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Background: Many neuroimaging studies have reported abnormalities in

brain structure and function in internet gaming disorder (IGD). However,

the findings were divergent. We aimed to provide evidence-based evidence

of structural and functional changes in IGD by conducting a meta-analysis

integrating these studies quantitatively.

Method: A systematic search was conducted in PubMed, ScienceDirect, Web

of Science, and Scopus from January 1, 2010 to October 31, 2021, to identify

eligible voxel-based morphometry (VBM) and functional magnetic resonance

imaging (fMRI) studies. Brain alternations between IGD subjects and healthy

controls (HCs) were compared using the anisotropic seed-based d mapping

(AES-SDM) meta-analytic method. Meta-regression analysis was used to

investigate the relationship between gray matter volume (GMV) alterations and

addiction-related clinical features.

Results: The meta-analysis contained 15 VBM studies (422 IGD patients

and 354 HCs) and 30 task-state fMRI studies (617 IGD patients and 550

HCs). Compared with HCs, IGD subjects showed: (1) reduced GMV in the

bilateral anterior/median cingulate cortex, superior/inferior frontal gyrus and

supplementary motor area; (2) hyperactivation in the bilateral inferior frontal

gyrus, precentral gyrus, left precuneus, right inferior temporal gyrus and right

fusiform; (3) hypoactivation in the bilateral lingual and the left middle frontal

gyrus; and (4) both decreased GMV and increased activation in the left anterior

cingulate. Furthermore, Meta-regression revealed that GMV reduction in left
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anterior cingulate were positively correlated with BIS-11 score [r = 0.725,

p = 0.012(uncorrected)] and IAT score [r = 0.761, p = 0.017(uncorrected)].

Conclusion: This meta-analysis showed structural and functional impairments

in brain regions related to executive control, cognitive function and

reward-based decision making in IGD. Furthermore, multi-domain

assessments captured different aspects of neuronal changes in IGD, which

may help develop effective interventions as potential therapeutic targets.

KEYWORDS

voxel-based morphometry, functional magnetic resonance imaging, meta-analysis,
internet gaming disorder, gray matter volume

Introduction

Internet addiction has aroused widespread concern around
the world and led to many related mental diseases (1). Internet
gaming disorder (IGD) accounted for 57.5% of all types of
Internet addiction among college students (2) defined as the
inability of an individual to control his/her use of online
game behaviors, which has many similarities with pathological
gambling (3–5). Many players exhibit symptoms such as
decreased executive function (6), excessive impulsivity (7, 8),
impaired risky decision-making ability (9) and craving (10, 11).
Although unlike substance addiction, IGD does not consume
addictive substances, it can lead to dependence and mental and
physical health problems similar to other addictions due to
excessive gaming (12, 13). Given its growing prevalence and
negative effects, IGD has been listed in Section “Results” of
the fifth edition of the Diagnostic and Statistical Manual for
Mental Disorders (DSM-5) as a condition worthy of further
research. Therefore, more evidence is needed to understand
the neuropathic factors behind IGD, which will facilitate future
research and shed light on the success of its treatment.

As a non-invasive imaging technique, magnetic resonance
(MR) imaging has shown great potential value in elucidating
the neuropathogenesis of psychiatric disorders. Functional
magnetic resonance imaging (fMRI) has been widely used to
reveal neural changes in addictive disorders (14–17). Previous
studies in functional neuroimaging (12, 18–20) have revealed
that during performing the impulse control-related tasks, IGD
subjects had aberrant activations in the frontal, insular, temporal
and parietal cortex compared with the HCs. In addition to
functional activity changes, gray matter volume (GMV) as
a structural marker of the brain may be relatively stable
over time and can be used as a basis for functional neural
activity (21). GMV has been widely used in many studies
of mental disorders (22–24). VBM is a voxel-based gray
matter volume measurement method that can detect subtle
changes in GMV. Previous VBM studies have demonstrated that
IGD patients have reduced GMV in brain regions associated
with executive control such as the anterior cingulate cortex
(ACC) and dorsolateral prefrontal cortex involved in processing

goal-directed behaviors (5, 11, 25, 26). Therefore, a quantitative
synthesis of VBM studies in IGD can provide additional
information to complement the results of fMRI studies. The
combination of different modalities can more comprehensively
identify the common and specific neural changes in IGD. The
severity of IGD was measured by Young’s Internet addiction test
(IAT). IAT was a reliable and valid instrument for classifying
Internet addiction disorder (27). The clinical relevance of
impulsivity was frequently highlighted because it affected many
mental and behavioral disorders. Cao and Lee have found that
IGD subjects were more impulsive than healthy controls (8, 28),
which may lead to serious impairments in psychological and
social functions, such as suicide attempts and crime. The severity
of Internet addiction disorder (IAD) was positively correlated
with both behavioral impulsivity and self-reported impulsivity
(28). Barratt Impulsiveness Scale-11 (BIS-11) score could well
assess the core impulsivity characteristics of addiction (29).

Although many neuroimaging studies have shown changes
in brain structure and function in patients with IGD, these
findings are inconsistent or even contrary. Consequently, it
is of great significance to perform a pooled meta-analysis to
provide evidence-based evidence of structural and functional
changes in IGD by pooling “observations” with controls for
random effect. A preliminary meta-analysis of 10 VBM studies
and 27 fMRI studies has found brain hyperactivation in the
anterior and posterior cingulate cortices, caudate and posterior
inferior frontal gyrus (IFG), hypoactivation in the anterior
IFG, the posterior insula, and reduced gray-matter volume in
the anterior cingulate, orbitofrontal and dorsolateral prefrontal
(30). However, in recent years, there have been substantial
novel and high-quality studies on this subject. Compared with
previous meta-analysis, this study not only included more new
studies to explore the neural changes of IGD, but also focused on
exploring the relationship between brain GMV and impulsivity
in IGD patients. It is high time that we performed an updated
meta-analysis to confirm, supplement, and/or modify the results
of previous meta-analysis.

The purpose of our study was to conduct two meta-
analyses separately including numerous proven VBM and fMRI
studies and a conjunction analysis between two meta-analyses
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to explore: (a) brain GMV and functional abnormalities; (b) the
association between some common addiction-related clinical
features and GMV alterations. Based on previous empirical
studies, we hypothesized that IGD subjects compared to HCs
would show GMV and functional alterations in brain regions
involved in reward-based decision-making such as the inferior
prefrontal cortex (31), cognitive control such as the cingulate
gyrus and the precuneus (18), and visual cognitive functions
such as the fusiform (8). As a reliable structural marker,
GMV can easily identify different psychiatric disorders without
potentially confounding considerations of tasks in fMRI (32).
Therefore, we also hypothesized that the GMV alterations in
IGD subjects would be closely associated with clinical variables
such as the IAT score and BIS-11 score.

Methods

Inclusion of studies

Extensive searches were carried out in PubMed,
ScienceDirect, Web of Science, and Scopus from January

1, 2010, to October 31, 2021, combined with the following
keywords: (“voxel-based morphometry” or “VBM” or “gray
matter” or “voxel-wise” or “functional magnetic resonance
imaging” or “fMRI”) and (“online-game” or “Internet gaming
disorder” or “IGD”). Studies were included if (1) they used
specific tasks during the MRI scan or they used VBM to analyze
gray matter; (2) they provided whole-brain pairwise voxel-based
comparisons of patient groups (IGD) relative to controls; (3)
the studies reported Montreal Neurological Institute (MNI)
or Talairach coordinates of the whole brain; (4) there were no
neurological or psychiatric comorbidities such as depression,
anxiety, autism, learning disorder and epilepsy; (5) studies were
peer-reviewed and published in English. Studies were excluded
if (1) they only reported region of interest findings; (2) peak
coordinates were still not available even if we contacted the
authors by email; (3) studies used tensor-based morphometry;
(4) they were unpublished studies; (5) they didn’t use the same
threshold throughout the whole brain within each included
study. Three authors independently searched, selected, and
cross-checked the literature. Any divergence was settled
through a joint revaluation of the original studies. And then we
implemented the following steps.

FIGURE 1

Prisma flow diagram for including eligible studies in the meta-analysis.
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TABLE 1 Demographic and clinical characteristics of voxel-based morphometry and functional magnetic resonance imaging studies in internet
gaming disorder.

References Age
group

Patients Controls Tasks Multiple
comparisons

BIS-II IAT

Number
(% male)

Mean
age, y

Number
(% male)

Mean
age, y

(1) VBM studies

Du et al. (38) Adolescents 25 (100) 17.28 27 (100) 17.48 NA Uncorr. 68.56
(55.33)

69.96
(32.15)

Han et al. (4) Adults 20 (100) 20.90 18 (100) 20.90 NA FDR 61.5 (50.1) NA

He et al. (39) Adults 26 (77) 20 20.69 26 (77) 20.46 NA few NA NA

Jin et al. (40) Adults 25 (64) 16 19.12 21 (67) 18.76 NA few 63.28
(29.19)

63.28
(26.19)

Ko et al. (41) Adults 30 (100) 23.57 30 (100) 24.23 NA FDR 78.50
(62.87)

NA

Lee et al. (42) Adults 31 (100) 24.00 30 (100) 23.00 NA few 54.4 (45.2) 64.4 (31.5)

Lee et al. (43) Adults 20 (100) 23.90 20 (100) 22.70 NA Uncorr. 51.6 (47.4) 58.6 (31.3)

Lin et al. (44) Adults 35 (100) 22.28 36 (100) 22.20 NA FDR NA 72 (29)

Mohammadi
et al. (45)

Adults 29 (100) 23.60 29 (100) 22.70 NA few NA NA

Seok et al. (46) Adults 20 (100) 21.70 20 (100) 22.40 NA FDR 56.00
(47.50)

71.85
(29.80)

Sun et al. (47) Adults 18 (83) 15 20.50 21 (86) 21.95 NA AlphaSim 63.94
(50.81)

NA

Weng et al. (48) Adolescents 17 (24) 4 16.25 17 (12) 15.54 NA few 68.85
(65.94)

NA

Yoon et al. (49) Adults 19 (100) 22.90 25 (100) 25.40 NA Cluster-size
inferences

70.10 (54.3) 76.3 (26.0)

Zhou et al. (17) Adolescents 18 (89) 16 17.23 15 (87) 17.81 NA FDR NA NA

Lee et al. (50) Adults 18 (100) 25.40 18 (100) 25.80 NA Uncorr. 58.8 (48.8) 72.4 (32.1)

(2) fMRI studies

Chiao et al. (51) Adults 15 (100) 24.67 15 (100) 24.47 Go/No-Go task FWE 74.33 (62) NA

Chun et al. (52) Adolescents 16 (100) 13.60 19 (100) 13.37 Cue-reactivity task FDR NA NA

Dieter et al. (53) Adults 15 (87) 28.70 17 (76) 24.94 Self-perception task FWE NA NA

Ding et al. (54) Adolescents 17 (82) 16.40 17 (82) 16.29 Go/No-Go task AlphaSim 62.71 NA

Dong et al. (55) Adults 18 (100) 21.00 21 (100) 22.00 Stroop task/guessing
task

Uncorr. NA 79.5

Dong et al. (56) Adults 16 (100) 21.40 15 (100) 22.10 Wins-and-losses task FWE NA NA

Dong et al. (57) Adults 14 (100) 23.40 13 (100) 24.10 Guessing task FDR NA NA

Dong et al. (58) Adults 20 (100) 21.30 16 (100) 21.90 Risk-taking/risky
decision-making

task

AlphaSim NA NA

Dong et al. (19) Adults 15 (100) 21.60 15 (100) 22.40 Color–word Stroop
task

Uncorr. NA NA

Han et al. (59) Adolescents 16 (100) 14.20 15 (100) 14.00 Cue-reactivity task FDR NA NA

Ko et al. (5) Adults 15 (100) 24.70 15 (100) 24.47 Cue-reactivity task Uncorr. NA NA

Ko et al. (10) Adults 26 (100) 24.60 23 (100) 24.35 Go/No-go task FDR 79.08 NA

Lee et al. (60) Adults 24 (100) 24.80 24 (100) 24.30 Risky
decision-making

task

Uncorr. 25.8 (22.7) 50.9 (27.5)

Lee et al. (61) Adolescents 18 (18) 13.60 18 (100) 13.40 Stroop
Match-to-Sample

task

Uncorr. 65.1 (18.4) NA

Leménager et al.
(62)

Adults 16 (88) 28.30 17 (76) 24.94 Self-perception task FWE NA NA

(Continued)
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TABLE 1 (Continued)

References Age
group

Patients Controls Tasks Multiple
comparisons

BIS-II IAT

Number
(% male)

Mean
age, y

Number
(% male)

Mean
age, y

Lin et al. (20) Adults 19 (100) 22.20 21 (100) 22.80 Probability–
discounting

task

Uncorr. NA NA

Liu et al. (63) Adults 39 (100) 22.60 23 (100) 23.09 Cue-reactivity task FWE NA NA

Liu et al. (64) Adults 11 (100) 23.50 11 (100) 22.45 Go/no-go task Uncorr. NA NA

Liu et al. (11) Adults 41 (100) 21.90 27 (100) 22.74 Cups task FWE NA NA

Lorenz et al. (65) Adults 8 (100) 25.00 9 (100) 24.80 Dot probe
paradigm/cue
reactivity task

AlphaSim 74.9 (70.6) NA

Ma et al. (66) Adults 29 (100) 22.60 23 (100) 23.09 Cue-reactivity task FWE NA NA

Qi et al. (67) Adolescents 23 (100) 17.30 24 (100) 17.42 Balloon analog risk
task

AlphaSim 68.17
(54.13)

70.35
(33.42)

Qi et al. (68) Adolescents 24 (100) 17.20 24 (100) 17.42 Balloon analog risk
task

AlphaSim 68.79
(54.13)

70.71
(33.42)

Shin et al. (69) Adults 20 (x) 22.10 21 (x) 22.14 Go/no-go task FWE 51.25
(38.57)

76 (26.71)

Sun et al. (70) Adults 10 (100) 20.40 10 (100) 20.30 Cue-reactivity task FDR NA NA

Wang et al. (71) Adults 20 (100) 21.00 20 (100) 21.95 Delay discounting
task/probabilistic
discounting task

FWE NA 65.55 (31)

Zhang et al. (72) Adults 19 (100) 22.20 21 (21) 22.80 Addiction Stroop
task

FWE NA NA

Zhang et al. (73) Adults 40 (100) 22.00 19 (100) 22.89 Cue-reactivity task GRFT NA NA

Turel et al. (74) Adults 26 (77) 20 20.46 26 (77) 20 20.69 Cue-reactivity task FWE NA NA

Wang et al. (75) Adults 27 (100) 22.52 26 (100) 23.23 Roulette task FDR NA 70.15
(22.31)

WHO, Children, 1−9 years; Adolescents, 10−19 years; Adults, > 19 years; BIS-11, Barratt Impulsiveness Scale-11; IAT, internet addiction test.

Statistical analysis

Structural and functional brain differences between
individuals with IGD and healthy controls were analyzed
by using the anisotropic seed-based d mapping (AES-SDM)
meta-analytic software, version 5.151. The AES-SDM method
has been well validated in recent meta-analysis of psychiatric
diseases (33, 34). AES-SDM is a statistical technique that
can use previously reported peak coordinates and effect sizes
(t-scores) to calculate signed (positive/negative) effect sizes
and variance maps of brain regional differences between
patient and control groups. For each meta-analysis, maps are
combined across studies based on the random-effect model,
considering sample size, intra-study variability and inter-study
heterogeneity (35). The processing process of AES-SDM data
is summarized here2. Here we briefly outline the steps: (1)
we extracted peak coordinates and effect sizes (t-values) from
each included study. Sometimes some studies included z-scores
without t-values, then the z-scores could be converted to t

1 https://www.sdmproject.com/

2 http://www.sdmproject.com/software/tutorial.pdf

statistics using an online converter3; (2) we converted peak
coordinates into standardized MNI space; (3) we set the full
width at half maximum (FWHM) to 20 mm as this will maintain
a balance between sensitivity. Voxel p < 0.005 was used as a
significant threshold. Peak height threshold > 1 and cluster
extent threshold > 10 voxels were supplemented to optimally
balance sensitivity and specificity (36).

First, two meta-analyses including all fMRI and VBM
studies were conducted separately to identify neural changes
in IGD. Second, a multimodal analysis was further performed
on patients and controls to examine overlapping regions of
functional and structural abnormalities. Next, a jack-knife
sensitivity analysis was also conducted to test the robustness
of the results by repeating the same analysis excluding one
study each time and to assess the reproducibility of the results
for each meta-analysis (36). If one brain region survives in
most of the repeats, we consider the finding to be highly
replicable. Then meta-regression analysis was conducted to
explore the association between GMV alterations and clinical
features including the BIS-11 score and IAT score. At last, funnel

3 http://www.sdmproject.com/utilities/?show=Statistics
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plots constructed by AES-SDM (Supplementary Figure 1) and
Egger’s test were used to examine possible publication bias (37).

Results

Included studies and sample
characteristics

Searching in various databases, a total of 1002 records were
identified. After removing duplicates, 506 records were screened
and 131 full-text articles were assessed for eligibility. Our final
dataset consisted of 15 VBM studies including 422 IGDs and
354 HCs and 30 fMRI studies including 617 IGDs and 550 HCs
(Figure 1 and Table 1).

Meta-analysis result

Voxel-based morphometry meta-analysis
As demonstrated in Figure 2 and Table 2, IGD subjects

showed significantly smaller GMV in the bilateral anterior
cingulate cortex (ACC), median cingulate cortex (MCC),
superior frontal gyrus, medial orbital (SFG), inferior frontal
gyrus (IFG) and supplementary motor area (SMA) compared
with healthy controls. Compared with the control group, there
was no significant increase of GMV in the IGD group.

FIGURE 2

Results of voxel-based morphometry (VBM) for internet gaming
disorder (IGD). Gray matter volume (GMV) reductions were
displayed in yellow shown in the sagittal, axial, and coronal
planes separately. (A–C) show three different brain regions.

Functional magnetic resonance imaging
meta-analysis

Pooling across all fMRI studies, IGDs showed significantly
higher activation in the bilateral inferior frontal gyrus (IFG),
precentral gyrus, left precuneus, right inferior temporal gyrus
(ITG), right supramarginal and right fusiform compared with
HCs (Figure 3 and Table 2). Besides, lower activation was also
detected in the bilateral lingual, calcarine and left middle frontal
gyrus (MFG) (Figure 4 and Table 2).

Multimodal voxel-based morphometry and
functional magnetic resonance imaging
analysis

Compared with healthy controls, IGD subjects showed both
decreased GMV and increased activation in the left ACC (MNI
coordinates, 0, 20, 22; 15 voxels) (Figure 5).

Reliability analyses

For the VBM meta-analysis, a systematic whole-brain
jackknife sensitivity analysis revealed a highly robust GMV
decrease in bilateral anterior cingulate cortex (ACC) and median
cingulate cortex (MCC) because these results were replicable
in all 15 datasets. Alterations in the supplementary motor
area (SMA) and inferior frontal gyrus (IFG) remained highly
replicable, as they could be identified in at least 12 and 10 of
the 15 combinations respectively. For the fMRI meta-analysis,
hypoactivation of bilateral lingual was highly replicable, as
these findings were preserved throughout all 30 combinations
of datasets. Besides, the results in the left calcarine and left
middle frontal gyrus were also significant because they could
be identified in 27 and 26 datasets respectively. Hyperactivation
of bilateral inferior frontal gyrus, right supramarginal, right
fusiform, left precuneus and right inferior temporal gyrus (ITG)
remained robust as at least 25 of the 30 combinations were
identifiable (Table 2).

Meta-regression

In our study, the variables explored by meta-regression
analysis included the BIS-11 score and IAT score. The results
showed that GMV reduction in left ACC (MNI coordinate, 0,
28, 22; SDM-Z, −3.067; p = 0.00001; 477 voxels) was positively
correlated with BIS-11 score [r = 0.725, p = 0.012(uncorrected)]
and IAT score [r = 0.761, p = 0.017(uncorrected)] (Figure 6).

Discussion

Our study integrated the results of 15 VBM studies and 30
fMRI studies to explore changes in brain GMV and functional
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TABLE 2 Meta-analysis results across all studies.

Region MNI
coordinate

SDM Z
score

P-value No. of
voxels

Breakdown
(no. of
voxels)

Jack-knife
sensitivity

Brodmann
areas

(1) VBM
RESULTS

Clusters of
decreased GMV

R median
cingulate/paracingulate

gyri

6, 26, 32 −3.479 0.000077605 1387 15 out of 15 32,24,10,11

L ACC (399)

R ACC (67)

L MCC (100)

R MCC (35)

L superior/inferior
frontal gyrus, medial

orbital

0, 50, −6 −1.785 0.000077605 647 12 out of 15 32,10,11,9,8,24

R S/IFG (59)

L/R supplementary
motor area

2, 4, 58 −2.165 0.000007033 331 10 out of 15 6,32,24

L SMA (199)

R SMA (125)

(2) fMRI
RESULTS

IGDs > HCs Inferior frontal gyrus,
opercular part

42, 8, 24 2.727 ∼0 1404 26 out of 30 48,44,45,6

R IFG, opercular
part (458)

R IFG,
triangular part
(277)

R precentral
gyrus (213)

R MFG (31)

L inferior frontal gyrus,
triangular part

−46, 14, 30 2.848 ∼0 1029 26 out of 30 44,48,6

L IFG, opercular
part (326)

L precentral
gyrus (247)

L IFG, triangular
part (99)

L insula (40)

L precuneus −4, −60, 46 2.174 0.000701845 274 28 out of 30 7,5

L precuneus
(229)

R precuneus
(44)

L/R ACC 4, 10, 26 1.952 0.002771378 66 25 out of 30 24

L ACC (49)

L median
network,
cingulum (22)

R ACC (17)

R supramarginal 58, −24, 32 1.899 0.003777742 29 26 out of 30 48,2

R inferior temporal gyrus 54, −44, −16 1.919 0.003375173 13 25 out of 30 20

(Continued)
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TABLE 2 (Continued)

Region MNI
coordinate

SDM Z
score

P-value No. of
voxels

Breakdown
(no. of
voxels)

Jack-knife
sensitivity

Brodmann
areas

R fusiform 32, −76, −14 1.985 0.002373993 11 26 out of 30 19

IGDs < HCs L calcarine 0, −82, −8 −1.216 0.001140535 478 27 out 30 17

L calcarine (64)

R calcarine (19)

L/R lingual −4, −80, −2 −1.164 0.001522422 215 30 out of 30 17,18

L middle frontal gyrus −24, −4, 48 −1.157 0.001599848 19 26 out of 30 6

L, Left; R, right; MNI, Montreal Neurological Institute; ACC, anterior cingulate cortex; MCC, median cingulate cortex; IFG, inferior frontal gyrus; SFG, superior frontal gyrus; SMA,
supplementary motor area; MFG, middle frontal gyrus; FWE-corrected p < 0.05.

FIGURE 3

Results of functional magnetic resonance imaging (fMRI) for IGD. Clusters with hyperactivation were shown in red. (A–G) show seven different
brain regions.

neural activation in IGD patients compared to healthy controls,
using an anisotropic seed d-Mapping (AES-SDM) method.
The result demonstrated that GMV reduction was found in
the anterior cingulate cortex (ACC), median cingulate cortex
(MCC), and supplementary motor area (SMA). Functionally,
IGDs as compared with HCs showed significantly higher
activation in the left precuneus, right inferior temporal gyrus
(ITG), fusiform and inferior frontal gyrus (IFG). Besides,
lower activation in the left middle frontal gyrus (MFG) and
the lingual was also detected, stable and replicable under
jack-knife sensitivity analysis. In addition, both decreased GMV
and increased activation was found in the left ACC among

IGD patients. Moreover, meta-regression analysis revealed
that higher BIS-11 score and IAT score were correlated
with decreased GMV in the left ACC. These findings could
become a preliminary implication of neural structural and
functional biomarkers in IGD and may help develop effective
interventions in these brain regions as potential therapeutic
neuro-target for IGD.

Consistent with previous findings in IGD (26, 76), robust
GMV decrease in brain regions involved in executive control,
namely, the ACC and the SMA (77). The ACC plays important
roles in the neural activity of several large-scale networks
(78) and is critically involved in multiple processes including
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FIGURE 4

Results of fMRI for IGD. Clusters with hypoactivation were
shown in green. (A–C) show three different brain regions.

FIGURE 5

Multimodal analysis results in the IGD. Purple clusters represent
reduced GMV and increased brain activation.

cognitive control (79), emotional regulation (80), reward-
based decision-making (81), conflict monitoring and error
processing (82).

Unsurprisingly, the results of the VBM and fMRI meta-
analyses converged on the ACC, showing both functional
hyperactivation and gray-matter reduction in IGDs as compared
to HCs, which is consistent with previous studies suggesting that
structural or functional alterations in the region lead to impaired
executive control (10, 83). A study by Wang et al. (76) showed
that the GMV of the ACC was negatively correlated with conflict
monitoring in the Stroop task. As a functional imaging study
demonstrated, IGD individuals exhibited altered brain activity
in the ACC during error processing (56). Although numerous
executive control problems have been implicated in IGD as
mentioned above, IGD is most consistently associated with
high impulsivity (28). Conflict monitoring capacity is closely

associated with impulse control (84). Our results showed that
higher BIS-11 scores are significantly associated with decreased
GMV in the left ACC, suggesting that high impulsivity in
IGD patients may be due to structural abnormalities in the
executive control regions of the brain (38, 76). Although the
direction of the alteration of the ACC is inconsistent across
modalities (fMRI and VBM), there is evidence that an increase
or decrease in GMV may not simply correspond to functional
neural activation or inactivation (85). Previous studies have
been shown that the ACC always activates in the Stroop task
involved in conflict monitoring and cognitive control (86–
88). In conclusion, fMRI and VBM may reflect the distinctive
aspects of neural alterations, it is plausible to postulate that the
alterations of the ACC in IGD subjects may play a vital role
in a dysfunctional interaction between executive control and
reward-based decision making.

We find decreased GMV of SMA in IGD people through
VBM analysis. The SMA is capable of controlling internally
generated movements and action sequences (89). Spending
more time playing computer games and on repetitive motor
actions, such as clicking the mouse or hitting the keyboard,
may cause structural changes in the SMA. Just like the cingulate
gyrus, the SMA also contributes significantly to cognitive
control (77) such as integrating sensory information and
monitoring conflict (90). A study has shown that disruptions
of the SMA can provoke impairments in response inhibition
(91). Besides, during a Go/No-Go Task, IGD subjects showed
decreased activation of the SMA for response inhibition
compared with healthy controls in a functional imaging study
(51). We speculate that IGD subjects’ inability to control their
urge to play games is associated with a reduction in SMA gray
matter involved in response inhibition, consistent with previous
evidence that appropriate response inhibition may be a key
aspect of impulse control (92).

The findings of lower activation of the MFG in IGD subjects
cannot be ignored. It is commonly believed that the MFG
contributes to inhibitory control (57, 83, 93). A study (58)
has found that the MFG activation was negatively correlated
with the Stroop effect in the IGD groups, which is consistent
with previous studies on IGD subjects in go/no-go task (94)
and switching (95) task. Hypoactivation in the MFG in IGD
subjects probably suggests that they may engage less endeavor
in controlling their impulses to play games.

The precuneus, also known as the posterior region of the
medial parietal cortex, plays an important role in fundamental
cognitive functions such as episodic memory retrieval, visual-
spatial information, spatially guided behavior, and attentional
processing (96). Numerous studies have confirmed that parietal
areas are activated during attention-shifting and are activated
by visual addiction-related cues when attention is reflexively
drawn to salient features of the stimulus (97). Higher brain
activation in precuneus in IGD subjects may indicate that they
experience more cognitive conflict and require more top-down
attention during the addictive Stroop task (98, 99). That means,
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FIGURE 6

The results of the meta-regression analysis show that the BIS-11 and IAT scores are positively correlated to regional GMV reduction in the left
anterior cingulate cortex (ACC).

gaming-related words have attracted IGD subjects’ attention
during the addiction Stroop task and the precuneus was
activated to promote cue-induced cravings for online gaming.

The fusiform, located in the middle of the ventral temporal
lobe, is considered to be one of the most important brain regions
in the visual ventral stream and plays an important role in
a range of visual cognitive functions, such as the recognition
of the face, body and various object features (100–104),
color information processing and emotion perception in facial
stimulation (105). Furthermore, the fusiform topographically
connects the striate cortex to the inferior temporal lobe, which is
associated with auditory processing, comprehension and verbal
memory (47). We observed significant activation of the fusiform
and inferior temporal gyrus, which may indicate that IGD
subjects were more focused on the visual and auditory stimuli
of games and were reminded of past online gaming experiences,
triggering cravings.

What’s more, we also found increased activation in
the inferior frontal gyrus (IFG) involved in risk-evaluation
(106, 107) and audio-visual information accumulation in
decision-making tasks (108), as well as in the regulation
between reward and risk levels (20, 106). A study by
Dong et al. (56) demonstrated that IGD subjects needed
longer time than healthy controls to make decisions and

showed greater activation of the inferior frontal gyrus both
in WIN and LOSS trials. Another research found that the
activation of the IFG had a positive correlation with the risk
aversion (106). We speculate the reason for hyperactivation
in IFG is that IGD subjects need more endeavors to
complete the decision-making task and may affect executive
functions needed to perform other tasks such as conflict
inhibition. It could also explain that the occurrence of negative
outcomes can lead to further negative reinforcement and
the continuation of addictive behaviors to avoid negative
effects (109).

Limitation

This meta-analysis sheds new light on brain structure
and functional changes of IGD, which may have implications
for both clinical interventions and future research. However,
there are still some limitations that need to be considered.
First, it is difficult to rule out the inter-study heterogeneity
of methodologies (including MRI machine, slice thickness,
pretreatment protocol, and statistical threshold), which may
influence our results. Future research should focus on these
issues. Second, the meta-analysis was based primarily on peak
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coordinates rather than raw statistical brain maps, it may
not be sufficient enough to detect some results with small or
medium effect sizes (30, 110). Third, male participants were
dominant in all samples, and we did not analyze neurological
differences in IGD patients of different genders. Fourth, due to
the integration of cross-sectional studies, the causal relationship
between the structural and functional brain changes and the
development of addiction still requires careful consideration.
As a consequence, longitudinal studies should be focused on in
future research.

Conclusion

In summary, our pooled meta-analysis found distinctive
brain structural and functional alterations in IGD across
different modalities. Evidence from brain functional
abnormalities and gray-matter volume alteration converged
to show that IGD was associated with brain regions involved
in executive control, cognitive function, and reward-based
decision-making such as the ACC, the SMA, the precuneus,
fusiform and the IFG. Meta-regression analysis further explored
the association between brain structural alterations in IGD and
clinical information. Our findings stress the neurofunctional
and neurostructural biomarkers for IGD, which may help
to develop effective interventions for these brain regions as
potential behavioral, pharmacological or neurotherapeutic
targets. Besides, longitudinal studies should be performed to
complement and validate our findings in the future.
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