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Neuropsychiatric symptoms (NPS) a�ect people with dementia (PwD) almost

universally across all stages of the disease, and regardless of its exact etiology.

NPS lead to disability and reduced quality of life of PwD and their caregivers.

NPS include hyperactivity (agitation and irritability), a�ective problems (anxiety

and depression), psychosis (delusions and hallucinations), apathy, and sleep

disturbances. Preclinical studies have shown that the orexin neuropeptide

system modulates arousal and a wide range of behaviors via a network of

axons projecting from the hypothalamus throughout almost the entire brain

to multiple, even distant, regions. Orexin neurons integrate di�erent types

of incoming information (e.g., metabolic, circadian, sensory, emotional) and

convert them into the required behavioral output coupled to the necessary

arousal status. Here we present an overview of the behavioral domains

influenced by the orexin system that may be relevant for the expression of

some critical NPS in PwD. We also hypothesize on the potential e�ects of

pharmacological interference with the orexin system in the context of NPS

in PwD.

KEYWORDS
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modulators

Introduction

Dementia is characterized by a progressive decline in cognitive function and is

a major cause of disability in the elderly. There are multiple underlying pathologic

processes in dementia, including neurodegenerative and vascular diseases. Dementia

affects different cognitive domains including memory, language, attention, and executive

functions (1). Although cognitive impairment is the hallmark of dementia, behavioral

problems, or neuropsychiatric symptoms (NPS), are commonly found across the

entire severity spectrum of dementia. They include hyperactivity (agitation, irritability,

disinhibition, aberrant motor behavior), psychosis (delusions and hallucinations),

affective symptoms (depression and anxiety), apathy, euphoria, sleep disturbances and

eating abnormalities. NPS are associated with accelerated disease progression, early

institutionalization, and increased mortality. They reduce the quality of life of both PwD

and their caregivers (2).
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Treatment options for NPS consist of pharmacological

and non-pharmacological interventions, with the latter being

regarded as first-line option. There is a general shortage of

approved drugs for the treatment of NPS in dementia (3), with

so far only pimavanserin being approved for the treatment

of psychosis in Parkinson Disease (4), and risperidone for

the short-term treatment of aggression in Alzheimer Disease

(in Canada and Europe) (2). The unmet need is huge, as

shown by the number of drugs in clinical development for

NPS in dementia (3). In clinical practice, the use of non-

pharmacological interventions is restricted by the limited

knowledge about their effectiveness and by the lack of

specialized training for caregivers (5, 6). Due to these limitations

and because severe NPS require quick resolution, NPS are

often managed with off-label prescription of drugs (mostly

antipsychotics, antidepressants, or anxiolytics) (6). This occurs

despite the worrying adverse effects associated withmost of these

drugs (5).

The orexin system modulates a wide range of behaviors

by integrating different types of information (e.g., metabolic,

circadian, sensory, emotional) received from afferent neurons

and by transforming these inputs into respective output

signals distributed via a network of efferent axons projecting

throughout the neuraxis. The orexin system comprises orexin

(OX)-producing neurons that are located in a specific area

of the dorso-lateral hypothalamus. OX neurons synthetize

the peptide prepro-orexin, which is then cleaved to produce

the two orexin peptides OX-A and OX-B (also named

hypocretin-1 and hypocretin-2) (7). Axons of OX neurons

project to a wide range of brain regions where OX-A and

OX-B are then released (8) and bind to OX1 and OX2

receptors (OX1R, OX2R) to affect neuronal signaling (7). As

such, the OX system modulates several homeostatic functions

and behaviors.

Orexins were initially described to regulate feeding (9),

but genetic and pharmacological studies later revealed that

their primary role rather resided in the regulation of arousal

and the sleep-wake cycle (10, 11). Ever since, understanding

of the OX system’s contribution to behavior, including many

emotional and cognitive domains, has been expanding (8). The

relative contribution of either OX1R or OX2R to the different

functions of orexins is not fully elucidated, but pharmacological

studies showed a more important role of OX2R signaling in

wake promotion relative to OX1R (12). Drugs antagonizing

orexin receptors have recently been developed and tested in

clinical trials for various neuropsychiatric conditions. Dual

orexin receptor antagonists (DORAs) are already approved for

the treatment of insomnia (13).

We present here our perspective on which behavioral

domains that are influenced by the OX system may be relevant

for the expression of NPS in PwD. In this context we hypothesize

that pharmacological modulation of orexin receptor signaling

may ameliorate or aggravate selected NPS in PwD.

Behaviors that are modulated by the
orexin system

Arousal and wakefulness

The most well-characterized function of the OX system is

the regulation of sleep-wake transitions (14). Preclinical studies

showed that experimental activation of OX neurons promotes

and stabilizes wakefulness while their inhibition promotes

non-rapid eye movement (non-REM) sleep (15–18) and that

progressive loss of OX neurons in mouse models leads to

fragmented wake (19). OX peptides exert their wake-stabilizing

effects by interacting with the brain arousal network, which

includes histaminergic, noradrenergic, and cholinergic neurons

(14). Additionally, OX neurons support the wake state through

promotion of muscle and motor tone (14, 20). Interestingly,

the SAMP8 mouse model of accelerated aging show less non-

REM and REM sleep and higher locomotor activity during

the inactive phase of the light-dark cycle, which co-occur with

higher cerebrospinal fluid (CSF) OX levels (21).

Motor behavior

The orexin system contributes to the hypothalamic

control of movement: brain injection of OX-A induces

hyperlocomotion, stereotypies and grooming behavior in rats

(22, 23); conversely, relative to wild-type mice, orexin-ablated

mice show reduced exploratory activity under normal feeding

conditions (24, 25). In addition, recent studies have shown

that orexin cells are active during motion initiation (26).

Their activation stimulates GAD65-expressing neurons in

the lateral hypothalamus, which are then responsible for

promoting normal locomotion and whose hyperactivity leads to

hyperlocomotion (27).

Aggressive behavior

Reactive (defensive) aggression in rodents is largely

controlled by hypothalamic circuitry (28). Activity of the

ventrolateral portion of the ventromedial hypothalamus

(VMHvl) is particularly associated with an aggression-related

arousal state and execution of aggressive actions (29). OX

neurons receive projections from the VMH via the dorsomedial

hypothalamus (DMH) (30) and recruit GAD2-expressing

neurons in the lateral habenula, whose activation promotes

reactive aggressive behavior; this suggests that OX cells integrate

information regarding aggression-related arousal (OX neurons

become activated following the expression of aggressive

behavior, see Figure 1A.1, A.2) and influence the activity of areas

involved in the expression of reactive aggression. Drugs that

antagonize both OX1/2Rs, or selectively OX2Rs, reduce reactive
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FIGURE 1

Implication of the OX system in reactive aggression in mice. (A.1,A.2) CD-1 mice were exposed to the resident-intruder (R-I) test or to control

condition (i.e., staying in the home-cage, without any manipulation). The e�ect of aggressive behavior on activation of OX neurons was

assessed using immunostaining. (A.1) Percentage of OX neurons expressing the immediate early gene and cellular activation marker c-Fos over

the total number of OX neurons. Data are presented individually (scatter) and as mean (bars) + standard deviation (SD); *p < 0.05 vs. control,

Student’s t-test. (A.2) Representative image of OX+ cells (green) and c-Fos+ cells (red) in the lateral hypothalamus. Scale bar = 50µm; white

arrowhead: OX+ cell; red arrowhead: c-Fos+ cell; white arrow: OX+/c-Fos+ cell. (B) CD-1 mice were exposed to the R-I test after having been

treated with vehicle or the dual orexin receptor antagonist almorexant, using a cross-over design. Data are presented individually (scatter) and as

median with interquartile range. *p < 0.05, **p < 0.01 vs. vehicle, Dunn’s multiple comparisons test (following repeated measure Friedman test).

The methods used in these experiments are described in the supplementary information.

aggression in rodents (31–33) (Figure 1B). As mentioned above,

SAMP8mice have higher inactive phase CSF OX levels (21), and

this strain shows higher reactive aggression relative to control

animals (34, 35).

Stress-reactivity and anxiety

The physiological and behavioral response to stressful

environmental events allows animals to cope with situations

relevant for survival. The hypothalamus is an integral part

of the neurocircuitry coordinating the body’s response to

stress, and the contribution of the OX system has been

largely investigated. Brain injection of OX peptides increases

behavioral (e.g., grooming) and physiological (e.g., plasma levels

of corticosterone) correlates of stress exposure (36, 37) and

make mice agitated and hyper-responsive to sensory stimulation

(38). Acute stressors recruit OX neurons (39, 40), and DORAs

reduce stress-induced behavioral changes (41). In addition,

brain infusion of OX peptides produces anxiogenic-like effects

(42, 43), while OXR antagonists attenuate the expression of

anxiety-like behaviors (44).

Reward processing

Rodent studies indicate that the orexin system plays a

role in the regulation of reward processing (7, 45, 46).

OX neurons project to and modulate the activity of brain

areas involved in reward-related behaviors including those

of the mesocorticolimbic pathway and the brain’s “hedonic

hotspots” (8, 47). For example, optogenetic stimulation of

OX-neurons-to-VTA projections increase the preference for and

seeking of food rewards (48), and OXR antagonists reduce

seeking and motivation for drugs of abuse (49, 50). In addition,

OX signaling has been proposed to promote the motivational

activation necessary for interaction with the environment and

adaptive behaviors (51).

Predicted e�ects of pharmacological
orexin receptor modulation on NPS
in PwD

Background

The first drugs targeting orexin receptors demonstrating

pharmacodynamic effects were two DORAs [namely,

almorexant (ACT-078573) (11) and SB-649868 (52)]. Three

DORAs are currently approved for the treatment of insomnia

(i.e., suvorexant, lemborexant, daridorexant); furthermore,

other psychiatric indications are also being investigated using

DORAs or selective OX1R or OX2R antagonists (i.e., SO1RA or

SO2RA) (13). OX2R agonists (SO2RAgs) with wake-promoting

effects are in development for the treatment of narcolepsy

(53, 54).

Different treatment regimens were tested in trials with

OXR antagonists, depending on the targeted symptoms and

the drug used. For example, in trials with DORAs/SO2RAs for

insomnia and depression (55, 56) the drugs were administered

at bedtime, and in a trial with SO1RA for binge eating

disorder the drug was given during morning and evening
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meals (NCT04753164) (57). In the context of the possible

use of OXR antagonists for the treatment of NPS in PwD,

bedtime administration has the advantages of maximizing the

drug’s efficacy on nighttime problems and reducing the risk

of daytime somnolence; however, little effect may be expected

on disturbances that mostly manifest during the day [except

those instances where amelioration of daytime symptoms is

achieved through improved nighttime problems, as in the case

of depression (56)]. Conversely, daytime dosing may have a

greater impact on symptoms, which are expressed during the

day, but (depending on the dose) it may be associated with

a higher risk of somnolence. SO2RAgs, given in the morning

to stabilize daytime wakefulness, may potentially also improve

sleep at night by secondary means and thus normalize the

disturbed wake-sleep rhythms observed in PwD.

Sleep problems (insomnia, excessive
daytime sleepiness)

PwD frequently present with difficulties in falling asleep

(58), fragmented sleep (59), and excessive sleepiness during

daytime (60). The sleep-wake disturbance in PwD leads to

a progressive deterioration of circadian rhythm (61) and,

in advanced stages of dementia, even to a reversal of the

day-night sleep pattern (58). Sleep disturbance in PwD has been

associated with the presence of other NPS such as anxiety and

hyperactivity (62).

OXR antagonists administered at bedtime might have

beneficial effects on sleep-related NPS in PwD. Indeed, two

recent studies showed that sleep problems in AD can be

ameliorated by DORAs (i.e., suvorexant:(63); lemborexant:(64)).

Both trials showed improved sleep during the night. Actigraphy

measurements in the lemborexant study demonstrated reduced

sleep bouts during daytime, indicating a less disturbed sleep-

wake rhythm as consequence of the nighttime treatment.

Possibly due to the relatively long half-life of the drug, daytime

somnolence was reported in the suvorexant trial, although this

was not considered severe (65). Despite these beneficial effects

on sleep parameters, effects of DORA on other nighttime NPS,

including nighttime agitation, have not yet been assessed.

Given the wake-promoting effects of SO2RAgs, morning

dosing may reduce the excessive daytime sleepiness observed in

PwD and in addition help restore a normal sleep-wake rhythm.

Hyperactivity (agitation/aggression,
irritability, disinhibition, aberrant motor
behavior) and anxiety

Agitation is one of the most frequent and pervasive NPS

in PwD. Agitated behaviors are accompanied by signs of

emotional distress and may include excessive motor activity

(e.g., pacing, rocking, restlessness), verbal aggression (e.g.,

yelling, screaming), and/or physical aggression (e.g., grabbing,

scratching, slamming doors) (66). Agitated behaviors can occur

both during the day and the night (67), with nighttime agitation

posing a huge burden for caregivers (68). Most aggressive

behaviors shown by PwD can be interpreted as being reactive

to environmental circumstances (e.g., lack of understanding of

the caregivers’ intentions, leading to rejection of care) (69).

Other hyperactive behaviors include irritability and aberrant

motor behavior, which may present as wandering, purposeless

activity (e.g., insistently repeating demands or questions) and

inappropriate activities (e.g., hiding objects in inappropriate

places) (70). Anxiety is also highly prevalent in PwD (71), and it

is expressed with both psychological and somatic manifestations

(e.g., worry, palpitations, shortness of breath) (72).

From a neuropsychological perspective, hyperactive NPS

and agitation, in particular, have been proposed to stem from

an aberrant regulation of emotional salience, which may lead

to overestimation of threat, hypervigilance and lowered stress

thresholds (2).

As described above, the OX system regulates several

behaviors of relevance for hyperactive NPS and anxiety.

Specifically, OX system activation increases the motor output

and stress reactivity, and OXR antagonists reduce reactive

aggression, stress-induced behavioral changes, and anxiety in

animals. Initial evidence in acute challenge tests in humans

also indicate anxiolytic or stress-reducing capacity of SO1RAs

or suvorexant (73–75). These laboratory findings suggest that

an OXR antagonist might reduce hyperactive NPS and anxiety.

One behavior that could benefit the most from bedtime

administration would be nighttime agitation, because of the

direct impact of the drug on both sleep and emotional reactivity.

Interestingly, the first beneficial effects of DORAs on

hyperactive behaviors have been recently demonstrated in the

case of nocturnal delirium. Delirium is a common condition

in elderly and critically ill patients (76), characterized by

a disturbance of consciousness which can be accompanied

by hyperactive behaviors (77). Administration of suvorexant

has been shown to improve nocturnal delirium in PwD and

critically ill patients (76) (studies conducted only in Japan

for the moment). These findings suggest that hyperactive

behaviors may benefit from administration of DORAs; however,

properly designed, controlled studies are needed to assess

whether DORAs/SORAs improve hyperactive NPS in PwD. A

clinical trial (NCT05307692) currently investigates the effects

of seltorexant (a SO2RA) specifically on agitation as a primary

outcome in patients with AD (78). Nobody has yet explored the

effect of DORAs/SORAs on hyperactive NPS in the context of

neuropsychiatric conditions other than PwD.

To the best of our knowledge, no trial has yet studied

the effect of OXR antagonists on hyperactivity, when given

during the day. Such timing of administration might attenuate
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hyperactive daytime symptoms but, depending on the level on

OX2R antagonism exerted by the drug, could simultaneously

also increase the daytime sleepiness.

Apathy

Apathy is another NPS prevalent in PwD, which often

presents itself already in the pre-dementia phase. Apathy is

characterized by a lack of motivation, reduced interest in

rewarding situations, and akinesia and has major impact on

patients’ quality of life (2). As mentioned above, preclinical

studies showed that activation of the OX system positively

regulates reward processing and motivational activation,

and OXR antagonism reduces seeking of and motivation

for rewards.

Given the blunting of reward perception by antagonism of

orexin signaling, one can hypothesize that OXR antagonists may

worsen the apathetic phenotype shown by PwD, especially if

the drugs are administered at daytime, when patients engage

and interact with their environment. However, in several

neurodegenerative disorders, apathy is positively correlated with

sleep problems and with low levels of activity during the day

(79–81), raising the question of whether restoring the sleep-wake

rhythm [i.e., by reducing sleep fragmentation and increasing

daytime activity as shown by the lemborexant trial (64)] may

have beneficial effects on apathy. Given that orexins promote

motivational activation, daytime treatment with SO2RAgs could

also alleviate apathetic behaviors.

Discussion

Based on the preclinical knowledge on the function of

the OX system, we believe that selected NPS experienced by

PwD, including agitation/aggression, irritability, aberrant motor

behavior, anxiety and sleep problems may be ameliorated by

the pharmacological modulation of OXRs. At the same time,

some NPS could also be negatively impacted by treatment

with OXR modulators (e.g., daytime sleepiness, disturbed sleep-

wake rhythm and apathy). Therefore, it is critical to choose

the treatment regimen (i.e., bedtime vs. daytime), duration

(i.e., acute vs. chronic) and the dose of the OX modulator

wisely. Administration of OXR antagonists at bedtime, for

instance, would have the clear advantage of ameliorating both

sleep-wake disturbances and nighttime agitation. Secondary

beneficial effects may then manifest on other NPS during

the day as a consequence of a restored sleep-wake cycle:

apathy and lack of engagement in daily activities, for example,

may improve. Conversely, OXR antagonist administration

during the day may have a more direct effect on reducing

hyperactive NPS and anxiety. Although there is a risk

of worsening sleep-wake problems and apathy, such risk

could be mitigated by adopting an “as needed” (i.e., pro

re nata, PRN) administration: for example, patients may be

given an OXR antagonist only when they present with a

presumably OXR modulator-responsive NPS (e.g., agitation).

Different types of NPS may also require different degrees

of OXR blockade or activation to be modulated. While

studies suggested that at least 65% blockade of OX2R is

necessary to promote sleep (12, 82), the level of OX1R/OX2R

blockade/activation needed to modulate NPS-relevant behaviors

is not known. Gathering more knowledge on this aspect

may allow further fine-tuning of the treatment for a better

efficacy-safety balance.

Identifying specific groups of PwD whose NPS

are likely to respond to OXR modulation could be

an elegant approach for a targeted treatment of NPS.

This is challenging as NPS are not stable over time

(83, 84) and several types of NPS often co-occur in PwD

(85–87) [e.g., patients might present both apathy and

agitation (88)].

SO2RAgs, although still very early in clinical development,

should also be kept in mind as potential treatment that

might become available in the future. A combination of

OXR agonists, for instance, during the day, with OXR

antagonists given during the night, might allow the

successful treatment of the NPS spectra experienced by

certain patients.

In the above considerations, one must consider the

expected changes in the OX system itself that may occur

in the context of neurodegeneration. Several studies have

investigated OX levels in the cerebrospinal fluid (CSF) of PwD

(especially in AD patients). Despite some evidence indicating

higher OX levels in the cerebrospinal fluid (CSF) (89) and

a positive correlation with the presence of NPS found in

one study (90), a recent meta-analysis did not support the

notion that CSF OX levels in AD patients differ from those of

healthy controls (91). In apparent discrepancy to the lack of

change in CSF OX levels, AD brains present with a 40-70%

reduction in the number of OX neurons (73, 92, 93). These

findings might be explained by a hyperactive phenotype of

the remaining OX cells, induced by either cell-autonomous

or circuit-related mechanisms, which may lead to higher

OX production and release. Of note, a recent study showed

that aged mice with more fragmented sleep, have a reduced

number of OX neurons that are hyperexcitable due to

impaired potassium channel currents (94), thus providing

a mechanistic basis for the observed sleep disturbances.

However, human evidence for a direct contribution

of OX system dysregulation to NPS in PwD, is yet to

be demonstrated.

In summary, there is increasing preclinical and emerging

clinical evidence suggesting that the OX system is likely involved

in the expression of several NPS in PwD. Pharmacological

modulation of OXR signaling has the potential to improve

Frontiers in Psychiatry 05 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1052233
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Bergamini et al. 10.3389/fpsyt.2022.1052233

certain NPS. The type of intervention (dual or selective

OXR antagonism or agonism) and treatment regimen

(daytime vs. nighttime administration; chronic vs. pro re

nata) must be carefully chosen and adapted to the individual

patient and symptomatology so as not to cause unwanted

worsening of other NPS. We hope that future clinical studies

will explore the efficacy and safety of OXR modulators

in PwD.
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