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Background: Circadian rhythm was involved in the pathogenesis of

depression. The detection of circadian genes and white matter (WM) integrity

achieved increasing focus for early prediction and diagnosis of major

depressive disorder (MDD). This study aimed to explore the effects of PER1

gene polymorphisms (rs7221412), one of the key circadian genes, on the

association between depressive level and WM microstructural integrity.

Materials and methods: Diffusion tensor imaging scanning and depression

assessment (Beck Depression Inventory, BDI) were performed in 77 healthy

college students. Participants also underwent PER1 polymorphism detection

and were divided into the AG group and AA group. The effects of PER1

genotypes on the association between the WM characteristics and BDI were

analyzed using tract-based spatial statistics method.

Results: Compared with homozygous form of PER1 gene (AA), more

individuals with risk allele G of PER1 gene (AG) were in depression state with

BDI cutoff of 14 (χ2 = 7.37, uncorrected p = 0.007). At the level of brain

imaging, the WM integrity in corpus callosum, internal capsule, corona radiata

and fornix was poorer in AG group compared with AA group. Furthermore,

significant interaction effects of genotype × BDI on WM characteristics were

observed in several emotion-related WM tracts. To be specific, the significant

relationships between BDI and WM characteristics in corpus callosum,
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internal capsule, corona radiata, fornix, external capsule and sagittal stratum

were only found in AG group, but not in AA group.

Conclusion: Our findings suggested that the PER1 genotypes and emotion-

related WM microstructure may provide more effective measures of

depression risk at an early phase.

KEYWORDS

PER1 gene polymorphisms, diffusion tensor imaging, Beck Depression Inventory,
depressive risk, tract-based spatial statistics

Introduction

Major depressive disorder (MDD) is one of the most
common psychiatric disorders (1–3). According to the World
Health Organization, MDD ranks among the top causes of
worldwide disease burden and disability (4, 5), with an estimated
lifetime prevalence of 20.6% in the general population (6)
and with the peak ages of diagnosis from mid-adolescence to
mid-40s (7, 8). To reduce that burden, earlier diagnosis, and
interventions, as well as identification of those young people
who are at high risk of MDD has been prioritized (9–11).

Recently, many lines of evidence in humans or animal
models clearly demonstrated a close relationship between MDD
and the disturbances of sleep-wake and circadian systems (12–
17). The hypothesis that dysregulations of circadian rhythm
may play a critical role in the pathophysiology of MDD, is
supported by recent findings in the field of molecular biology
and genetics of the complex machinery regulating biological
clocks (13, 18–21). Therefore, disturbed circadian function have
been suggested to be a major risk factor in the development of
MDD (14, 18, 22–25). Focused on the people who are vulnerable
to the disturbances of circadian rhythm will provide pivotal
evidence in the prevention of MDD.

At the gene level, accumulated evidence have implicated
that altered circadian gene expression might represent a
vulnerability factor for depression (19, 26–28). Based on
the chronic mild stress (CMS) animal model of depression,
previous studies have indicated that the diurnal oscillation
of the expression of several circadian rhythm genes (such
as CLOCK, CRY2, PER1, and PER3, etc.) were disturbed
and its degree directly was correlated with mood-related
behavior (29–31). However, the animal model of depression
did not model the full syndrome of depression. Several
studies have explored the relationship between depression
and circadian rhythm genes in human. Previous studies have
found disruptions of the rhythmic expression of PER1,
PER2, CRY1, BMAL1, NPAS2, and GSK-3b in MDD,
which might influence the susceptibility to recurrence
after antidepressant treatment (32). Moreover, a study of

postmortem human brains have reported that daily rhythmic
patterns of circadian gene expression in the brain were seriously
disrupted and/or desynchronized in MDD subjects, further
confirming a key connection between circadian gene variation
and MDD (19). On the other hand, a number of studies
have tested links between circadian gene polymorphisms
and the susceptibility to MDD, and several specific single-
nucleotide polymorphisms (SNPs) were involved (33, 34).
These studies suggested that clock gene alleles, which caused a
modification of the circadian clock mechanism, might directly
contribute to the onset of mood disorders, or might elicit a
misalignment/disruption of the circadian system under the
detrimental environment (35).

Due to the genetic architecture of depression is complex and
genetic effects are not always saliently expressed at a behavioral
level (36), the integration of genomics and neuroimaging
techniques (imaging genetics) on MDD might help to identify
biomarkers of genetic susceptibility and highlight brain changes
mediated by underlying genetic factors (37–41). Recently, using
diffusion tensor imaging (DTI) technique and tract-based spatial
statistics (TBSS) method, many researches have focused on
the interaction effect between risk genes and abnormalities of
white matter (WM) integrity or fiber tracts in MDD, such as
5-HTTLPR heterozygotes (42, 43), BDNF-met carriers (44),
SLC6A15-A carriers (45), NTRK2 homozygous A (46), FKBP5-
T carriers (47), COMT homozygous G (48, 49), VMAT1
Thr136Ile-A carriers (50), THP2 homozygous G (51), RERE
homozygous T (52). In addition, significant correlations have
been observed between the MDD polygene risk score and
fractional anisotropy (FA) values, as well as between SLC6A4,
COMT or BDNF promoter region DNA methylation and WM
microstructure (53–56). Furthermore, in terms of circadian
gene, Bollettini et al. have found that CLOCK C carriers
showed widespread increased mean diffusivity (MD) in several
WM tracts compared to T homozygotes, and that PER34/4

homozygotes showed significant increased radial diffusivity
(RD) and reduced FA in several brain WM tracts compared
with PER35/5 homozygotes in depressed bipolar patients, but
no significant interaction effect of the two clock genes on WM
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microstructure (57). Among the clock genes involved in the
control system of circadian rhythms, PER1 gene aroused our
interest, because its rhythmic expression was disrupted in MDD
subjects (19, 30, 32), as well as polymorphisms of rs7221412
was associated with the timing of human behavioral rhythms
(mean activity timing was delayed by 67 min in rs7221412GG

versus rs7221412AA homozygotes) and time of death (58).
However, to our knowledge, the interaction effects between
PER1 gene polymorphisms and the WM microstructural
abnormalities in MDD patients or susceptible population have
not been depicted.

Considering that the dysregulated expression of circadian
genes in MDD are mainly selectively altered in emotion-related
brain regions (19), we aimed to explore the interaction effects of
polymorphisms of PER1 gene (rs7221412) and depression level
on the WM microstructural integrity in a group of university
students. We hypothesize that the PER1 gene polymorphisms
will modulate the relationship between depression level and
WM microstructural integrity in emotion-related brain regions.

Materials and methods

Participants

100 healthy college students (all right-handed) were
originally recruited from Xidian University in China via
advertisements. The subjects would be excluded if they met
the following conditions: (1) incomplete information or data
(nine subjects failed to acquire the genotype and five subjects
did not collect image data); (2) current or chronic illness
(excluded four subjects); (3) traces of drugs (including excessive
alcohol, nicotine, and caffeine use); (4) personal or family
history of neurological or psychiatric disease (3 participants
were removed); and (5) sleep disorders (such as sleep apnea,
and nocturnal myoclonus, 2 subjects were discarded). At last, 77
subjects (50 men and 27 women; mean age: 20.94 ± 2.09 years,
range from 18 to 27 years) were included in this study.
Recruitment and screening took place between August 2018
and June 2019 and all data collection took place between
March 2019 and January 2020. Each subject was required to
finish the venous blood collection, behavioral questionnaires
and Magnetic Resonance Imaging (MRI) scanning. In order to
make sure subjects are in the same state during the experiment,
we performed the behavioral data collection and MRI scanning
within a day, and administered the venous blood collection in
3 days. The study protocol and all experimental procedures
were reviewed and approved by the Institutional Research Ethics
Committee of the Xijing Hospital of the Fourth Military Medical
University for research on human subjects and performed in
accordance with the Declaration of Helsinki. Written informed
consent was obtained from all subjects prior to the study.

PER1 polymorphism identification and
genotyping

Two milliliter venous blood was prepared for genomic
DNA extraction by using Blood Genomic DNA Kit (TIANGEN
BIOTECH CO., LTD., Beijing, China) according to the
manufacturer’s instructions. Polymorphism in period
homolog 1 (PER1) gene were sequenced. Primers used for the
polymerase chain reaction were as follows. PER1 (rs7221412):
5’-ATGTGGGCAATAATACATAAGCA-3’ (forward), 5’-
CTATTGACCATTACTTCGTGGA-3’ (reverse). The gene
sequencing was performed in the laboratories of Nanjing
JINSIRUI Bio-tech Co., Ltd. (Nanjing, China). In our study
cohort, the distribution of polymorphism was consistent with
the Hardy-Weinberg Equilibrium (χ2 = 0.941, P= 0.332).

Behavioral data acquisition

The Beck Depression Inventory (BDI) (59) has been
employed to measure the depressive level (60–64). Two
depressive states were identified with the most commonly used
cutoff BDI = 14 (BDI < 14, without depression; BDI ≥ 14,
with depression) (65). The Munich ChronoType Questionnaire
(MCTQ) were employed to quantify the phenotype of circadian
rhythm (66). In this study, four index of MCTQ were used,
including outdoor time a week, average sleep duration, MSFsc
(corrected mid-sleep phase on free days), and Social Jetlag
(different between mid-sleep phase on free days and work
days) (67, 68). The Pittsburgh Sleep Quality Index (PSQI) were
applied for general sleep quality (69). We also applied Insomnia
Severity Index (ISI) to evaluate the degree of insomnia and
divided subjects into two categories with cutoff 8 (ISI < 8,
without insomnia; ISI ≥ 8, with insomnia) (70, 71). All of these
questionnaires were collected by trained interviewers.

Image acquisition

The DTI data were acquired on a 3-Tesla MRI system
(General Electric Medical Solutions) at MR Research Center of
the Xijing Hospital of the Fourth Military Medical University,
Xi’an, in China. Subjects’ heads were positioned carefully with
restraining foam pads to reduce head motion, and ear plugs were
used to reduce the scanner noise discomfort. Prior to the DTI
acquisition, high-resolution T1- and T2-weighted images were
acquired for each subject by two expert radiologists to exclude
the possibility of clinically silent lesions. Diffusion-weighted
sequences with single-shot echo planar imaging in alignment
with the anterior-posterior commissural plane were acquired
with the following parameters: field of view = 240 × 240
mm2, repetition time (TR)/echo time (TE) = 10,000/82.4 ms,
matrix = 256 × 256, slice thickness = 2 mm, and 70 continuous
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axial slices with no gap. The diffusion sensitizing gradients were
applied along 64 non-parallel directions (b = 1,000 s/mm2) and
one without diffusion weighting (b = 0).

Image data processing and analyses

All DTI analysis was performed using analysis tools from
FSL (FMRIB Software Library).1 The DTI data were corrected
for eddy distortions and motion artifacts via affine registration
on the first no-diffusion weighted volume of each subject by
means of the FDT v2.0 (FMRIB’s Diffusion Toolbox) (72), part
of FSL. The FA, MD, axial diffusivity (AD) and RD images
was created by fitting the diffusion tensor to raw diffusion data
after brain extraction using Brain Extraction Tool (73). Then,
voxel-wise statistical analyses of the FA data were carried out
using the TBSS v1.2 of FSL (74). Briefly, the FA images from
all participants were non-linearly warped to the FMRIB58_FA
template by FNIRT (75). Next, the mean FA image was created
and thinned to create a mean FA skeleton (threshold of 0.2)
representing the centers of all tracts common to the group.
Each subject’s aligned FA data was then projected back onto
this skeleton, and the resulting data were fed into voxel-wise
permutation-based cross-subject statistics. The MD, AD and RD
were performed the same analysis and projected onto the above
mean FA skeleton.

Statistical analysis

For the age, scan time, body mass index (BMI), four index of
MCTQ, PSQI, insomnia and BDI score, permutation-test-based
Student’s two sample t-tests with 1,00,000 random sampling
were carried out between the AG group and AA group. For
the gender, insomnia state and depressive state, χ2 tests were
performed between the two groups.

Then, voxel-wise DTI statistics analyses were performed
for FA using FSL’s permutation-based non-parametric testing
(Randomise v2.1, 10,000 permutations) with a general linear
model. We applied a “two groups with continuous covariate
interaction” model2 to explore the difference of the linear
relationship between the FA and BDI values between the two
groups. The design matrix included two genotypes (AG = 1 and
AA = 0), two genotypes multiply by BDI value interaction (the
interaction effects), as well as columns of sex, age, body mass
index (BMI) and six circadian/sleep related parameters (outdoor
time a week, average sleep duration, MSFsc, Social Jetlag,
PSQI and ISI index) as covariates. Previous studies had found

1 http://www.fmrib.ox.ac.uk/fsl

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Two_Groups_with_
continuous_covariate_interaction

altered apparent diffusion coefficient of water during sleep
(76), and diurnal fluctuations in white matter microstructural
characteristics (77) and in brain volume (78). Therefore, in order
to control the effect of time of day on our results, we also
added the scan time of MRI as covariates. The MD, AD and
RD underwent the similar analysis for the interaction effects
genotypes × BDI. Furthermore, we compared the FA between
the two PER1 genotypes with the above ten parameters as
covariates. Multiple comparisons across voxels were corrected
using the TFCE (threshold-free cluster enhancement) method
(p < 0.05) (79). The JHU ICBM-DTI-81 white-matter label atlas
(80) was used to label significant tracts.

For the convenience of showing results, we extracted and
averaged the adjusted BDI, FA, MD and RD among the voxels
in each WM tract which showed significant interaction effects
of genotypes × BDI. The adjusted BDI, FA, MD and RD were
the measures after removing the above ten covariates. Then,
we performed Pearson correlation analysis between the adjusted
WM characteristics and BDI for the two groups, respectively.
Significant correlation was identified when p < 0.05, significant
correlation trend was recognized when the p value was
between 0.05 and 0.1.

Results

Demographic, behavioral, and
genotype characteristics

The demographic characteristics of the participants
according to the PER1 genotype were presented in Table 1.
The distribution of PER1 genotype in the sample was: A/A
52 (67.53%), A/G 25 (32.47%), G/G 0, consistent with the
Hardy-Weinberg Equilibrium (χ2 = 0.941, p= 0.332). Allelic
frequencies were A = 83.77%, and G = 16.23%. Age, gender,
BMI and scan time did not reach statistical significance between
these two groups.

Behavioral data measured by several scales were compared.
The feature of circadian rhythm indicated by outdoor time, sleep
duration, MSFSC and social jetlag, did not exhibit significant
differences between AA and AG groups (p = 0.33, 0.86, 0.18,
and 0.51, respectively, Table 1). Furthermore, the general sleep
quality indicated by the score of PSQI, insomnia evaluated by
ISI, and BDI values in the AA group did not markedly different
from that in the AG group (p = 0.75, 0.71, and 0.14, respectively,
Table 1).

11 subjects (11/52 = 21.15%) were in the insomnia state in
the AG group, and 4 subjects (4/25 = 16%) in the AA group
with the ISI threshold value of 8. The insomnia state did not
show significant different between these two groups (p = 0.59).
However, according to the BDI value with cutoff of 14, 6 subjects
(6/25 = 24%) were in the depressive state in the AG group
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(25/77 ≈ 1/3), and 2 subjects (2/52 = 3.85%) in the AA group
(52/77 ≈ 2/3). The AG group exhibited higher proportion of
the with-depressive state than that of the AA group (χ2 = 7.37,
p = 0.007) based on the χ2 test. In other words, 24% (6/25)
subjects with the PER1 heterozygote were in depression state
among the 1/3 population and 6/8 of people with depression
were the AG genotype. However, only 4% (2/52) of subjects were
in depression state among the PER1 A homozygote population
and 2/8 of people with depression were in the AA group.

The alterations of fractional anisotropy
between PER1 genotypes

Compared to AA homozygotes group, the AG group showed
decreased FA in several WM tracts with TFCE correction
(p < 0.05), including body of corpus callosum (CC), splenium
of CC, left anterior limb of internal capsule (ALIC), left
retrolenticular part of internal capsule (RLIC), right superior
corona radiata (SCR), left posterior corona radiata (PCR), and
left fornix(cres)/strial terminalis (Table 2 and Figure 1).

The interaction effect of PER1
genotype on the association between
white matter structure and Beck
Depression Inventory values

The associations between BDI values and FA, AD, MD and
RD were explored in the two PER1 genotype groups and the
significant interaction effects between genotype and BDI were
present in Table 3. Significant genotype × BDI interaction
effects on FA were observed in the genu and body of CC,
left anterior corona radiata (ACR), and left SCR. In detail,
significant negative correlation was found between the FA in
genu of CC and the BDI in AG group (R2 = 0.21, p = 0.02),
however, this correlation was not found in AA group (R2 = 0.01,
p = 0.44). Similar results were found in body of CC. The FA in
the left ACR was not related with BDI in AG group (R2 = 0.07,
p = 0.20), but showed positive correlated trend in AA group
(R2 = 0.07, p = 0.07). Conversely, negative correlated trend
between the FA in left SCR and BDI was found in AG group
(R2 = 0.14, p = 0.07), no relationship between them in AA group
(R2 = 0.04, p = 0.15, Figure 2).

TABLE 1 Demographic characteristics and circadian rhythms associated phenotypes according to the polymorphism of PER1 gene (rs7221412).

Variables Total (n = 77) AA (n = 52) G carriers (n = 25) T value or χ2 value P value

Gender (number, male/female)+ 50/27 34/18 16/9 0.014 0.91

Age (year, mean± SD)* 20.94± 2.09 20.96± 2.07 20.88± 2.19 0.16 0.93

Scan time (time, mean± SD)* 14.87± 2.90 14.71± 2.81 15.19± 3.10 –0.67 0.50

BMI (mean± SD)* 21.70± 2.79 21.90± 3.07 21.29± 2.11 0.90 0.37

Outdoor time (h, mean± SD)* 13.20± 9.67 13.97± 10.91 11.61± 6.30 1.00 0.33

Sleep duration (h, mean± SD)* 7.65± 0.61 7.66± 0.68 7.63± 0.43 0.18 0.86

Social Jetlag (h, mean± SD)* 0.48± 0.53 0.50± 0.56 0.42± 0.48 0.67 0.51

MSFSC (time, mean± SD)* 4.10± 0.70 4.18± 0.70 3.95± 0.67 1.36 0.18

PSQI (mean± SD)* 4.36± 2.62 4.44± 2.47 4.20± 2.96 0.38 0.75

ISI (mean± SD)* 5.01± 3.06 5.12± 3.01 4.8± 3.2 0.42 0.71

Insomnia state (number, with/without)+ 15/62 11/41 4/21 0.29 0.59

BDI value (mean± SD)* 7.12± 5.38 6.48± 4.17 8.44± 7.22 –1.51 0.14

Depressive state (number, with/without)+ 8/69 2/50 6/19 7.37 0.007

BMI, body mass index; MSFSC , mid-sleep phase on free days corrected for the sleep deficit accumulated during the work week; PSQI, Pittsburgh Sleep Quality Index; ISI, Insomnia Severity
Index; BDI, Beck Depression Inventory; SD, standard deviation. Two insomnia states were defined with cutoff 8 (ISI < 8, without insomnia; ISI≥ 8, with insomnia). Two depressive states
were identified using cutoff BDI, 14 (BDI < 14, without depression; BDI ≥ 14, with depression). *Permutation-test-based Student’s two sample t-test. +χ2 test.

TABLE 2 White matter regions where Per1 Gene (rs7221412) variants between A/A and G carriers significantly differ in fractional anisotropy.

White matter tracts Voxels Peaks MNI coordinates (x,y,z) Patterns

Body of corpus callosum 40 18 –18 35 G carriers < AA

Splenium of corpus callosum 265 –18 –51 21 G carriers < AA

L anterior limb of internal capsule 125 –15 9 4 G carriers < AA

L retrolenticular part of internal capsule 22 –31 38 14 G carriers < AA

R superior corona radiata 47 19 –18 37 G carriers < AA

L posterior corona radiata 176 –26 –42 22 G carriers < AA

L fornix(cres)/strial terminalis 76 –23 –34 –1 G carriers < AA
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FIGURE 1

Significant changes of fractional anisotropy (FA) between two PER1 genotypes. The significant difference was observed in the following seven
white matter tracts between G carrier group and AA group: 1. Body of corpus callosum (CC); 2. Splenium of CC; 3. The left anterior limb of
internal capsule; 4. The left retrolenticular part of internal capsule; 5. The right superior corona radiata; 6. The left posterior corona radiata; 7.
Left fornix(cres)/strial terminalis. FA, fractional anisotropy; L, left; R, right. The yellow box represents AA group; the blue dot represents the AG
group.

For RD, the significant interaction effects were observed in
genu and body of CC, left ALIC, left posterior limb of internal
capsule (PLIC) and left external capsule (Table 3). The RD of
these WM tracts showed significant positive correlation with
BDI in AG group, but no association in AA group (Figure 3).

For MD, the significant interaction effects were found in
cerebral peduncle, ALIC, PLIC, RLIC, SCR, sagittal stratum,
external capsule and fornix(cres)/strial terminalis on the left
cerebral hemisphere (Table 3). The MD in the left cerebral
peduncle exhibited positive correlation trend with BDI in AG
group (R2 = 0.11, p = 0.10), but showed negative correlation
trend in AA group (R2 = 0.05, p = 0.10). The changes of the
relationship between BDI and the MD of the remaining WM

tracts from the AG group to the AA group were similar. In
the AG group, the BDI was significant positive correlated with
MD. However, in the AA group, no significant relationship was
found between them (Figure 4). However, for AD, no significant
interaction effects were found.

Discussion

In the present study, we investigated the effects of PER1
(rs7221412) gene polymorphisms on the associations between
WM integrity and depression level (measured by BDI) using
TBSS analysis. We found that more subjects with PER1
heterozygotes were in depression state (BDI ≥ 14) than AA
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group, and showed poorer WM integrity in CC, internal
capsule, corona radiata and fornix. Furthermore, significant
relationships were found between BDI and WM microstructure
characteristics in the above WM tracts, external capsule and
sagittal stratum in AG group, but not in AA group. These results
suggested that the poorer WM integrity in several WM tracts
may be associated with the increased depression risk especially
in subjects carrying variants of PER1 gene.

In our present study, no significant difference was found in
circadian rhythm, sleep quality and insomnia between AG and
AA groups. Lim et al. have explored the associations between
polymorphisms of PER1 and the timing of behavioral rhythms
measured by actigraphy in 537 Europeans, and found that mean
activity timing was delayed by 67 min in GG group versus AA
group (58). 184 subjects (34%) were AA, 263 subjects (49%) were
AG and 90 subjects (17%) were GG among the 537 Europeans,
which suggested that the distribution of PER1 was AA:AG:GG≈
2:3:1 in Europeans. However, we found that 67.53% were PER1
homozygous A and 32.47% were PER1 heterozygotes among 77
subjects, but no subjects were the PER1 homozygous variant G,

which suggested that the distribution of PER1 was AA:AG:GG≈
2:1:0 in Chinese Han population. The lower allelic frequencies of
G may be one of reasons why there were no significant changes
of circadian rhythm/sleep-related behavioral data between AA
and AG group. Furthermore, previous studies have found that
several gene polymorphism frequency varies depending on both
region and ethnicity in healthy and clinical diseases populations
(81–84). In addition, the genotype distribution of PER1 in the
present study was identified in a small sample of 77. Therefore,
further studies could explore the effect of PER1 polymorphism
on these behavioral data and verify these inconsistent results
whether were due to ethnicity in a large population.

One interesting observation in our present study was
that the AG group exhibited higher proportion of depression
state with BDI cutoff of 14 than that of the AA group.
These results indicated that subjects with PER1 heterozygote
showed higher depression risk and more depression symptom
compared with other persons. Previous research have found
that several gene variations were associated with depression
vulnerability, such as PER2 (34), TOMM40 rs2075650 SNP

TABLE 3 Significant interaction effects between Per1 gene variants and BDI values in white matter microstructure.

White matter tracts Voxels Peaks MNI coordinates (x, y, z) Interaction
effect (p value)

Patterns (G carriers
group vs AA group)

Fractional anisotropy

Genu of corpus callosum 111 5 20 16 0.009 SNC vs N.S.

Body of corpus callosum 768 5 18 16 0.004 SNC vs N.S.

L anterior corona radiata 130 –16 16 30 0.026 N.S. vs PCT

L superior corona radiata 70 –17 4 38 0.013 NCT vs N.S.

Radial diffusivity

Genu of corpus callosum 29 5 20 16 0.0003 SPC vs N.S.

Body of corpus callosum 159 14 13 27 0.0001 SPC vs N.S.

L anterior limb of internal
capsule

49 –13 4 6 0.01 SPC vs N.S.

L posterior limb of internal
capsule

257 –23 –13 7 0.008 SPC vs N.S.

L external capsule 30 –30 –17 12 0.004 SPC vs N.S.

Mean diffusivity

L cerebral peduncle 57 –19 –15 –8 0.02 PCT vs NCT

L anterior limb of internal
capsule

26 –19 –1 10 0.006 SPC vs N.S.

L posterior limb of internal
capsule

349 –25 –13 13 0.009 SPC vs N.S.

L retrolenticular part of
internal capsule

44 –25 –19 –1 0.006 SPC vs N.S.

L superior corona radiata 101 –24 –9 19 0.01 SPC vs N.S.

L sagittal stratum (include
inferior longitidinal
fasciculus and inferior
fronto-occipital fasciculus)

39 –40 –17 –13 0.002 SPC vs N.S.

L external capsule 196 –30 –17 12 0.002 SPC vs N.S.

L fornix(cres)/strial
terminalis

42 –30 –21 –10 0.009 SPC vs N.S.

SNC, significantly negative correlation; SPC, significantly positive correlation; NCT, negative correlation trend; PCT, positive correlation trend; N.S., no correlation and trend; L, left.
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FIGURE 2

Significant effects of PER1 genotypes on the associations between BDI values and FA. The significant interaction effects of genotypes × BDI
were observed in the white matter tracts of genu of corpus callosum, body of corpus callosum, the left anterior corona radiata and the left
superior corona radiata. The adjusted BDI and FA were the measures after removing the ten covariates. For the convenience of showing
interaction effect, we averaged the adjusted BDI and FA among the voxels in the above WM tracts, and performed the correlation analysis
between the adjusted BDI value and FA of WM tracts in each group. BDI the Beck Depression Inventory; FA fractional anisotropy; L left. The blue
dot represents the AG group; the yellow dot represents the AA group. InE interaction effects. The white solid line represents the linear
regression of the correlation.
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FIGURE 3

Significant effects of PER1 genotypes on the associations between BDI values and RD. The significant interaction effects of genotypes × BDI
were observed in the white matter tracts of genu of corpus callosum, body of corpus callosum, the left anterior limb of internal capsule, the left
posterior limb of internal capsule and the left external capsule. The adjusted BDI and RD were the measures after removing the ten covariates.
For the convenience of showing interaction effect, we averaged the adjusted BDI and RD among the voxels in the above WM tracts, and
performed the correlation analysis between the adjusted BDI value and RD of WM tracts in each group. BDI, the Beck Depression Inventory; RD,
radial diffusivity; L, left. The blue dot represents the AG group; the yellow dot represents the AA group. InE, interaction effects. The white solid
line represents the linear regression of the correlation.
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FIGURE 4

Significant effects of PER1 genotypes on the associations between BDI values and MD. The significant interaction effects of genotypes × BDI
were observed in the white matter tracts of cerebral peduncle, anterior limb, posterior limb and retrolenticular part of internal capsule, superior
corona radiata, sagittal stratum, external capsule and fornix/stria terminalis on the left cerebral hemisphere. The adjusted BDI and MD were the
measures after removing the ten covariates. For the convenience of showing interaction effect, we averaged the adjusted BDI and MD among
the voxels in the above WM tracts, and performed the correlation analysis between the adjusted BDI value and MD of WM tracts in each group.
BDI, Beck Depression Inventory; MD, mean diffusivity; L, left. The blue dot represents the AG group; the yellow dot represents the AA group. InE,
interaction effects. The white solid line represents the linear regression of the correlation.

(85), 5-HTTLPR/BDNF Val66Met (86–88), CRHR1 (89)
and COMT (90). Our findings were the complement for
the association of the gene polymorphism with depression
risk. Furthermore, Li et al. have found blunted diurnal
rhythms in the expression of PER1 in MDD patients
and these disruptions persisted 8 weeks after treatment
(32). Therefore, combined our results, these findings
suggested that PER1 gene may play a role in depression
risk. Further studies were needed to verify our results
with large sample.

Another interesting observation in our present study was
that besides the higher depression proportion, the AG group
exhibited poorer WM microstructure integrity than the AA
group, mainly in CC, internal capsule, corona radiata and
fornix. These WM tracts have been reported to have decreased
FA in MDD (91–94). Vulser et al. have investigated the
association of subthreshold depression with WM microstructure
alterations in adolescents and found that decreased FA in
the anterior body and genu of CC in adolescents with

subthreshold depression (95). Our findings were consistent
with these researches and suggested that subjects with PER1-
G heterozygote with lower FA may probably develop to the
subthreshold depression or MDD. In order to explore the
effect of PER1 on the relationship between WM characteristics
and depression level, we analyzed the interaction effects of
genotype× BDI on WM characteristics. Significant correlations
were found between BDI and WM characteristics in CC,
internal capsule, corona radiata, fornix, external capsule
and sagittal stratum in AG group, but not in AA group.
The CC plays an important role in the inter-hemisphere
information communication, and is critical for emotional
regulation and associated with cognitive functioning (96). The
corona radiata is part of the limbic-thalamo-cortical circuitry
and is composed of ascending and descending fibers that
relay information to and from the cerebral cortex. Several
researches have indicated that the corona radiata is implicated
in emotional and executive processing, major affected functions
in MDD (97, 98). Other WM tracts also have been reported
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involving the mood and cognitive function (99–102). These
results suggested that PER1-G heterozygote, 1/3 of Chinese
college students, may be more prone to depression if they
exhibited lower FA and higher RD and MD in emotion-
related WM tracts. However, in AA group, we did not find
these relationships. Therefore, PER1 gene polymorphisms and
WM microstructure may be promising indictors for early
identification of depression risk.

Emerging studies have showed that more than 90% of
depressed patients reported disruptions in sleep including
insomnia and early morning awakening. These patients tend
to have more severe forms of MDD and may be at an
increased risk for suicidal ideation and suicidal behaviors
(20, 103, 104), which supports a circadian hypothesis of
depression that based, in part, on data showing that a
subgroup of depressed patients has dysregulated 24 h rhythms
including sleep, hormonal secretions, core body temperature
and mood (17, 24, 105, 106). Perhaps the strongest and
most direct evidence for a circadian defect in depression
comes from a study of postmortem 24 h sinusoidal gene
expression rhythms across six regions of human brain
showing a dramatic dysregulation of circadian genes in
MDD compared to controls (19). This article has further
revealed that the expression of core clock genes, including
Period genes (PER1-3) was different between controls and
MDD patients. PER genes regulate circadian rhythm by
repressing the transcriptional activity driven by upstream
rhythm genes, and inhibiting their own expression through
a negative autoregulatory feedback loop that cycle in about
24 h (107, 108). Besides, PER genes show a staggered
phase relationship, with PRE1 peaking soon after sunrise,
PER3 peaking during midday, and PER2 peaking in the
afternoon (19, 109, 110) while this circadian pattern was
weak in MDD patients (19). A genome-wide study had
found a strong relationship between sleep deprivation and
the expression of PER genes in MDD and bipolar disorder
patients (111). Moreover, the role of the circadian clock
in the homeostasis of stem cells and in the regulation of
cellular development including differentiation across tissue
subtypes is supported by numerous studies (112–114). And the
circadian rhythm disorder may disrupt normal sleep rhythm,
which promotes myelination and oligodendrocyte precursor
cells proliferation and is associated with higher expression of
genes coding for phospholipid synthesis and myelination in
oligodendrocytes (115–117). These brain alterations caused by
circadian clock genes have been related to neurogenesis, and
would further associated with psychiatric disease including
depression (118, 119).

The present study has several limitations that should be
considered. First, large samples of future researches were
needed to validate our present study. Second, the current
study was cross-sectional but not longitudinal. Whether subjects
in the AG group with lower FA and higher MD and

RD in specific emotion-related WM tracts really develop to
depression should be investigated in the future longitudinal
studies. Third, we measured the depression state by BDI in
healthy college students. Further studies should verify our
results in depressed people. Forth, we found that several
emotion-related WM tracts were associated with BDI in AG
genotype. However, our present study did not investigate
the performance of emotion-related tasks. Future research
should explore the effect of PER1 polymorphism on the
association of WM microstructure integrity with specific
emotion-related task.

Conclusion

In conclusion, decreased FA in several WM tracts were
shown in PER1 (rs7221412) AG group compared with the
AA group, and PER1 genotype had an interaction effect on
the associations between the WM microstructural integrity
in emotion-related WM tracts and depression level. These
findings suggested that the PER1 gene polymorphisms and
WM characteristics in several emotion-related regions may
provide effective measures of prediction for depressive risk at
an early phase. Future studies should validate these results
in large sample.
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