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The exact pathogenesis of autism spectrum disorder (ASD) is still unclear,

yet some potential mechanisms may not have been evaluated before.

Cuproptosis is a novel form of regulated cell death reported this year, and

no study has reported the relationship between ASD and cuproptosis. This

study aimed to identify ASD in suspected patients early using machine learning

models based on biomarkers of the cuproptosis pathway. We collected gene

expression profiles from brain samples from ASD model mice and blood

samples from humans with ASD, selected crucial genes in the cuproptosis

signaling pathway, and then analysed these genes with different machine

learning models. The accuracy, sensitivity, specificity, and areas under the

receiver operating characteristic curves of the machine learning models were

estimated in the training, internal validation, and external validation cohorts.

Differences between models were determined with Bonferroni’s test. The

results of screening with the Boruta algorithm showed that FDX1, DLAT, LIAS,

and ATP7B were crucial genes in the cuproptosis signaling pathway for ASD.

All selected genes and corresponding proteins were also expressed in the

human brain. The k-nearest neighbor, support vector machine and random

forest models could identify approximately 72% of patients with ASD. The

artificial neural network (ANN) model was the most suitable for the present

data because the accuracy, sensitivity, and specificity were 0.90, 1.00, and

0.80, respectively, in the external validation cohort. Thus, we first report

the prediction of ASD in suspected patients with machine learning methods

based on crucial biomarkers in the cuproptosis signaling pathway, and these

findings may contribute to investigations of the potential pathogenesis and

early identification of ASD.
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Introduction

Autism spectrum disorder (ASD) is defined as a group
of neurodevelopmental psychiatric disorders characterized by
deficits in social interactions, interpersonal communications,
and repetitive and stereotyped behaviors and can accompany
other disorders, such as intellectual and language disorders (1).
Although ASD can be diagnosed as early as 18–24 months of age,
a significant proportion of children are not identified until the
school years (2, 3). Early identification of ASD in children could
improve developmental outcomes and quality of life through
early intervention.

The genetic influence of autism is complex and possibly
related to environmental factors (4). ASD has been found to
be associated with many physiological abnormalities, including
reactive oxygen species (ROS), mitochondrial dysfunction,
intracellular calcium ion level regulation and even the gut
microbiota (5–7). However, there is no established biomarker
for ASD diagnosis. Thus, in the past, some physiological
processes and biomarkers for ASD and diagnosis may
have been ignored.

A recent study published in Science by Tsvetkov et al.
showed that intracellular copper (Cu) induced a novel form
of cell death (8), named cuproptosis. Cuproptosis is mainly
regulated by ferredoxin 1 (FDX1)-mediated mitochondrial
proteotoxic stress. The authors indicated that FDX1 could
reduce Cu2+ to Cu+ and promote the lipoylation and aberrant
oligomerization of DLAT, which is involved in the regulation
of the mitochondrial tricarboxylic acid cycle. Glutathione
(GSH) blocks cuproptosis by chelating intracellular Cu. In
addition, lipoic acid synthetase (LIAS) decreases cell sensitivity
to cuproptosis by blocking the lipoylation of proteins. Solute
carrier family 31 member 1 (SLC31A1) and ATPase copper
transporting beta (ATP7B) affect cuproptosis sensitivity by
regulating the level of intracellular Cu+. However, no study has
revealed the relationship between ASD and crucial genes for
cuproptosis thus far.

Predicting the incidence of disease has been a challenging
task in the past. In recent years, the development of machine
learning methods has allowed us to envision a future of
improved health care through the investigation of biomedical
profiles and patient datasets (9). A recent study showed
that the use of machine learning methods in Alzheimer’s
disease shows promise for the identification of novel molecular
characterizations (10), while those methods are not still being
investigated in ASD.

Hence, we aimed to investigate some novel biomarkers in
the cuproptosis signaling pathway for ASD through the use of
machine learning algorithms. To support our goals, we collected
gene expression profiles from brain tissue samples from ASD
model mice and peripheral blood samples from humans with
ASD. Then, we selected crucial genes in the cuproptosis
signaling pathway for ASD and verified these features with
different machine learning algorithms.

Materials and methods

Data collection

The gene expression data of ASD mouse brain samples
were obtained from the Gene Expression Omnibus (GEO)
database (GSE72149 and GSE81501). The gene expression data
of peripheral blood samples from 20 children with ASD and
20 healthy control children were also obtained (GSE26415). All
genes in the expression profiles were annotated as unique gene
symbols, and expression values were transformed by log2. Then,
expression values were normalized with the “limma” package in
R software to achieve consistency and comparability between
arrays. The differentially expressed genes (DEGs) were screened
by the “limma” package according to a previous study (11). If the
p-value was < 0.01 between arrays, the corresponding gene was
considered a DEG.

Visualization of crucial genes in the
cuproptosis signaling pathway

We selected six crucial genes of cuproptosis regulation
reported as candidate biomarkers in a previous study, including
FDX1, DLAT, LIAS, GSH, ATP7B, and SLC31A1 (8). Selected
genes were visualized in a heatmap created with the “pheatmap”
package in R software.

Screened risk factor genes in the
cuproptosis signaling pathway

The FDX1, DLAT, LIAS, GSH, ATP7B, and SLC31A1
expression data were evaluated by the Boruta algorithm. The
Boruta method, which has shown reasonable reliability for
feature selection in many fields, and is considered one of the
most powerful algorithms for analyzing large data sets (12–14).
This method was built around the random forest classifier to
determine the relevance and importance of in relation to the
target variables (15). Thus, we used the Boruta algorithm to
select risk features in the present study.

We next divided the gene expression data of ASD mice into
a training cohort (70%) and an internal validation cohort (30%),
and the peripheral blood gene expression profiles of humans
with ASD were used as an external validation cohort.

Expression of selected genes and
subcellular localization in the human
brain

All selected risk genes in the cuproptosis signaling
pathway were detected in the Human Protein Atlas database
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(Version: 21.1).1 This database maps all human proteins in
cells, tissues, and organs using an integration of various
omics technologies, including antibody-based imaging, mass
spectrometry-based proteomics, transcriptomics, and systems
biology (16). This database has been used in many studies
(17–19). The expression levels of four selected genes were
measured in different parts of the human brain, and protein
expression analysis was used to determine the locations of
protein expression in cells.

Verification with different machine
learning methods

The risk factor genes in the cuproptosis signaling pathway
screened with the Boruta algorithm were verified by five
frequently used machine learning methods, including
k-nearest neighbor (KNN), naive Bayesian (NB), support
vector machine (SVM) with polynomial kernel, random
forest (RF), and artificial neural network (ANN). All five
machine learning models were trained in the training cohort
and verified in the internal validation cohort and external
validation cohort.

k-nearest neighbor performs classification by assigning a
point to the class that is most prevalent out of the k points
closest to it (20). The k parameter was set between 2 and
20 in the present study, and the optimized k value was
chosen (usually an odd number). KNN was performed with the
“kknn” package in R.

Naive Bayesian is conducted based on Bayes’ theorem and
finds the probability that an input with some features belongs
to a certain class (21). NB was conducted by the “e1071”
package in R software.

Support vector machine performs input data as feature
vectors and calculates them in a space with the same
dimensionality, divides the data points into two categories, and
finally selects the optimal hyperplane (22). SVM was performed
by the “e1071” package in R software.

Random forest is made up of decision trees with slight
differences. RF can classify input data into the most common
classifications based on constituent decision trees (23). The
optimized number of trees was selected for the next validation,
and RF was pruned to combat their tendency to overfit. RF was
conducted by the “randomForest” package.

The ANN was made up of several layers of neurons and
could loosely mimic the learning method in human brains (24).
The number of hidden layers was set to five to six in the
present study, and the sigmoid function was used as the standard
activation method. ANN was performed with the “neuralnet”
package in R software.

1 https://www.proteinatlas.org

Statistical analysis

The true condition was set to ASD or control in different
cohorts. The prediction accuracy and its 95% confidence interval
(CI) and kappa statistic values were calculated in the training,
internal validation, and external validation cohorts for all
models. For repeatability, a fixed seed number was set before
cross validation. Receiver operating characteristic (ROC) curves
were plotted for the internal validation cohort and external
validation cohort, and the area under the curve (AUC) was
calculated to examine the performance of different machine
learning models.

The “resamples” package in R was used to analyse and
visualize the performance of each model after cross validation.
Differences between paired machine learning methods were
determined with Bonferroni’s test (25).

Results

Data normalization and visualization

Twenty brain expression datasets of ASD and control mice
(10 each) were collected from GSE72149 and GSE81501. Twenty
peripheral blood gene expression profiles of children with ASD
and 20 age- and sex-matched peripheral blood gene expression
profiles of healthy controls were collected from GSE26415. The
flowchart of the data analysis is shown in Figure 1. As shown
in Figure 2, the expression data were normalized between the
arrays in each dataset.

Visualization of crucial genes in the
cuproptosis signaling pathway and the
selection of risk features for autism
spectrum disorder

The selected expression arrays in each cohort and crucial
genes in the cuproptosis signaling pathway were visualized with
a heatmap (Figure 2C). The results of Boruta analysis showed
that FDX1, DLAT, LIAS, and ATP7B were identified as feature
genes, and other genes were classified as unimportant feature
genes in the present data.

Expression of selected genes and the
location of proteins in the human brain

The expression profiles of humans with ASD were obtained
from blood; however, whether these risk genes are expressed in
the human brain is still unclear. Based on Human Protein Atlas
immunofluorescence analysis, FDX1, and DLAT were located in
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FIGURE 1

The flowchart of the present study. ASD, autism spectrum disorder; KNN, k-nearest neighbor; NB, naive Bayesian; SVM, support vector machine;
RF, random forest; ANN, artificial neural network.

mitochondria, ATP7B was expressed in the Golgi apparatus, and
LIAS could be detected in mitochondria and the nucleoplasm
(Figure 3). In addition, the four selected genes were all expressed
in the main parts of the brain. Thus, these four genes could be
detected in the brains of mice and both the blood and the brains
of humans.

Modeling by k-nearest neighbor

The optimized k value was set as 11 (Figure 4A). In the
training cohort, the accuracy was 0.76 (95% CI, 0.60–0.88), and
the sensitivity and specificity were 0.80 and 0.72, respectively.
In the internal validation cohort, the accuracy was 0.67 (95%
CI, 0.51–0.87); the sensitivity and specificity were 0.80 and 0.50,
respectively; and the AUC was 0.650 (Table 1 and Figure 5A).
The accuracy, sensitivity, and specificity were 0.73 (95% CI,
0.56–0.86), 0.75 and 0.70, respectively (Table 1), and the AUC
was 0.725 in the external validation cohort (Figure 5B).

Modeling by naive Bayesian

The results showed that the accuracy of NB was 0.64 (95%
CI, 0.50–0.78), the sensitivity was 0.95, and the specificity

was 0.36 in the training dataset. The accuracy was 0.56 (95%
CI, 0.41–0.78) and 0.55 (95% CI, 0.40–0.70) in the internal
validation cohort and external validation cohort, respectively.
The sensitivity of the internal validation cohort and external
validation cohort was 1.00, but the specificity was zero in the
internal validation cohort and only 0.1 in the external validation
cohort (Table 1). The AUC values were 0.500 and 0.550 in
the internal validation cohort and external validation cohort,
respectively (Figures 4D, 5C).

Modeling by support vector machine

The number of support vectors was 25 with the best SVM
model in the present study, and the performance of the SVM
is shown in Figure 4B. With the best SVM model, accuracy,
sensitivity, and specificity were 0.89 (95% CI, 0.74–0.96), 0.85
and 0.91, respectively, in the training cohort (Table 1). In the
internal validation cohort, the accuracy, sensitivity, specificity
and AUC were 0.68 (95% CI, 0.42–0.87), 0.80, 0.51, and 0.660,
respectively (Table 1 and Figure 5E). The accuracy, sensitivity,
specificity, and AUC were 0.75 (95% CI, 0.59–0.87), 0.75, 0.75,
and 0.750, respectively, in the external validation cohort (Table 1
and Figure 5F).
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FIGURE 2

The visualization of gene expression profiles. The gene expression data were normalized between arrays of mouse brain (A) and human blood
(B). The crucial genes in the cuproptosis signaling pathway and the selected arrays of each dataset were visualized in a heatmap (C). ASD,
autism spectrum disorder.

Modeling by random forest

The RF was performed with an optimized tree number
(Figure 4C). The accuracy, sensitivity and specificity in the
training dataset with RF were 0.83 (95% CI, 0.69–0.93), 0.95,
and 0.73, respectively. The accuracy, sensitivity, specificity and
AUC were 0.72 (95% CI, 0.52–0.90), 0.70, 0.75, and 0.725
in the internal validation cohort, respectively (Table 1 and
Figure 5G). In the external validation cohort, the accuracy,
sensitivity, specificity and AUC were 0.75 (95% CI, 0.59–0.87),
0.85, 0.65, and 0.750, respectively (Table 1 and Figure 5H).

Modeling by artificial neural network

We first trained the ANN model in the training cohort
(Figure 4D). After 43,703 steps, the accuracy was 1.00 (95%
CI, 0.92–1.00), and the sensitivity and specificity were 1.00 and
1.00, respectively (Table 1). Then, the parameters of the ANN
model that passed in the training cohort were applied in the

internal validation cohort and external validation cohort. The
results showed that the accuracy, sensitivity, specificity and AUC
of the model were 0.78 (95% CI, 0.62–0.94), 1.00, 0.61, and
0.800, respectively, in the internal validation cohort (Table 1
and Figure 5I). In the external validation cohort, the accuracy,
sensitivity, specificity, and AUC were 0.90 (95% CI, 0.76–0.97),
1.00, 0.80, and 0.900, respectively (Table 1 and Figure 5J).

Evaluation of different machine
learning models and the selection of
the most suitable model

We evaluated the different machine learning models with
the “resamples” function in R software after cross validation.
The 95% CIs of the accuracy and kappa values after cross
validation in each model are visualized in Figure 6A. Paired
comparisons of the different models showed that the accuracy
was significantly different between ANN and NB (Bonferroni’s
test, p < 0.05) (Figure 6B). Although there was no significant
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FIGURE 3

The expression of selected genes in the brain. Based on the Human Protein Atlas, FDX1, DLAT, LIAS, and ATP7B could all be detected in 12 brain
regions. In the A-431 cell line, FDX1 protein and DLAT protein were located in mitochondria (A,B), and LIAS protein was located in mitochondria
and the nucleoplasm (C). ATP7B protein was also expressed in the Golgi apparatus in the CACO-2 cell line (D). The schematic graph shows the
main location of each protein in cells (E). The target proteins, nuclei and microtubules were stained green, blue, and red, respectively. nTPM,
normalized transcript expression values.
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FIGURE 4

The performance of each machine learning model. The relation between the number of neighbors (k value) and accuracy in KNN (A). The
degree and coefficient of SVM are shown in panel (B). In RF, the interrelation between the number of trees and model error is shown in panel
(C). After 43,703 steps, the error was 0.009257 in the ANN model (D). KNN, k-nearest neighbor; SVM, support vector machine; RF, random
forest; ANN, artificial neural network.

difference between any of the other machine learning models
(p > 0.05), we considered ANN to be the most suitable model
for ASD prediction because of the high accuracy, sensitivity,
specificity, and AUC, especially in the external validation cohort.

Discussion

The prevalence of ASD has risen from 2 to 4 in 1,000
population to around 1% in large-scale population surveys
(26). In clinical practice, we find most children are diagnosed
between 2 and 3 years old. Briefly, ASD is much more common
than previously believed, yet clinicians are often still confused
regarding the early identification of ASD and its pathological
mechanisms (27). The selection of novel potential biomarkers
is crucial for the early identification and early treatment of
children with ASD.

Cuproptosis is a new form of programmed cell death that is
unlike apoptosis, pyroptosis, necroptosis, and ferroptosis (28).
We selected the expression profiles of crucial genes in the
cuproptosis signaling pathway from the brains of ASD mice
and the peripheral blood of humans with ASD. The results
of screening with the Boruta algorithm indicated that FDX1,
DLAT, LIAS, and ATP7B were crucial genes in the cuproptosis
signaling pathway for ASD in the present data. The results

showed that ANN was the most suitable machine learning model
for ASD prediction based on cuproptosis-related genes for the
present cohort. This is the first study investigating biomarkers
of the cuproptosis signaling pathway for ASD through the use of
a machine learning algorithm.

Over the last 3 years, the Boruta algorithm has been used
in many fields for feature selection, and it has shown reliability
and stability with different evaluation methods (29–31). We also
used the Boruta algorithm for the screening of risk genes for
ASD in the cuproptosis signaling pathway, and we found that
FDX1, DLAT, LIAS, and ATP7B were risk genes. Next, we found
that these four selected genes were also expressed in the human
brain, mainly in the mitochondria and Golgi apparatus, based
on Human Protein Atlas immunofluorescence analysis. Thus,
these four risk genes were closely related to brain function and
cellular metabolism.

A previous study found that zinc-copper rhythmicity was
disrupted in children with ASD (32). However, the previous
mechanism could not exactly explain ASD, which may be
because the cuproptosis signaling pathway in the cell cycle was
reported just this year. FDX1 was found to be involved in
copper-dependent cell death and could rescue cells from death
by regulating mitochondrial metabolism (33). In this study, the
expression of FDX1 was decreased in mice and humans with
ASD (Figure 2). In addition, we found that FDX1 was expressed
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in mitochondria. The abnormal expression of FDX1 in ASD
could cause a decrease in the expression of Fe–S cluster proteins
and inhibit steroidogenesis (34). Abnormal steroid hormone
levels have been found to contribute to the likelihood of autism
(35). FDX1 deletion could inhibit DLAT lipoylation (28).

DLAT was another crucial risk gene in the cuproptosis
signaling pathway for ASD identified by Boruta analysis in
the present study. DLAT was specifically related to depression
and anxiety in a chronic mild stress rat model (36). 6-
Phosphogluconate dehydrogenase mutation led to reduced RNA
and increased ROS by DLAT regulation (37). In addition,
copper could induce the accumulation of DLA and activate the
mitochondrial tricarboxylic acid cycle (8), which is consistent
with our finding in the present study that DLAT is located
in mitochondria. Thus, further studies should closely focus
on the regulation of FDX1 and DLAT for mitochondrial
function in ASD.

Lipoic acid synthetase is a protein target of lipoylation,
and LIAS mutation has been described as being related

TABLE 1 Accuracy, sensitivity, and specificity of each
machine learning model.

Model
types

Cohorts Accuracy
(95% CI)

Sensitivity Specificity

KNN Training cohort 0.76
(0.60–0.88)

0.80 0.72

Internal
validation

0.67
(0.51–0.87)

0.80 0.50

External
validation

0.73
(0.56–0.86)

0.75 0.70

NB Training cohort 0.64
(0.50–0.78)

0.95 0.36

Internal
validation

0.56
(0.41–0.78)

1.00 0.00

External
validation

0.55
(0.40–0.70)

1.00 0.10

SVM Training cohort 0.89
(0.74–0.96)

0.85 0.91

Internal
validation

0.68
(0.42–0.87)

0.80 0.51

External
validation

0.75
(0.59–0.87)

0.75 0.75

RF Training cohort 0.83
(0.69–0.93)

0.95 0.73

Internal
validation

0.72
(0.52–0.90)

0.70 0.75

External
validation

0.75
(0.59–0.87)

0.85 0.65

ANN Training cohort 1.00
(0.92–1.00)

1.00 1.00

Internal
validation

0.78
(0.62–0.94)

1.00 0.61

External
validation

0.90
(0.76–0.97)

1.00 0.80

to a defect in mitochondrial energy metabolism (38). In
the present study, we found that LIAS expression was
increased and was located in both the nucleoplasm and
mitochondria. Previous studies found that mutations in LIAS
were associated with non-ketotic hyperglycinaemia-like early-
onset convulsions and encephalopathy combined with a defect
in mitochondrial energy metabolism, and LIAS overexpression
inhibited oxidative stress and inflammation (38–40). Therefore,
we deduce that the accumulation of LIAS is not only related
to Fe-S cluster synthesis and copper circulation but also
indicates that oxidative stress levels may be increased in ASD
patients.

The brain expression level of ATP7B was lower than that of
other crucial genes based on the Human Protein Atlas; ATP7B
plays an essential role in human physiology in the brain and
liver. The deletion of ATP7B in cells and animals could decrease
copper toxicity in Wilson’s disease (41). Copper homeostasis
has been found to be associated with Alzheimer’s disease and
Parkinson’s disease (42, 43). However, no study has revealed the
role of this crucial regulatory gene in the copper concentration
in ASD patients, and we hypothesize that ATP7B is another
promising target for ASD research.

Although four crucial genes in the cuproptosis signaling
pathway were screened, their power to predict ASD in suspected
patients still needs to be investigated.

We next employed five machine learning methods for
testing. The results showed that the accuracy of KNN,
SVM, and RF was approximately 70% and up to 90% with
the ANN model in the external validation cohort. Previous
studies also show SVM, KNN, and RF have a decent
prediction value for ASD (44, 45). While those studies are
not verified in external validation cohorts, it is crucial to test
the performance of prediction models in external validation
cohorts. In the present study, each model was trained in
the training cohort and validated in the internal cohort and
external cohort.

However, the NB model showed poor overall performance
and significantly poorer performance than the ANN model
(p < 0.05). Some other studies have also found that the
performance of NB was poor in comparison to other methods
(24, 46). Additionally, NB’s poor performance might have been
caused by the limited number of samples in the present study.
Therefore, the NB method was not suitable for the present study.

The accuracies of KNN, SVM, and RF for ASD prediction
did not differ much in the present study. In addition, sensitivity
and specificity were also similar in the KNN, SVM, and RF
models in the external validation cohort. Thus, KNN, SVM,
and RF with selected genes in the cuproptosis signaling pathway
have a similar ability to predict ASD in suspected patients.

Artificial neural network (ANN) was identified as the most
suitable method for ASD prediction in the present study. For
developing the DrugMiner web tool, Jamali et al. found that
ANN outperformed NB, KNN, RF, and SVM (47). In addition,
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FIGURE 5

The ROC analysis of each model in the internal validation and external validation cohorts. The X-axis and Y-axis represent specificity and
sensitivity, respectively. The AUC values are indicated in the blue area, including KNN model (A,B), Naive Bayes model (C,D), SVM model (E,F), RF
model (G,H), and ANN model (I,J). The value of the cut-off point is shown at the inflection point. ROC, receiver operating characteristic; AUC,
area under the curve; KNN, k-nearest neighbor; SVM, support vector machine; RF, random forest; ANN, artificial neural network.

in reviews of machine learning methods, the authors also
indicated that ANNs will be the dominant method in the field
of biomedical science (24, 48).

Thus, detecting the expression levels of FDX1, DLAT, LIAS,
and ATP7B in blood could predict the risk of ASD with

ANN. These four risk factor genes could also be developed
as microarrays for clinical examination. Future basic and
experimental studies could also investigate the underlying
pathophysiological mechanisms of the risk genes for ASD
screened in the present study.
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FIGURE 6

The evaluation of each model after cross validation. The accuracy and Kappa value are shown in panel (A). Bonferroni’s test results are shown in
panel (B). The median numbers are represented by dots, and lines indicate the confidence level. ROC, receiver operating characteristic; AUC,
area under the curve; KNN, k-nearest neighbor; SVM, support vector machine; RF, random forest; ANN, artificial neural network.

Furthermore, there are some limitations to the present
study. The current study has a limited number of samples. The
results need to be validated in a large sample size. Additionally,
a prospective cohort study would be needed to detect the
conclusions. However, we provided reliable machine learning
methods, and four genes in the cuproptosis pathway that may
be crucial for identifying mechanisms in autistic children.

Conclusion

In the present study, on the basis of the results of screening
with the Boruta algorithm, we selected FDX1, DLAT, LIAS,
and ATP7B as crucial genes in the cuproptosis signaling
pathway for ASD. The crucial risk genes were expressed in
the brains of not only mice but also humans. ANN was the
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most suitable model for ASD prediction in the present study.
We first reported that biomarkers in the cuproptosis-related
signaling pathway had good power to predict ASD in suspected
patients through different machine learning methods, which
indicated that the cuproptosis signaling pathway may play a
crucial role in ASD. The findings of the present study could
contribute to the early identification of ASD in children and
provide novel inspirations for investigations of the causes and
treatments of ASD.
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