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Depression is clinically defined as a mood disorder with persistent feeling

of sadness, despair, fatigue, and loss of interest. The pathophysiology

of depression is tightly regulated by the biosynthesis, transport and

signaling of neurotransmitters [e.g., serotonin, norepinephrine, dopamine,

or γ-aminobutyric acid (GABA)] in the central nervous system. The

existing antidepressant drugs mainly target the dysfunctions of various

neurotransmitters, while the efficacy of antidepressant therapeutics is

undermined by different adverse side-effects. The present review aimed

to dissect the molecular mechanisms underlying the antidepressant

activities of herbal medicines toward the development of effective and

safe antidepressant drugs. Our strategy involved comprehensive review

and network pharmacology analysis for the active compounds and

associated target proteins. As results, 45 different antidepressant herbal

medicines were identified from various in vivo and in vitro studies. The

antidepressant mechanisms might involve multiple signaling pathways that

regulate neurotransmitters, neurogenesis, anti-inflammation, antioxidation,

endocrine, and microbiota. Importantly, herbal medicines could modulate

broader spectrum of the cellular pathways and processes to attenuate

depression and avoid the side-effects of synthetic antidepressant drugs. The

present review not only recognized the antidepressant potential of herbal

medicines but also provided molecular insights for the development of novel

antidepressant drugs.
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1 Introduction

Depression is a common mental disease that seriously
affects 5% of adults worldwide, especially postpartum women
(1, 2). Diagnostic and statistical manual of mental disorders
(DSM-5) divides depression disorder into eight categories:
disruptive mood dysregulation disorder, major depressive
disorder (including major depressive episode), persistent
depressive disorder (dysthymia), premenstrual dysphoric
disorder, substance/medication-induced depressive disorder,
depressive disorder due to another medical condition, other
specified depressive disorder, and unspecified depressive
disorder (3). Patients with depression usually suffer from
symptoms such as depressed mood, anxiety, loss of interest,
lack of energy, pessimism, disappointment, self-denial and even
suicidal thoughts, while 41% of depressed mothers may intend
to harm their babies (4). Depression not only represents an
ongoing medical challenge but also has emerged as a financial
burden for global healthcare systems, for example, annual cost
of nearly $210.5 billion in the United States (5). The existing
treatments mainly alleviate depressive symptoms so that the
remission rate is less than 60% (6). Most of antidepressant drugs
cause different apparent adverse side-effects, resulting in the
average withdrawal incidence rate of 56% (7, 8). Depression is
well-known to be a multifactorial mental disease and exhibit
various symptoms including sadness, anxiety, anger and
irritability. Synthetic antidepressants are challenged by efficacy
and severe side effects. Current first-line antidepressants like
SSRIs and SNRIs are designed to specifically target the actions
of serotonin and noradrenaline so that SSRIs and SNRIs may
not be effective against depression as the result of multiple
other causes (9). Thus, single-target therapies may fail in the
treatment of multifactorial disease.

Nevertheless, 2.39–40% of patients in different countries
and regions alternatively used herbal medicines (10–13).
Encouragingly, traditional Chinese medicine (TCM) has
achieved the effective use of herbal medicines to treat depression
over thousands of years (14). Therefore, herbal medicines
may serve as a rich source for the development of novel
antidepressant therapies. These results stimulated us to examine
the current understanding on the pathology of depression,
the pharmacology of the existing antidepressant drugs and
the antidepressant activity of herbal medicines toward the
development of novel effective and safe antidepressant drugs.

2 Current understanding of
depression

The causes of depression are complex, including genetic
conditions, endocrine, mental state, living habits, and health
status (15–17). Although the pathogenesis is complicated and
remains elusive, several hypothesis/theories have been proposed
to explain clinical manifestations from different perspectives.

The pathology of depression was summarized in Figure 1 and
elaborated as follows:

2.1 Monoamine hypothesis

Joseph J. Schildkraut proposed monoamine hypothesis as
early as in 1965. The monoamine hypothesis describes that
depression is resulted from the abnormal transmission of
monoamine neurotransmitters, including synaptic deprivation
of monoamine neurotransmitters, and dysfunctions of
monoamine transporter and receptors (18, 19). Monoamine
theory guided scientists to develop a number of antidepressant
drugs including monoamine oxidase inhibitor isoniazid
isopropylhydrazide although the drug was originally used
to tuberculosis (6). Indeed, 80% of the antidepressant drugs
that were approved by the United States Food and Drug
Administration (FDA) target monoamine transmitter systems
(20). The therapeutic effects of such drugs somehow approved
monoamine hypothesis. The tricyclic drug tianeptine is
known to promote serotonin reuptake and exhibit similar
antidepressant effect as selective serotonin reuptake inhibitor
(SSRI). However, some patients feel worse after taking tianeptine
(21). Such clinical phenomena challenged monoamine
hypothesis. The changes in monoamine levels appear to be the
consequences other than the causes of depression.

2.2 Glutamatergic hypothesis and
GABAergic deficit hypothesis

Glutamate is an excitatory amino acid that plays an essential
role in cognitive functions such as learning and memory.
Clinical studies observed a higher level of plasma glutamate
in patients with depression (22). Indeed, N-methyl-D-aspartate
receptor (NMDA-R) antagonists showed the potency of
relieving depression symptoms (23). Thus, the glutamate
hypothesis was proposed to highlight the elevation of glutamate
between synapses as the causes of mental and emotional
disorders. Accordingly, plasma glutamate level of patients is
positively correlated with the severity of the disease (24). The
inhibition of glutamate receptors became a therapeutic target for
the development of novel antidepressant drugs. Interestingly,
glutamate supplement exhibited antidepressant effects in some
cases (25).

On the other hand, γ-aminobutyric acid (GABA) is
synthesized from glutamate. Unlike glutamate, GABA is an
inhibitory neurotransmitter. Under physiological conditions,
the excitatory glutamate and the inhibitory GABA form a
balance in the brains. GABA prevents the neurotoxicity of excess
glutamate and termination of stress response (26). Depression
patients and animal models suffered from the decreased levels
of GABA and GABA-A receptor expression. Brexanolone
alleviated postpartum depression by increasing GABA level and
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FIGURE 1

Pathology of depression. 5-HT, 5-hydroxytryptamine; DA, dopamine; NE, norepinephrine; GABA, gamma-aminobutyric acid; BDNF, brain
derived neurotrophic factor; NGF, nerve growth factor; MDA, malondialdehyde; SOD, superoxide dismutase; CRH, corticotropin-releasing
hormone; TRH, thyrotropin-releasing hormone; GnRH, gonadotropin-releasing hormone; ACTH, adrenocorticotropic hormone; TSH, thyroid
stimulating hormone; LH, luteinizing hormone; FSH, follicle-stimulating hormone; HPA, hypothalamus-pituitary-adrenal; HPT,
hypothalamic-pituitary-thyroid; HPG, hypothalamic–pituitary–gonadal.

motivating the GABA-A receptor, suggesting the GABAergic
deficit hypothesis (27, 28). Thus, depression may be caused by
different pathological changes while the excitatory-inhibitory
imbalance should be the common cause.

2.3 Hormone dysregulation

Hypothalamic-pituitary-adrenal (HPA) axis mainly
regulates stress response. Under negative emotions or stress,
HPA axis remains active. The hypersecretion of cortisol
(corticosterone in rodents) causes neuronal damage and
structural disturbances in the hippocampus, resulting in
depression symptoms (29). Down-regulation of receptor
induces the weakening of negative feedback while aggravates
HPA axis excitement, forming a vicious circle. Similarly,
the depression process involves other hormone systems,
such as hypothalamic-pituitary-gonadal (HPG) axis and
hypothalamic–pituitary–thyroid (HPT) axis.

Two third of depression patients are female, largely due
to the frequent fluctuation of sex hormones in addition to

environmental and genetic factors (3, 30). Both aging men
and women are prone to mood disorders with the change of
corresponding sex hormone levels, but exhibit different clinical
outcomes (31). Females respond to stress in more sensitive
manner than males as the sex hormones decline (32). Possibly
due to the more influential role of estrogen in mood regulation,
women usually become emotionally fragile during the low-
estrogen period (33). Estrogen not only modulates cognition
and emotion in the brain, but also exhibits neuroprotective effect
(33, 34). Surprisingly, males with higher estrogen level tend to
suffer from depression (35). Thus, caution is needed to address
hormone dysregulation in depression in both sexes.

Stress is known to increase cortisol level and subsequently
decrease the release of thyroid stimulating hormone (TSH) (36).
Patients with bipolar II depression and anxiety disorder exhibit
a lower TSH level and less response to thyrotropin-releasing
hormone (TRH), while emotion also influences thyroid
hormones (37, 38). People with thyroid disease are commonly
associated with mood disorders (39, 40). Hyperthyroidism
induces anxiety and irritability, whereas hypothyroidism causes
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TABLE 1 Molecular targets and side effects of synthetic antidepressant drugs.

Class Brand name Generic name Known targets Side effects

SSRIs Celexa Citalopram SLC6A4 inhibitor Nausea, tremor, nervousness, problems
sleeping, sexual problems, sweating,
agitation, feeling tired

Lexapro Escitalopram SLC6A4 inhibitor

Luvox Fluvoxamine* SLC6A4 inhibitor

Paxil
Paxil CR
Pexeva

Paroxetine SLC6A4 inhibitor

Prozac Fluoxetine SLC6A4 inhibitor

Trintellix Vortioxetine SLC6A4 inhibitor; HTR1A
agonist; HTR3A, HTR7
antagonist; HTR1B partial
agonist

Viibryd Vilazodone SLC6A4 inhibitor; HTR1A
agonist

Zoloft Sertraline SLC6A4 inhibitor

SNRIs Cymbalta Duloxetine SLC6A4, SLC6A2 inhibitor Nausea, vomiting, dry mouth,
constipation, fatigue, feeling drowsy,
dizziness, sweating, sexual problems

Effexor
Effexor XR

Venlafaxine SLC6A4, SLC6A2 inhibitor

Fetzima Levomilnacipran SLC6A4, SLC6A2 inhibitor

Pristiq
Khedezla

Desvenlafaxine SLC6A4, SLC6A2 inhibitor

TCAs and TeCAs Asendin Amoxapine SLC6A4, SLC6A2 inhibitor Dry mouth, constipation, blurred vision,
drowsiness, low blood pressure

Elavil Amitriptyline SLC6A4, SLC6A2 inhibitor;
HTR2A antagonist

Ludiomil Maprotiline* SLC6A2 inhibitor

Norpramin Desipramine SLC6A4, SLC6A2 inhibitor;
HTR2A antagonist

Pamelor Nortriptyline SLC6A4, SLC6A2 inhibitor;
HTR2A antagonist

Sinequan Doxepin HRH1, HRH2 antagonist;
SLC6A4, SLC6A2 inhibitor

Surmontil Trimipramine SLC6A4, SLC6A2 inhibitor

Tofranil Imipramine SLC6A4, SLC6A2 inhibitor

Vivactil Protriptyline SLC6A4, SLC6A2 inhibitor

Atypical antidepressants Desyrel Trazodone SLC6A4 inhibitor; HTR1A
antagonist and partial
agonist; HTR2A antagonist;
HTR2C agonist

Dry mouth, dizziness, blurred vision,
feeling drowsy or sleepy, constipation
feeling drowsy or sleepy, weight gain,
dizziness, constipation, nausea, vomiting,
blurred vision

Serzone Nefazodone SLC6A4, SLC6A2 inhibitor;
HTR1A, HTR2A, HTR2C
antagonist; ADRA1

Remeron Mirtazapine HTR2A, 5HT3, ADRA2A
antagonist

Wellbutrin
Wellbutrin SR
Wellbutrin XL

Bupropion SLC6A3, SLC6A2 inhibitor

(Continued)

Frontiers in Psychiatry 04 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1054726
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1054726 December 17, 2022 Time: 17:6 # 5

Sun et al. 10.3389/fpsyt.2022.1054726

TABLE 1 (Continued)

Class Brand name Generic name Known targets Side effects

MAOIs Amira
Aurorix

Moclobemide* MAOA antagonist and
inhibitor

Nausea, dry mouth, constipation,
diarrhea, insomnia, dizziness, anxiety,
restlessness nausea, restlessness, problems
sleeping, dizziness, drowsiness

Emsam (skin patch) Selegiline MAOB inhibitor

Marplan Isocarboxazid MAOA, MAOB inhibitor

Nardil Phenelzine MAOA, MAOB antagonist

Parnate Tranylcypromine MAOA, MAOB inhibitor

NMDA antagonist Spravato (nasal spray) Esketamine NMDAR Dissociation, dizziness, nausea, sleepiness,
spinning sensation, decreased feeling or
sensitivity, anxiety

GABA-A receptor positive modulator Zulresso (intravenous
infusion)

Brexanolone GABR Sedation (tiredness), dry mouth, loss of
consciousness, flushing

Information comes from FDA, Drugbank, KEGG. *Fluvoxamine: Also used to treat COVID-19; maprotiline: TeCAs, others in this class are TCAs; moclobemide: Didn’t been
approved by FDA yet.

depression. Consequently, thyroid supplementation may be
used in the clinical treatment of depression (41).

2.4 Neurogenesis and neuroplasticity
hypothesis

Depression is an emotional disease and may show signs at
the cell and organ levels. Neuroanatomy studies revealed that
hippocampus volume appeared to be reduced in the brains of
depression patients (42). Bipolar patients was found to have
less gray matter volume (43). Such changes may be caused
by the decline of neurotrophic factors, such as brain-derived
neurotropic factor (BDNF), nerve growth factor (NGF), and
glia-derived neurotropic factor (GDNF) (44).

2.5 Miscellaneous theories

Scientists proposed several other conjectures of depression
including inflammation theory, gut microbiota theory,
glial pathology theory, epigenetic theory, infection theory,
and “dys-stress” theory (45, 46). These theories together
provided a comprehensive perspectivity to explain the
depression mechanisms.

2.6 Current antidepressants and
limitations

FDA-approved antidepressant drugs for adults are
divided into seven categories: selective serotonin reuptake
inhibitors (SSRIs), serotonin and norepinephrine reuptake
inhibitors (SNRIs), tricyclic and tetracyclic antidepressants

(TCAs and TeCAs), atypical antidepressants, monoamine
oxidase inhibitors (MAOIs), N-methyl D-aspartate (NMDA)
antagonist, neuroactive steroid, gamma-aminobutyric acid
(GABA)-A receptor positive modulator (20). TCAs and MAOIs
belong to the first generation of antidepressants with relatively
strong short-term efficacy and low price (47). However, due to
the severe side effects, these drugs are not considered the first
choice for treating depression. SSRIs and SNRIs are considered
as the first-line medications in clinical practice although side
effects exist (9).

Most of synthetic antidepressant drugs are known to
frequently cause severe side effects and exhibit symptoms
including dizziness, nausea, weight change, sexual dysfunction,
and apathy (48). The classification and common side effects of
antidepressants are shown in the Table 1.

Indeed, the existing antidepressants are limited by different
other factors including efficacy, patient compliance, withdrawal
reaction and recurrence. As for efficacy, antidepressants often
need at least 2 weeks to take effect (49). Many patients may
feel the improvement of symptoms after taking medication but
are not satisfactory with the overall effect while some patients
may be getting even worse (6, 50). As for patient compliance,
compliance with antidepressants is extremely poor. Quite
a portion of patients are unwilling to follow antidepressant
treatment (51). The fear of side effects is a key reason for poor
compliance. As for the withdrawal reaction, more than half
of the patients experience withdrawal symptoms, including
gastrointestinal symptoms, flu-like symptoms, sleep disorders,
sensory disorders, movement disorders, and emotional
disorders (8). Some patients may have severe symptoms.
Finally, the recurrence is also an important problem. Patients
may be considered as fully cured by antidepressant treatment
but more likely have depression again than normal people
(52). Indeed, a quarter of patients relapse depression (53).
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TABLE 2 Active constituents and molecular targets of herbal medicines.

Herbal source Active
constituents

Model Depression model Administration Mechanism of
action

References

Acori tatarinowii
Rhizoma

α-asarone; β-asarone Primary astrocytes
from rat

N/A 15, 30, 50 µM Increase synthesis and
release of neurotrophic
factors (NGF, BDNF, and
GDNF)

(121)

α-asarone Adult male, Institute
of Cancer Research
(ICR) mice of age
8–10 weeks

AMPT (100 mg/kg, i.p., a
catecholamine synthesis
inhibitor)

20 mg/kg, i.p. (4 h after
AMPT administration)

modulate α1 and α2
adrenoceptors, 5-HT1A
receptors

(122)

Albizia julibrissin
flower

SAG; SBG lignan
glycosides

HeLa cells N/A 10 µM SAG or 16 µM
SBG

Non-competitively inhibit
serotonin transporter

(123)

SAG 8-week-old male
Sprague-Dawley
(SD) rats

Acute restraint-stressed 3.6 mg/kg, 7 days, p.o. Modulate HPA axis and
monoaminergic systems

(124)

Alpinia officinarum
Hance

Hydroalcoholic
extract

Male BALB/c mice Daily chronic
unpredictable stress (CUS),
3 weeks

50 and 100 mg/kg/day,
21 days, i.p.

Antioxidation (125)

Galangin In vitro enzyme
inhibition and
binding test

Inhibit MAO-A and
MAO-B

(126)

Angelica sinensis
(Oliv.) Diels

75% ethanol extract Male SD rats
(weighing
180± 20 g)

Chronic unpredictable
mild stress (CUMS),
3 weeks

3.6 and 7.2 g/kg. Modulating the
hematological anomalies

(127)

75% ethanol extract Male SD rats
weighing 140–160 g

Chronic unpredictable
mild stress (CUMS),
5 weeks

1 g/kg Activating the BDNF
signaling pathway
(BDNF-ERK 1/2-CREB)
and upregulating the
hippocampal BDNF,
p-ERK 1/2 and CREB
expression.

(128)

Z-ligustilide Male SD rats
(weight, 160–200 g;
age, 7 weeks)

CUMS 35 days 20 and 40 mg/kg,
12 days, i.p.

Upregulate progesterone
and allopregnanolone

(129)

Apocynum venetum
L.

Apocynum venetum
leaf extract

Adult male Wistar
rats (42 days old)
weighing 180–220 g

CUMS, 8 weeks 30, 60, and 125 mg/kg,
4 weeks, i.g.

Antioxidation, reduced
hippocampal neuronal
apoptosis, and enhanced
hippocampal BDNF levels

(130)

Astragalus Astragaloside IV Male ICR mice,
weighing 23–26 g

Repeated restraint stress
(RRS)-induced mice, 9 days

16, 32, and 64 mg/kg/d,
12 days, i.g.

Anti-inflammation (via
PPARγ/NF-κB/NLRP3
inflammasome axis)

(131)

Lipopolysaccharide
(LPS)-induced mice,
1 mg·kg-1·d-1, i.p., 2 days

20, 40 mg/kg/d,
14 days, i.p.

Atractylodes
macrocephala Koidz.

Atractylenolide III Male SD rats
(weighing 260–280 g
on arrival)

CUMS, 28 days 3, 10, and 30 mg/kg,
14 days, p.o.

Anti-inflammation (132)

Camellia sinensis L-Theanine Patients with MDD (four males; mean age:
41.0± 14.1 years, 16 females;

42.9± 12.0 years)

250 mg/day, 8 weeks Blocking glutamate
receptor

(80)

Capsicum annuum L.
(Chili pepper)

Capsaicin Four-week-old male
C57BL/6J mice
(bodyweight:
16–18 g)

0.052/0.104/0.208/0.415/
0.83 mg/kg LPS, 5 days, i.p.

0.005% capsaicin in
standard laboratory
chow plus, 4 months

Regulation of 5-HT and
TNF-α; remodeling gut
microbiota

(133)

(Continued)
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TABLE 2 (Continued)

Herbal source Active
constituents

Model Depression model Administration Mechanism of
action

References

Centella asiatica (L.)
Urban

Triterpenes Male albino Wistar
rats, aged
8–10 weeks and
weighing 180–220 g

CUMS 8 weeks Extraction 400 and
800 mg/kg, 8 weeks,
p.o.

Upregulation of 5-HT, NE,
and DA; regulation of
HPA-axis

(134)

Acori tatarinowii
Rhizoma

α-asarone; β-asarone Primary astrocytes
from rat

N/A 15, 30, 50 µM Increase synthesis and
release of neurotrophic
factors (NGF, BDNF, and
GDNF)

(121)

Chelidonii herba Chelidonic acid Male ICR mice
(3 weeks old,
10–12 g)

N/A 0.02, 0.2, and 2 mg/kg,
14 days, p.o.

Upregulation of
hippocampal 5-HT,
dopamine, NE, and BDNF;
anti-inflammation

(135)

Citrus unshiu Peel extract Male ICR mice
(9-week-old,
weighing 20–25 g)

Dexamethasone 40 mg/kg,
7 days, i.p.

30, 100, and
300 mg/kg, 14 days,
p.o.

Modulate
BDNF/TrkB/CREB
signaling

(135)

SH-SY5Y cells dexamethasone 200 µM 10, 50, or 100 µg/mL

Cornus officinalis
(Cornus)

Loganin Adult male Wistar
rats, weighing
200–250 g

Depression and
anxiety-like diabetic rats

40 mg/kg, 10 days, p.o. Anti-inflammation (136)

Cornusfural B PC12 cells 500 µM corticosterone,
24 h

10 µM, 24 h Neuroprotective effects (137)

Morroniside SD rats (220± 10 g,
7 weeks old)

immobilization stress,
14 days

Extract 100 mg/kg,
14 days, i.g.

Antioxidation (Blocked
the MAPK/COX-2
Signaling Pathways in Rat
Hippocampus)

(138)

SH-SY5Y cells 300 µM H2O2 , 24 h Extract 20, 50, and
100 µg/mL, pretreat
2 h

Alleviated H2O2-Induced
Apoptosis; enhance SOD,
CAT, BDNF expression

Crocus sativus L.
(Saffron)

Crocin Male Balb/cJ mice
(18–24 g, 8–10 weeks
of age)

CUMS, 7 weeks 30 mg/kg, 4 weeks, i.g. Modulate HPA-axis, (139)

PC12 cells CORT (200 µM), 24 h 12.5, 25, and 50 µM,
pretreat 1 h

Upregulation of pituitary
adenylate
cyclase-activating
polypeptide (PACAP)
expression and
phosphorylation of CREB
and ERK

Six-week-old male
C57BL/6 J mice

Chronic restraint stress
(CRS)-induced

40 mg/kg, 6 weeks, p.o. Modulate gut microbiota
composition; reduced
low-grade inflammation in
the colon; reverse the
decrease of fecal
short-chain fatty acids
(SCFAs)

(140)

Six-week-old male
C57BL/6 J mice

Corticosterone 20 mg/kg,
4 weeks, s.c.

20 and 40 mg/kg,
2 weeks, i.g.

Antioxidation (stimulate
SIRT3 pathway);
anti-inflammation

(141)

Curcuma longa L. Curcumin Male SD rats
(180–220 g)

CUMS 28 days 100 mg/kg/d, 28 days,
i.g.

Antioxidation (via
Nrf2-ARE signaling
pathway)

(103)

SD rats (male,
weight: 180–220 g,
age: 40–45 day)

CUMS 6 weeks 100 mg/kg/d, 6 weeks,
i.g.

Modulate
PGC-1α/FNDC5/BDNF
signaling pathway

(142)

(Continued)
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TABLE 2 (Continued)

Herbal source Active
constituents

Model Depression model Administration Mechanism of
action

References

Cyperus rotundus L. α-cyperone Male adult C57BL/6
mice

CUMS 5 weeks 5 and 10 mg/kg,
5 weeks, i.g.

Enhance neuroplasticity
(via SIRT3/ROS/NF-κB
pathway); suppressing
NLRP3 inflammasome

(143)

Epimedii Herba Icariin; icaritin Male, 7-week-old
C57 BL/6J mice

Social defeat (SD) stress
10 days

20 mg/kg, 4 weeks, p.o. Anti-inflammation;
regulation of BDNF:
suppressing
HMGB1-RAGE signaling,
activating TLR4-NF-κB
signaling

(144)

Fraxinus
rhynchophylla

Esculin; esculetin;
fraxin

Seven-week-old male
c57BL/6 mice

Reserpine 0.5 mg/kg,
10 days, i.p.

50 mg/kg, 10 days, p.o. Anti-inflammation;
upregulate pCREB/BDNF
expression

(145)

Fructus arctii Arctigenin Adult male C57BL/6
(WT B6) mice
(8–10 weeks old,
18–22 g)

CUMS 6 weeks 25, 50, or 100 mg·kg Anti-inflammation (via
HMGB1/TLR4/NF-κB and
TNF-α/TNFR1/NF-κB
signaling pathways);
decrease neuronal
apoptosis; increase serum
levels of 5-HT and
dopamine

(146)

Arctiin Male C57BL/6 mice
(18–22 g weight,
9 weeks old)

CUMS 8 weeks 25, 50 mg/kg, 4 weeks,
i.g.

(147)

Morus macroura
Miq. (Mulberry)

Ethanol extracts Male rats Post-myocardial infarction
(MI) depression

200 mg/kg, 21 days,
p.o.

Antioxidation; increase
serotonin, dopamine,
GABA, and ATP brain
levels

(148)

Ganoderma Polysaccharides Male C57BL/6 mice
7–8 weeks old

Chronic social defeat stress
(CSDS), 10 days

1 mg/kg, 5 mg/kg, and
12.5 mg/kg, 6 days

Mediate Dectin-1
receptors; enhanced
AMPA receptor synaptic
plasticity;
anti-inflammation

(149)

Ganoderic acid A The SD rats (male;
240–260 g)

post-Stroke depression
(CUMS 3 weeks)

10, 20, and 30 mg/mL,
i.v.

Anti-inflammation (via
the ERK/CREB pathway)

(150)

Hedyotis corymbosa Ethanol extracts SD rats (male; body
weight—250–275 g)

Olfactory bulbectomy
induced depression

50, 100, and
200 mg/kg, 14 days,
p.o.

Upregulation of BDNF;
regulation of HPA-axis;
upregulation of 5-HT

(151)

Hericium erinaceus Erinacine A Male ICR mice
weighing 20–25 g

Restraint stress 4 weeks Extract 100, 200, and
400 mg/kg, 4 weeks,
p.o.

Increase BDNF expression
(via PI3K/Akt/GSK-3β

pathway)

(152)

Ethanol extract PC-12 cells 400 µM corticosterone 24 h 0.125, 0.25, 0.5, and
1 mg/ml

Antioxidation (153)

Hypericum
perforatum L.

Hypericin Female SD rats,
180–220 g

Postpartum depression 6.12 mg/kg, 42 days,
i.g.

Anti-inflammation;
up-regulate the estrogen
receptor (ER) expression;
reduce the level of CORT
(via reversing the activity
of 11β-HSD2 enzyme)

(154)

Hyperforin Male C57BL/6 J mice
(7 weeks old)

CUMS 8 weeks 2.5 and 5 mg/kg,
45 days, i.p.

Regulate BDNF pathway
and zinc homeostasis

(56)

Eriodictyol Male SD rats
weighting 240–260 g

LPS 1 mg/kg, 2 days, i.p. 10, 30, and 100 mg/kg,
28 days, i.g.

Anti-inflammation;
anti-oxidation (via
Nrf2/HO-1 axis)

(102)

CUMS 28 days

(Continued)
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TABLE 2 (Continued)

Herbal source Active
constituents

Model Depression model Administration Mechanism of
action

References

Lavandula
angustifolia Mill
(Lavender)

Essential oil Male SD rats
weighing 240–260 g
(6–7 weeks of age)

40 mg/kg corticosterone,
14 days, s.c.

Exposed to a cotton
saturated with 2.5%
LEO, 14 days

Upregulation of BDNF
and oxytocin

(155)

Leonurus japonicus
Houtt

Leonurine Male C57BL/6
(8–10 weeks) mice
with a body weight
of 18–22 g

Chronic mild stress (CMS)
10 weeks

30 and 60 mg/kg,
4 weeks, i.g.

Improvement of
monoamine
neurotransmitters (5-HT,
NE, and DA);
anti-inflammation

(156)

PC12 cells 300 µM CORT 24 h 10, 20, 40, 60, 80, and
100 µM, pretreat 2 h

Neuroprotective effects
(via GR/SGK1 signaling
pathway)

(157)

Magnolia officinalis Honokiol Male SD rats,
weighing 200–220 g

CUMS 28 days 10 mg/kg Honokiol,
21 days, i.g.

Regulate HIF-1α-VEGF
signaling pathway,
VEGFR-2-mediated
PI3K/AKT/mTOR
signaling pathway

(158)

PC 12 N/A 2, 5, 8, 10, and 16 µM,
24 h/48 h

Regulate HIF-1α-VEGF
signaling pathway

Magnolol Female C57BL/6J
mice (18–22 g)

CUMS 7 weeks 50 and 100 mg/kg,
3 weeks, i.g.

Inhibit M1 microglia
polarization and promoted
M2 microglia polarization
via Nrf2/HO-1/NLRP3
signaling

(159)

BV2 cells LPS (1 µg/ml) + ATP
(20 µM) 24 h

(5, 10, and 20 µM) 2 h
prior

Morinda officinalis Fructooligosaccharides Male SD rats
(160± 20 g,
6-week-old)

CUMS 7 weeks 50 mg/kg, 3 weeks, i.g. Remodel gut microbiota;
decrease urine and plasma
corticosterone

(160)

Monodora myristica
(Gaertn.)

Essential oils Male Wistar rats
(150–180 g)

CUMS 5 weeks 150 and 300 mg/kg,
5 weeks, p.o.

Decrease serum CORT and
brain MAO-A levels

(161)

Nelumbinis semen Neferine C57BL/6J mice
(6-week-old, male)

CUMS 8 weeks 20 mg/kg, 4 weeks, i.p. Remodeling gut
microbiota

(162)

Paeonia lactiflora
Pall.

Albiflorin Male SD rats
(180–200 g)

CUMS 8 weeks 7 and 14 mg/kg,
14 days, p.o.

Remodel gut microbiota;
inhibit D-amino acid
oxidase

(163)

Male ICR mice
(18–22 g)

4 mg/kg reserpine, i.p. 7 and 14 mg/kg, 7 days,
p.o.

Paeoniflorin Male C57BL/6 J mice
weighted at 19–23 g
at 6–9 weeks

CRS 5 weeks 10, 30, and 60 mg/kg,
5 weeks, i.p.

Affect the ERK1/2 pathway (164)

Panax ginseng C. A.
Mey.

Ginsenoside Rg1 Male SD rats
(weight: 200–250 g)

CRS 28 days 20 mg/kg, 28 days, i.g. Regulate
GAS5/EZH2/SOCS3/NRF2
Axis

(165)

Ginsenoside Rb1 CD1 (12 months old,
male) and C57BL/6J
(7–8 weeks old,
male) mice

CSDS 28 days 35 and 70 mg/kg,
28 days, i.g.

Regulate BDNF–TrkB
signaling pathway

(166)

Perilla frutescens Volatile oil Female SD rats
(180–200 g)

Menopausal depression
(ovariectomy + CUMS
14 days)

10.8, 32.4, and
97.2 mg/kg, 14 days,
i.g.

Regulate metabolites (167)

Platycodins folium Extract Adult male ICR
mice, weighing
20± 2 g

LPS (0.83 mg/kg), 24 h, i.p. 100, 200, and
400 mg/kg, 7 days, i.g.

Regulation of several
metabolic pathways

(168)

(Continued)

Frontiers in Psychiatry 09 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1054726
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1054726 December 17, 2022 Time: 17:6 # 10

Sun et al. 10.3389/fpsyt.2022.1054726

TABLE 2 (Continued)

Herbal source Active
constituents

Model Depression model Administration Mechanism of
action

References

Rhizoma polygonati Polysaccharide Male C57BL/6 mice
(3 months old,
20–25 g)

LPS (2 mg/kg), 24 h, i.p. 100, 200, and
400 mg/kg, 10 days, i.g.

Anti-inflammation; reduce
ROS/HPA axis
hyperfunction

(169)

CUMS 35 days 400 mg/kg, 35 days, i.g.

Pueraria Lobelia Puerarin SD rats (male,
200± 20 g)

CUS 28 days 30, 60, and 120 mg/kg,
10 days

Regulate monoamine
neurotransmitter; regulate
HPA-axis; regulate
HPG-axis

(60)

male C57BL/6N
mice (7–8 weeks,
18–25 g)

LPS (0.083 mg/kg) 24 h 30, 60, and 120 mg/kg,
25 h, i.g.

Anti-inflammation;
inhibited the
RagA/mTOR/p70S6K
pathway

(63)

Highly
Differentiated PC12
Cell

LPS (200 ng/ml) 24 h 10, 25, and 50 µM, 24 h

Male SD rats
(160–180 g)

High-fat diet
(HFD)/CUMS 11 weeks

30, 60, and 120 mg/kg,
7 days

Inhibit TLR4-associated
inflammatory responses

(64)

Radix Bupleuri Saikosaponin A Female Wistar rats
(36-week old and
350–370 g weight)

CUMS 8 weeks 25, 50, or 100 mg/kg,
4 weeks, p.o.

Up-regulation of the
BDNF-TrkB signaling
pathway;
anti-inflammation;
regulation of HPA-axis

(170)

Saikosaponin-d Male ICR mice,
5 weeks old,
weighing 20–22 g

LPS with increasing dose
(0.052/0.104/0.208/0.415/
0.83 mg/kg), 4 days, i.p.

0.5 and 1 mg/kg,
2 weeks, i.g.

Mitigate LPA1-mediated
neuronal apoptosis;
attenuate LPS-induced
activation of
RhoA/MAPK/NFκB
signaling pathway

(171)

SH-SY5Y LPA (4 µM)/LPS (1 µg/ml) 0.5, 1, and 2 µM)

Rehmannia glutinosa Catalpol Adult male Kunming
mice (weighing
18–22 g, 3–4 weeks
old)

Depressive-like behavior of
STZ
(streptozocin)-induced
hyperglycemia models

5, 10, and 20 mg/kg,
21 days, i.g.

Antioxidation (via
PI3K/AKT/Nrf2/HO-1
signaling pathway)

(172)

Rhubarb Emodin 8-week-old male SD
rats

CUMS 7 weeks 80 mg/kg, i.g. Anti-inflammation
(targeting
miR-139-5p/5-LO)

(173)

Salvia miltiorrhiza Cryptotanshinone Male C57BL/6 mice
(8 weeks, 20–25 g)

CUS 14 days 20 mg/kg, 14 days, i.g. Anti-inflammation (via
NF-κB signaling pathway);
restore hippocampal
neurogenesis (via
BDNF/TrkB pathway)

(174)

Santalum album
seeds

Extract Ten weeks old Male
Swiss mice weighing
20 to 25 g

Cecal ligation and puncture
(CLP) model

100 and 200 mg/kg,
24 h

Antioxidation (175)

Schisandra chinensis
Fructus

Schisantherin A Male ICR mice,
weighing 20± 2 g

N/A 1.75, 3.5, and 7 mg/kg,
7 days, i.g.

Regulate GABA/Glu
system

(176)

Schisantherin B Male KM mice,
10-week old
(20–25 g) and
11-month old
(50–60 g)

Acute stress (FST) 15 mg/kg, 10 days, i.p. Promote
PI3K/AKT/mTOR
pathway

(177)

(Continued)
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Gomisin A N9 microglial cells LPS (1 µg/ml) 24 h 1, 3, 10, 30, and
100 µM, pretreat 2 h

Inhibit
TAK1-IKKα/β-IκB-NF-κB
and MAPKs inflammatory
signaling pathways;
anti-oxidation

(178)

Gomisin N Seven-week-old male
ddY mice

LPS 500 µg/kg, 24 h, i.p. 100 mg/kg, 25 h, p.o. Anti-inflammation (179)

BV2 cells LPS 0.1 µg/mL, 6 h 1.6–50 µM, 7 h

Scutellaria
baicalensis Georgi

Decoction (contain
baicalin, baicalein,
wogonoside, and
wogonin)

Male SD rats
(190–220 g)

CUMS 6 weeks 500 and 1,000 mg/kg,
3 weeks, i.g.

Regulate CREB and BDNF
(via activating cAMP/PKA
pathway)

(180)

Wogonin; baicalein N/A N/A enzyme assays Inhibit MAO (181)

Baicalin Adult male ICR mice
(7–8 weeks,
weighing 20–25 g)

CUMS 21 days 50 and 100 mg/kg,
21 days

Regulating neurogenesis
(via Wnt/β-catenin
pathway)

(182)

Scutellarin Male C57BL/6 mice
(6–8-week-old)

LPS 0.83 mg/kg, 7th day, i.p 50 mg/kg, 9 days, i.p. Anti-inflammation (via
TLR4/NF-κB pathway)

(183)

Silybum marianum Silibinin Male SD rats
(8 weeks old with a
body weight of
220–350 g)

Single prolonged stress
(SPS)

25, 50, and 100 mg/kg,
14 days, i.p.

Increase 5-HT synthesis;
modulate monoamine
levels (DA and NE)

(184)

Silymarin Swiss albino mice
weighing 30–35 g
(70–80 days old)

CUMS 28 days 100 and 200 mg/kg,
21 days, p.o.

Modulate HPA axis;
antioxidation;
anti-inflammation;
increasing BDNF
expression; modulate
monoamines

(184)

Ziziphus jujuba Mill.
seeds

Ethanol extract Male ICR mice
(6 weeks old,
30± 1 g)

CUMS 31 days 100 and 300 mg/kg,
28 days, p.o.

Upregulate 5-HT and NE
(inhibit MAO-B and
AChE); upregulate BDNF

(185)

Therefore, there is a strong need for other complementary
or alternative therapies. It is believed that herbal remedies
possess better potential than different physiotherapies and
psychotherapies.

3 Herbal medicines for the
treatment of depression

Herbal ingredients are often used in combination.
Presumably, different ingredients may act on several
mechanisms in a coordinated manner. For example, hypericin,
hyperforin, and eriodictyol may contribute to the antidepressant
effects of Hypericum perforatum L. by targeting different
mechanisms (54–57). On the other hand, some ingredients
may act on more than one target. For example, puerarin
not only acts on the 5-HT system and neurotransmitters but
also regulates antioxidant and anti-inflammatory pathways,
remodels gut microbiota, and modulates the HPA-axis (58–64).
In this review, major ingredients and the related antidepressant

mechanisms were searched from the recent literatures via
PubMed and Google Scholar and summarized in Table 2 and
Figure 2. In fact, different active compounds might act on
one or several target proteins involved in the regulation of
neurotransmitter function, HPA axis, BDNF signaling pathway,
anti-inflammatory response, oxidative stress, intestinal
microbiota and ferroptosis.

3.1 Regulation of neurotransmitter
function

3.1.1 Targeting monoamine neurotransmitters
system

Monoamine neurotransmitters include serotonin (5-HT),
noradrenaline (NE), and dopamine (DA). 5-HT is an indole
neurotransmitter and induces a happy mood in the brain
(65). As two types of catecholamines. NE is an excitatory
neurotransmitter and alerts people by producing excitement and
anger, whereas DA is called the happiness hormone (66). The
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FIGURE 2

Potential antidepressant mechanism of botanical drugs.

deficiency of these neurotransmitters results in apathy and the
lack of energy. Unlike chemically synthesized antidepressants,
herbal medicines may exhibit a broad spectrum of effects on
the activity of multiple neurotransmitters. As a key herbal
medicine antidepressant, hyperforin derived from St. John’s
wort simultaneously inhibits the reabsorption of 5-HT, NE,
and DA with similar effectiveness (54). Protopine reduces the
reuptake of 5-HT and NE via inhibiting the transporter (67).
Apigenin, luteolin, and quercetin from Cayratia japonica inhibit
the activities of MAO-A and MAO-B (68). Highly like the
current antidepressants, herbal medicines target 5-HT receptors
as the main antidepressant mechanism. Puerarin derived from

Radix puerariae acts not only as the antagonist for 5-HT2C and
5-HT2A receptors but also as the agonist for 5-HT1A receptor
(58, 59).

3.1.2 Targeting GABAergic system
GABA receptors have long been therapeutic targets

for anxiety disorders. The current antidepressants improve
depression in mice via regulating the GABA system and
enhancing the activity of GABAnergic neurons (69). Anxiety
and depression often co-exist and influence each other in
clinical practice (70). GABA-A receptor positive modulator
Zulresso was approved by FDA in 2019 as a treatment for
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FIGURE 3

Network pharmacology analysis of herbs and the active compounds for targeting serotonergic synapse pathway.

postpartum depression (71). The bark of Magnolia officinalis
is well-documented for treating depression in traditional
Chinese medicine formulations, while honokiol and magnolol
are considered as the active ingredients. Indeed, magnolol
treatment reversed the depressive symptoms in rats after chronic
unpredictable mild stress (CUMS). Following the treatment,
CUMS rats performed equally well in the tests for sucrose
preference, locomotor activity, and forced swimming test
compared with the rats in the control group, indicating that
magnolol may be equally effective as Fluoxetine hydrochloride
(72). Honokiol and magnolol positively regulate GABA-A
receptors, especially δ-containing receptors (73). It was recently
found that GABA-B receptor inhibitors might be potential
antidepressant drugs (74). Interestingly, GABA-B1 receptor
knockout mice appeared to more anxious than wild breeds.
Presumably, GABA-B receptor positive allosteric agents are
anxiolytic whereas the antagonists could be antidepressants (75).
Nevertheless, both inhibitors and agonists were found to exhibit
an antidepressant effect (76).

3.1.3 Targeting L-glutamate signaling pathway
Glutamate receptors include ionotropic and metabotropic

forms for rapidly transmitting excitation and widely affecting

neural function by coupling with G protein, receptively (77).
Depressive symptoms could be relieved by N-methyl-d-
aspartate (NMDA) receptor antagonists, group I metabotropic
glutamate receptor (mGluR1 and mGluR5) antagonists,
and positive modulators of α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) receptors (78). L-Theanine
from Camellia sinensis share similar structure with glutamate
and binds to several glutamate receptors, thereby blocking the
action of glutamate and reducing glutamate excitotoxicity (79).
After treatment for 8 weeks, L-theanine improved depressive
symptoms including anxiety, sleep disturbance, and cognitive
impairment in MDD patients (80).

3.2 Regulation of HPA-axis

The HPA-axis involves three hormones [i.e., corticotropin-
releasing hormone (CRH), adrenocorticotropic hormone
(ACTH), and cortisol] and mainly mediates stress in the
human body (81). As a stress hormone, cortisol affects the
levels of neurotransmitters such as 5-HT. Anti-glucocorticoid
therapy benefits the brain’s reward mechanisms and alleviates
depression (82). Many herbs, such as Scutellaria baicalensis,
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FIGURE 4

Network pharmacology analysis of herbs and the active compounds for targeting dopaminergic synapse pathway.

Phellodendron phellodendri, and Chuanxiong, are known
to induce significant reduction of plasma corticosterone
levels in depressed mice (83). Based on radiometric ligand-
binding assays, icariin could restore the down-regulation
of glucocorticoid receptor in social defeat mouse model of
depression (84). Several flavonoids (e.g., hypericin, hyperoside,
isoquercitrin, and miquelianin) from St. John’s wort significantly
reduced the levels of ACTH and corticosterone in rats,
and could achieve better effects than imipramine positive
control (85).

3.3 Regulation of BDNF signaling
pathway

Brain-derived neurotropic factor is known to regulate the
growth and function of neuron cells and thereby plays an
important role in the regulation of learning and memory
(86). Stress reduces the level of BDNF in the brain, leading
to atrophy and cell loss in hippocampus and prefrontal
cortex, suggesting the link of BDNF with depression (87).
Indeed, most of antidepressant drugs could booster the
expression of BDNF (88). Peony glycosides from Radix Paeoniae
Alba increased the BDNF mRNA level in the brain and

improved depressive-behaviors in CUMS-induced mouse model
of depression (89). Traditional Chinese medicine formulation
PAPZ of four ingredients (i.e., Radix Ginseng, Radix Angelicae
Sinensis, Radix Polygalae, and Semen Ziziphi Spinosae)
increased the protein expression of BDNF and alleviated the
depressive behavior in corticosterone-challenged mice (90).
Esculetin from Cichorium intybus L. activated BDNF/TrkB
pathway in LPS-depressed mice by increasing BDNF expression
(91). BDNF was also found to enhance the function of 5-HT
transporter and reduce the level of 5-HT in the synaptic cleft,
indicating a need to investigate the cross-talks between different
systems (92).

3.4 Regulation of anti-inflammatory
response

Depression patients generally show marked increase in
pro-inflammatory cytokines (e.g., CRP, IL-3, IL-6, and IL-
12) (93). Indeed, anti-inflammatory drugs like celecoxib could
effectively relieve the symptoms of depression (94). Many
herbal medicines are well-documented for anti-inflammatory
properties and potential in the treatment of depression in
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the inflammatory model of depression (95). Crocus sativus L.
(Saffron) is an important medicinal ingredient and also a
common spice in North African, Mediterranean, and Middle
Eastern countries. As one of the main components, crocin
improved depressive symptoms and reduced the expression
of inflammatory cytokines (e.g., IL-1β, IL-18, and TNF-α) in
the hippocampus of LPS-depressed mice (96). The cellular
experiments found that crocin skewed the polarization of
glial BV-2 cells from the inflammatory M1 phenotype to
the M2 phenotype by inhibiting the NF-kB and NLRP3
signaling pathway (96). Esculetin as a coumarin compound
in various plants exhibited strong anti-inflammatory effect,
reduced the levels of IL-1β, IL-6, and TNF-α in serum and
hippocampus, and down-regulated the hippocampal expression
of iNOS and COX-2 in LPS-depressed mice (91). Moreover,
BDNF exhibits anti-inflammatory effect, suggesting that the
increase in BDNF level also represents an anti-inflammatory
mechanism (97).

3.5 Regulation of oxidative stress

Oxidative stress is implicated in various neurodegenerative
diseases including AD and PD (98). Depression patients often
suffer from cognitive impairment, likely as the result of oxidative
stress (99). The antioxidant system is likely disturbed in
people with depression (100). Interestingly, 5-HT deficiency
appeared to be associated with altered expression of antioxidant
enzymes (101). Many herbal medicines are well-known for
antioxidative effects and may relieve depression symptoms
through antioxidant activity. Eriodictyol is a bitter-masking
flavanone, a flavonoid derived from Eriodictyon californicum.
Eriodictyol reduced oxidative damage, prevented cell apoptosis,
induced glutathione synthesis, and reduced ROS production in
H2O2-treated PC12 cells (57). On the other hand, eriodictyol
profoundly ameliorated sucrose preference, reduced immobility
time in forced swimming test and feeding latency in novelty-
suppressed feeding test in LPS- and CUMS-induced rat model
of depression (102). Turmeric is one of the raw materials of
curry as a spice, and curcumin in it can restore the effects of
oxidative stress and prevent depression caused by CUMS (103,
104). Polyphenols are found in many fruits and vegetables, and
it has been suggested that diet therapy may be used to relieve
depression (105).

3.6 Modulation of intestinal microbiota

The enteric nervous system (ENS) is known to control
gastrointestinal behavior via the actions of neurons and
neurotransmitters in a manner independent of central
nervous system (CNS) input, thereby also known as the
“second brain” (106). Indeed, intestinal flora directly produces

neurotransmitters (e.g., serotonin and GABA), and regulates
brain functions and emotion through the microbiota–gut–
brain (MGB or BGM) axis (107, 108). Gut microbiota in
the large intestine synthesize various short-chain fatty acids
(SCFAs) as the major metabolites for modulating the levels
of neurotransmitters and neurotrophic factors and directly
affecting brain functions (109, 110). Probiotics Allobaculum
and Bifidobacterium were considerably reduced in the gut
of depressed patients (111). Interestingly, traditional Chinese
medicine formulation Kaixinsan could increase the relative
abundance of Allobaculum and Bifidobacterium in the gut of
CUMS mice (112). The concurrent use of antibiotics decreased
the antidepressant effect of Kaixinsan, suggesting the link
of Allobaculum and Bifidobacterium with depression (112).
Moreover, puerarin reversed stress-induced disruption of gut
microflora via increasing the level of beneficial bacteria and
decreasing the inflammatory bacteria in CUMS mouse (113).
Collectively, herbal medicines might exhibit antidepressant
activity by affecting gut microbiota.

3.7 Regulation of ferroptosis

Ferroptosis describes iron-mediated oxidative cell death,
largely due to the toxicity from dramatical increase in the
level of intracellular iron ions (114, 115). Ferroptosis has
emerged as a hot target for cancer therapy in the past
decade. Lipid peroxidation is hyperactive in the depressed
population than in the normal population and tightly associated
with ferroptosis, suggesting a new therapeutic target (116).
A recent analysis of hippocampal proteomes identified the
hyperactivation of ferroptosis pathway in CUMS mice (117).
Interestingly, traditional Chinese medicine formulation
Xiaoyaosan was shown to substantially reduce the total
iron and ferrous content in the hippocampus from CUMS
mouse model, possibly by regulating PEBP1-GPX4-mediated
ferroptosis (118). Galangin, a polyphenolic compound
from Alpinia officinarum, also inhibited ferroptosis in the
hippocampus by activating the SLC7A11/GPX4 axis (119).
Iron chelators and lipophilic antioxidants were suggested
for preventing ferroptosis (120). Considering the number,
chemical diversity and potency, herbal products represent
a rich source for the discovery of new ferroptosis-targeting
antidepressants.

3.8 Pathway enrichment analysis

The potent active compounds were further examined
through network pharmacology analysis while the target
proteins were accordingly predicted (Figures 3, 4). Specifically,
the prediction and screening of potential depression-
related targets were performed using Similarity Ensemble
Approach (SEA) at https://sea.bkslab.org, the Search Tool for
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Interactions of Chemicals (STITCH) at http://stitch.embl.de,
SwissTargetPrediction at http://www.swisstargetprediction.ch,
Therapeutic Target Database (TTD) at http://db.idrblab.
net/ttd, Comparative Toxicogenomics Database (CTD) at
http://ctdbase.org, PharmGKB at https://www.pharmgkb.org,
DisGeNET at https://www.disgenet.org, and GeneCards at
https://www.genecards.org. Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Enrichment of selected
targets were performed using the online bioinformatics tool
DAVID at http://david.ncifcrf.gov. Interestingly, the pathway
enrichment analysis suggests that active herbal compounds
mainly target serotonergic synapse pathway (KEGG: map04726)
and dopaminergic synapse pathway (KEGG: map04728) in
relation to depression. As shown in Figure 3, eight targets (i.e.,
APP, CASP3, PRKCA, MAOA, ALOX12, ALOX15, ALOX5,
and CYP2C19) were enriched for regulating serotonergic
synapse pathway, whereas the most related compounds were
curcumin from Curcuma longa L. and baicalein from Scutellaria
baicalensis Georgi. As shown in Figure 4, eight targets (i.e.,
SLC6A3, AKT1, PRKCA, FOS, MAOA, DRD1, DRD2, and
DRD5) were enriched for regulating the dopaminergic synapse
pathway whereas neferine from Nelumbinis semen was mostly
studied.

4 Conclusion

In this review, we initially discussed the current
understanding on the pathology of depression and
the molecular targets for different classes of synthetic
drugs. Subsequently, we performed comprehensive review
and network pharmacology analysis to understand the
antidepressant activities of herbal medicines and reveal the
underlying mechanisms. Herbal medicines appear to be effective
for the treatment of depression without causing undesirable
side-effects. As such, the present review may pave a new avenue
for the development of novel antidepressant strategies.
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