds in the exhaled breath and determine more

disrupted pathways involved in the pathophysiology of MDD.

Fourth, only molecules with a proton affinity higher than

water can be detected by PTR-MS using water hydronium

H3O+ for the ionization of VOCs. The switching between

more precursor ions such as NO+ and O+

2 enables the

detection of more compounds and an improved identification

of VOCs.
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