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Introduction: Real-time evaluations of the severity of depressive symptoms

are of great significance for the diagnosis and treatment of patients with major

depressive disorder (MDD). In clinical practice, the evaluation approaches are

mainly based on psychological scales and doctor-patient interviews, which

are time-consuming and labor-intensive. Also, the accuracy of results mainly

depends on the subjective judgment of the clinician. With the development

of artificial intelligence (AI) technology, more and more machine learning

methods are used to diagnose depression by appearance characteristics. Most

of the previous research focused on the study of single-modal data; however,

in recent years, many studies have shown that multi-modal data has better

prediction performance than single-modal data. This study aimed to develop

a measurement of depression severity from expression and action features

and to assess its validity among the patients with MDD.

Methods: We proposed a multi-modal deep convolutional neural network

(CNN) to evaluate the severity of depressive symptoms in real-time, which

was based on the detection of patients’ facial expression and body movement

from videos captured by ordinary cameras. We established behavioral

depression degree (BDD) metrics, which combines expression entropy and

action entropy to measure the depression severity of MDD patients.

Results: We found that the information extracted from different modes, when

integrated in appropriate proportions, can significantly improve the accuracy
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of the evaluation, which has not been reported in previous studies. This

method presented an over 74% Pearson similarity between BDD and self-

rating depression scale (SDS), self-rating anxiety scale (SAS), and Hamilton

depression scale (HAMD). In addition, we tracked and evaluated the changes

of BDD in patients at different stages of a course of treatment and the results

obtained were in agreement with the evaluation from the scales.

Discussion: The BDD can effectively measure the current state of patients’

depression and its changing trend according to the patient’s expression and

action features. Our model may provide an automatic auxiliary tool for the

diagnosis and treatment of MDD.

KEYWORDS

smart medical, depression, behavioral entropy, deep learning, artificial intelligence

Highlights

- Multi-modal network is more effective to detect depression.
- A novel metrics is proposed to evaluate the depression

severity.
- Patients showed more sad expression and a smaller range of

body movements.

Introduction

With a high prevalence, high recurrence rate, high disability
rate, and high fatality rate, major depressive disorder (MDD) is
becoming a leading issue in the global burden of disease (1).
According to statistics from the World Health Organization
(WHO), there are approximately 350 million people suffering
from depression worldwide, and about one million people
who commit suicide as a result of depression every year (2).
According to the Global Burden of Disease Survey, depression
has the largest weight in the burden of mental illness in terms
of disability-adjusted life years, accounting for about 40.5% (3,
4). The latest epidemiological survey conducted in 31 provinces
in China showed that the lifetime prevalence of depression is
6.8% (5). Depression severely affects quality of life (6) and brings
heavy mental and economic burdens to the family structures and
society as a whole.

So far, the cause of depression is ambiguous. It is
only confirmed that depression is associated with biological,
psychological, and social environmental factors. The clinical
diagnosis of depression is mainly based on a doctor’s interview
combined with some psychological rating scales to make a
comprehensive assessment. At present, however, there is an
extreme shortage of mental health professionals in developing
countries, such as China, resulting in poor access to professional

medical services for depression, a lack of timely assessment of
symptoms, and greatly increased chances of depression relapse.

The rise of artificial intelligence (AI) based on big
data analysis brings promising advancements to doctors and
patients. With the fourth industrial revolution initiated in
the 21st century, AI has increasingly been utilized in the
research of mental diseases (7). Machine learning models can
provide an accurate prediction of the onset of depressive
disorder for patients (8–14). The diagnostic model includes
age measurement, a simplified mental state examination score,
and structural imaging. The treatment response model includes
measures of structural and functional connectivity.

Deep representation features, such as body movements,
gestures, eye movement, and periodic muscle movement,
can be used for the biological analysis of depression. The
analysis includes the recognition, judgment, tracking, and
understanding of human behaviors (15–17). An individual
can produce specific expressions through certain forms of
muscle contraction, and these expressions can be used as a
carrier of emotions, intentions, desires, and other information
(18, 19). The deep convolutional neural network (CNN) uses
these biological signals to identify depression and has achieved
promising results (20–29). In this way, an AI-based solution
to assess symptom severity may be utilized for the assessment
and auxiliary diagnosis of patients with depression. By making
individual and objective predictions on mental disorders, we
can improve the accuracy of patient diagnosis and treatment
decisions. The application of AI over the whole course of
depression will profoundly affect the evaluation, prediction, and
treatment of depression (30).

Most of the previous AI models focus on single-modal
information of a certain feature of the patient. In recent years,
some studies have shown that multi-modal information has a
better prediction performance than single-modal data (20, 31).
In this paper, we proposed a multi-modal deep convolutional
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neural network (CNN) model based on facial expressions and
body movements to evaluate the severity of depression. The
model included two modules: an expression recognition module
to predict the probability of 7 facial expressions of patients,
using expression entropy to represent the complexity of facial
expressions, and a movement recognition module to locate the
position of 18 body joints of the patient, using action entropy
to represent the complexity of the body movement. According
to the expression and movement features output by the model,
a behavioral depression degree (BDD) was derived to quantify
the severity of depression, which was used as the detection
result of our model. Our results demonstrated an over 74%
Pearson similarity between BDD and self-rating depression scale
(SDS), self-rating anxiety scale (SAS), and Hamilton depression
scale (HAMD), indicating that the BDD can effectively measure
the current state of patients’ depression and its changing trend
according to the patient’s expression and action features.

Materials and methods

Prospective and qualitative research methods were used in
this study. In order to obtain the continuous change process
of the patient’s facial expressions and movements, the patients
with MDD who received any kinds of psychotherapy and/or
pharmacotherapy were selected, and the entire process was
recorded with 40–60 min of video recording in the symptoms
assessment every week. Two patients were randomly selected
for receiving systematic cognitive behavioral treatment (CBT)
for seven sessions from the subject pool, and video data
was collected during the whole process of psychotherapeutic
interviews. Each psychological assessment was conducted in
a fixed room, and psychotherapy was conducted in a quiet
treatment room with soft lighting, to ensure undisturbed talks.
During the psychological assessment, the camera targeted at the
sitting subject’s face and whole body. During the psychotherapy,
the therapist and the subject seated at an angle of 90–120◦,
and a camera lens targeted at the subject’s face and whole
body. We used the Shadow Giant portable 4K camera with
2560∗1440/30fps resolution for recording, and all videos were
saved as “mov” or “mp4” format in hard disk. The video data was
processed by a computer server with Intel Xeon 3.20GHz CPU,
500G SSD, 2T HHD, 32GB RAM, and two GTX 1080Ti GPU.

We used behavioral entropy (BE) to describe the degree of
discreteness in patients’ facial expression and action features.
We then established the behavioral depression degree (BDD)
based on BE to represent the degree of depression we assessed.

Subjects

Patients with MDD who would receive inpatient and
outpatient treatment for at least 2 consecutive weeks were

recruited from the Second Xiangya Hospital of Central South
University and Hunan Brain Hospital of Hunan Province from
August 2020 to January 2021. Each patient was diagnosed
by a senior and an attending psychiatrist at the same time.
The inclusion criteria were as follows: (i) all participants
aged between 16 and 50 years; (ii) all participants met DSM-
IV criteria for MDD; (iii) their Hamilton depression rating
for depression 24-item total score was not less than 18;
and (iv) all participants were free of any antidepressant and
antipsychotic at least 1 month before trial. The exclusion
criteria included (i) a history of dysthymia, mania, hypomania,
bipolar disorder, or depression secondary to a known substance
or general medical condition; (ii) a drug allergy or clinically
significant laboratory abnormality; (iii) active suicidal ideation,
comorbid mental disorders, catatonic features, or severe
psychomotor retardation that made interviewing difficult; (iv)
active substance abuse; (v) a history of brain injury or
other severe medical comorbidity, such as stroke, diabetes,
or cardiovascular disease; (vi) current medication that might
influence mood or the central nervous system; and (vii)
pregnancy or breastfeeding.

This study was approved by the Medical Ethics
Committee of Second Xiangya Hospital of Central
South University in China. Each patient was given
assessment once a week for at least two times, while
a video recording was kept for each assessment. All
patients provided written informed consent prior to their
participation in the study.

Measurements

All patients were assessed via the following questionnaires
at baseline and before hospital discharge, or at weekly symptom
assessment. The two selected patients were assessed after each
psychotherapy session.

Self-rating depression scale (SDS)
The SDS consists of 20 items which can be used to

assess the severity of depression symptoms and the changes
in patients’ symptoms during treatment. SDS uses a four-
level scoring method of 1–4 points (none or occasionally,
sometimes, often, always). Those with a score below 50 have
no depression while 50–59 represents mild depression, 60–69
represents moderate to severe depression, and 70 or higher
represents severe depression.

Self-rating anxiety scale (SAS)
The SAS is similar to the SDS and consists of 20 items on a

four-point scale from 1 to 4 (none or occasionally, sometimes,
often, always). A score below 50 indicates no anxiety, 50–
59 indicates mild anxiety, 60–69 indicates moderate to severe
anxiety, and over 70 indicates severe anxiety.
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FIGURE 1

Overview of the proposed model.

Hamilton depression scale (HAMD)
Hamilton depression scale uses a five-point scale of 0–4

(none, mild, moderate, severe, very severe). The HAMD total
score can better reflect the severity of the disease. The more
severe the symptoms are, the higher the total score is, as a score
more than 35 points denotes severe depression, 18–35 points
denotes mild or moderate depression, and less than 8 points
denotes no depression symptoms.

Model analysis

A multi-modal deep CNN was used to identify facial
expressions and body motion range of the patients to obtain
their expression and action features. Then the difference
between the predicted results of the model (BDD) and the
total scores of SDS, SAS, and HAMD were used to judge the
prediction accuracy of the model.

Figure 1 shows the overview of the proposed model
framework. The video data were preprocessed and fed
into the expression and body recognition modules. The
expression module includes face detection and facial expression
recognition. We used open-source Python package DBFace1 for
face detection. Then we constructed a deep convolution neural
network (Table 1) and trained a facial expression recognition
module using Facial Expression Recognition 2013 Dataset
(Fer2013),2 which contains about 30,000 facial images, with each
image labeled as one of the seven universal facial expressions

1 https://github.com/dlunion/DBFace

2 https://www.kaggle.com/datasets/deadskull7/fer2013

(32) (angry, disgust, fear, happy, sad, surprise, neutral). In the
action module we use the open-source Python package tf-pose-
estimation,3 which includes human body region recognition,
adaptation layer, and pose estimation based on TensorFlow (33).
The position of the 18 nodes of the human body is output by this
module. Finally, our model outputs the BDD which represents
the patient’s behavioral depression degree.

Facial expression recognition
Facial expression recognition can be used to screen for

mental illness, assess the effectiveness of medication, and assess
the progression and severity of mental illness (34, 35). In our
deep CNN, we carried out operations such as convolution,
pooling, and activation, on the input image of 48∗48 pixels, and
finally added a full connection layer to output the seven facial
expressions of the patient. At the same time, to prevent the
model from overfitting, we added a dropout layer for discarding.
The network architecture is shown in Table 1. We trained
our CNN network using Fer2013 dataset and achieve 70.71%
accuracy in the task of facial expression recognition, which
exceeds the human accuracy of 65% (36). After using DBFace to
detect the patient’s face from the psychotherapeutic interviews
video, we then used our trained model to estimate the patient’s
expression and obtained the probability of seven expressions of
the patient’s face in each frame of the video.

Finally, we introduced the expression entropy through the
following:

H (X) = −
7∑
1

p (xi) logp (xi) (1)

3 https://github.com/tryagainconcepts/tf-pose-estimation
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TABLE 1 The convolutional neural network for facial
expression recognition.

Convolution
block

Output shape Layer

conv2d 48× 48× 64 batch_normalization

Activation

conv2d_1 24× 24× 64 batch_normalization_1

activation_1

max_pooling2d

conv2d_2 24× 24× 128 batch_normalization_2

activation_2

conv2d_3 12× 12× 128 batch_normalization_3

activation_3

max_pooling2d_1

conv2d_4 12× 12× 256 batch_normalization_4

activation_4

conv2d_5 6× 6× 256 batch_normalization_5

activation_5

max_pooling2d_2

conv2d_6 6× 6× 512 batch_normalization_6

activation_6

conv2d_7 3× 3× 512 batch_normalization_7

activation_7

max_pooling2d_3

1× 1× 7 dropout, 2-d fc, softmax

H(X) is the expression entropy, xi is the i-th expression, and
p(xi) is the probability of the i-th expression calculated by the
facial expression recognition model. The expression entropy
reflects the degree of discreteness of the patient’s expression.
A high value indicates that the patient’s expression is rich and
lively. On the contrary, a low value indicates that the patient’s
expression is relatively simple and the degree of depression is
more serious (16, 37).

Body movement recognition
In the field of computer vision, human pose estimation

refers to the process of determining positioning information,
such as the position and direction of different human parts in
pictures, through image analysis (38). Human pose estimation
is the basis of human behavior recognition (39). In this module
we applied tf-pose-estimation to locate the position of 18 joints
of the target person in the video. Then, according to the position
changes of the joint points between two pictures, we use the two
coordinate positions of the same joint point in the pictures to
calculate the motion amplitude using the equation:

D =
√
(x1 − x0)

2
+
(
y1 − y0

)2 (2)

D represents the motion amplitude of the joint point while (x0,
y0) and (x1, y1) represent the position of the same joint point in
the two pictures.

Finally, we introduce the action entropy:

G (Y) = −
17∑

j = 0

D(yj)
Dz

log D(yj)
Dz

(3)

Dz =
∑17

j = 0 D
(
yj
)
, G(Y) is the action entropy, yj represents

the j-th joint point, and D(yj) is the motion amplitude of the
j-th joint point calculated by limb recognition module.

Behavioral depression degree (BDD)
We linearly superimpose the entropy of expression and

action into BE:

F (X,Y) = λH (X) + (1− λ)G (Y) (4)

F(X, Y) stands for the BE, H(X) for expression entropy, G(Y) for
action entropy, X for expression features output by the model,
Y for action features output by the model, and λ for a fitting
parameter. Then we scan λ from 0 to 1, which adjusts the
proportion of expression entropy and action entropy in BDD to
find the best parameter λ that allows BDD to best match with
SDS, SAS, and HAMD. The BE describes the disorder degree
of patients’ expressions and movements. Here, we assume that
the larger the expression entropy is, the livelier the patients’
expressions are (16, 37), and the larger the action entropy is,
the larger range of patients’ movements is, indicating a less
depression condition (40).

We then introduce behavioral depression degree (BDD) to
represent the patient’s depression degree predicted by the model:

B (X,Y) = 1− F (X,Y) (5)

B(X, Y) represents the patient’s BDD predicted by the model and
F(X, Y) represents the BE.

Results

General condition

A total of 164 patients with MDD fit for inclusion criteria
were recruited in this study, all of them aged 17–35, with 12–
18 years of education. The data of two patients (patient 1 and
patient 2) who were randomly selected for the 7-session systemic
psychotherapy were used for the BDD score analysis.

Selected patient 1
Patient 1 is a 20-year-old unmarried female college student.

She complained of too much work, stress, and depression for
at least half a year. In July 2020, she went to Hunan Brain
Hospital for treatment and was diagnosed with “depression,”
and treated with “agomelatin” 50 mg/Qn. Nearly 1 month
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later, on the recommendation of the attending doctor, she
began to receive psychological treatment. When the patient
came for psychotherapy, she was in her third year of college
study. She needed to balance her learning tasks, internship, and
preparation for postgraduate entrance exams at the same time.
She felt great pressure and experienced stressful life events such
as breaking up with her boyfriend and her grandmother’s death.

Selected patient 2
Patient 2 is an 18-year-old female who is unmarried and

currently in senior year in high school. She complained of
decreased sleep quality half a year ago, difficulty in falling asleep,
early awakening, wanting to cry for no reason, and being easily
agitated with suicide ideation. In October 2020, she went to
Hunan Brain Hospital accompanied by her father and was
diagnosed with “major depressive disorder.” Her father was
informed about the risk of self-injury and suicide after being
unwilling to accept hospitalization, and the patient was treated
with “Fluoxetine Hydrochloride Capsule” 20 mg/Qd. The next
day, under the advice of the attending doctor, the patient began
to receive psychotherapy.

The type and dose of drugs for the two patients remained the
same throughout the study period.

The total scores of SDS, SAS, and
HAMD of the patients

Selected patients
As shown in Figure 2A, the SDS total score of patient 1

dropped from 63 at the end of the first treatment to 45 at
the end of the seventh treatment, below the clinical threshold
(>50). The SDS index decreased by 28.6%. The SAS, as a self-
rating scale, has a strong correlation with the SDS. The SAS
total score of patient 1 dropped from 48 at the end of the first
treatment to 40 at the end of the seventh treatment, below the
clinical threshold (>50). The SAS index decreased by 16.7%. The
HAMD total score of patient 1 dropped from 26 at the end of the
first treatment to 9 at the end of the seventh treatment, a score of
which belongs to mild depression. The HAMD index of patient
1 decreased by 65.4%.

The SDS total score of patient 2 decreased from 73 at
baseline to 61 at the end of the seventh treatment, with a slight
decrease of 16.4% compared with baseline, but still higher than
the clinical threshold (>50). The SAS total score of patient
2 decreased from 58 at baseline to 51 at the end of the
seventh treatment, with a slight decrease of 12.1% compared
with baseline, but still higher than the clinical threshold (>50).
The HAMD total score of patient 2 decreased from 39 at
baseline to 23 at the end of the seventh treatment which belongs
to moderate depression. Compared with baseline, the HAMD
index of patient 2 decreased by 41.0%.

Expression features of the two selected
patients

Figure 3A shows the expression distribution of patient 1 and
patient 2 during the second session of treatment. The larger the
upper shadow area is, the better the emotional state is, while
the lower shadow represents bad emotions. We can see that the
proportion of sad and angry expressions is significantly higher
than other expressions.

As shown in Figure 3B, throughout the entire 7 sessions
of treatment, the proportion of sad and angry expressions of
patient 1 is relatively high but gradually decreases, and the
emotional state of the patient has been significantly improved as
the treatment progressed. Meanwhile, patient 2’s sad expression
accounts for a larger proportion in the entire psychotherapy.
Throughout the process of the treatments, the proportion of
sadness gradually decreases, which reveals that the emotional
state of patient 2 has been improved to a certain extent.

Action features of the two selected
patients

As shown in Figure 4A, we compare the amplitude of the
two patients’ limbs in the second session during the treatment
process. 0–17 represents nose, neck, right shoulder, right elbow,
right wrist, left shoulder, left elbow, left wrist, right hip, right
knee, right ankle, left hip, left knee, left ankle, right eye, left eye,
right ear, and left ear. The average amplitude of each joint in
patient 1 is 0.0084, and that of patient 2 is 0.0042. Additionally,
the joint motion range of patient 2 is significantly lower than
that of patient 1. As for the empty joints in the picture (such
as patient 2’s right ankle and left ankle), the camera failed to
capture the corresponding picture due to the motion of the
subject.

Figure 4B shows the motion amplitude changes of each limb
node during the entire treatment process of the two patients.
Patient 1’s motion amplitude at all key points is small except
for the 7th treatment, which is consistent with the correlation
between the severity of depressive symptoms and the decreased
motion in previous studies. The motion amplitude of patient
2 remained stable during the entire course of psychotherapy,
without obvious peaks and valleys. Patient 2’s motion amplitude
is generally smaller, which is consistent with its low expression
entropy and high frequency of sad expressions.

Pearson correlation between BDD
output and total scores of SDS, SAS,
and HAMD of the two selected patients

Figure 5 shows the Pearson similarity between BDD output
from the model and clinically validated SDS, SAS, and HAMD
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FIGURE 2

The total scores of (A) SDS, SAS, HAMD, and (B) BDD of the two selected patients.

scores, respectively. We adjust the proportion of expression
entropy and action entropy in BDD by adjusting the parameter
λ. In all tested cases, we found that when λ is 0.94, the mean
Pearson similarity between BDD and each variate can reach
more than 74%. This reveals the validity of our measurement
model.

When λ is 0.94, we can calculate the BDD of patient 1 and
patient 2 separately. As shown in Figure 2B, the BDD of patient
1 decreases continuously from 0.35 at baseline to 0.23 at the
end of treatment, with a decrease of 34.3%. The overall trend is
consistent with each clinically validated variate of patient 1. The
BDD of patient 2 decreases from 0.47 at baseline to 0.35 at the
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FIGURE 3

(A) The expression feature distributions of the two selected patients during the second session of treatment, and (B) the change of the
expression features of the two selected patients with the sessions of treatment.

end of treatment. After the 7th treatment, the BDD of patient
2 decreased by 25.5% due to the loss of suicidal thoughts. The
overall trend is consistent with each clinically validated variate
of patient 2. In addition, the BDD of patient 2 is lower than
that of patient 1 because the depression severity of patient 2 is
much more serious than that of patient 1. The trend in BDD
of patient 1 and patient 2 is positively correlated with their
clinically validated index of patient 1 and patient 2, with 74%
Pearson similarity.

Validation of BDD in all patients

In all 164 treatment cases, through the analysis of the
patients’ condition with multiple treatment data, we found that
their condition has been improved to a certain extent, but
patients with various levels of improvement showed different
performance data. The mean age of the patients was 25.2 with a
standard deviation of 6.32, while their mean years of education

was 14.8 with a standard deviation of 2.72. When λ is 0.94,
the Pearson similarity between BDD and each variate can reach
more than 74%, as shown in Figure 6.

At baseline, patients’ mean SDS, SAS, and HAMD were 64.6,
53.9, and 25.9, respectively. At the end of treatment, they were
53, 45.2, and 19.6, respectively. At baseline, the average BDD
of the patients was 0.419. At the end of treatment, the average
value of the patient’s BDD was 0.334. The BDD levels were all
reduced by about 20%.

Discussion

Previous AI detection models usually focus on a patient’s
biological signals, such as blood pressure, pulse, EEG, and
other physiological and biochemical information (41), or only
consider unimodal appearance information such as facial
expression (42, 43). In this manuscript, we proposed a
multimodal deep convolution neural network to detect the
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FIGURE 4

(A) The action feature distributions of the two selected patients during the second session of treatment, and (B) the change of the action feature
with the sessions of treatment.

severity of depression. Compared to an existing multimodal
model (20, 31), our model has the following improvements:
(i) we integrated facial expression information that is an
important feature in evaluating the severity of depression; (ii)
we constructed the BDD metrics to quantify the severity of
depression and achieved a good performance; (iii) we found
that the information extracted from different modes, when
integrated in appropriate proportions, can significantly improve
the accuracy of the evaluation, which has not been reported in
previous studies.

We developed the BDD to measure the severity of
depression symptoms in patients with MDD based on their
facial expression and body movement, and analyzed the
changes. Our study showed that the BDD is consistent with the
SDS, SAS, and HAMD scores of patients with a 74% Pearson
similarity. Through the progress of treatment, patients’ BDD
decreased to various degrees after psychotherapy. This indicated
that overall depression in the patients has been improved to a
certain extent after treatment.

Although both the BDD and the patients’ symptoms showed
that patients’ depressive symptoms were improved, the analysis
showed that the probability of the patients’ sad expression was
still significantly higher than other six expressions. This might
be because it takes longer for the facial expression of depression
to improve than the inner experience of depression. It might also

FIGURE 5

The Pearson similarity of the proposed model.

be due to the complex etiology and pathogenesis of depressive
disorder, such as genetics, personality, cognitive type, early life
environment, social environment, and other factors, resulting
in the “susceptibility” of some individuals to depression being
higher than others (44).

Meanwhile, there is a link between the severity of
depressive symptoms and facial expressions. The more severe
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FIGURE 6

The total score of mental statistics scale and model test results before and after psychotherapy. (A) Baseline SDS. (B) End SDS. (C) Baseline SAS.
(D) End SAS. (E) Baseline HAMD. (F) End HAMD.

the symptoms are, the more sad the expression is and
the less the patient smiled (37). With the improvement of
a depressed mood, depressed expression, and body motion
range of patients can be improved accordingly (45). Facial
expressions are the immediate manifestation of personal
emotions. For patients with depression, a low mood and
single facial expression are the primary symptoms. Anxiety,

anger, pain, and other emotions caused by pressure are
expressed through facial expressions (46), resulting in the
facial expression as the major feature for the assessment of
depression conditions.

We determined the proportion of facial expression and body
movement in BDD in two patients, and found that when λ

was 0.94, BDD effectively matched the patients’ scale trends,
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having a Pearson similarity exceeding 74% with the SDS, SAS,
and HAMD scores. It is proposed that the BDD can effectively
reflect the changes in a patient’s depressive condition, which
shows a high degree of consistency with the trend of their
psychological scale. At the same time, we verified that BDD
could effectively fit the trend of SDS, SAS, and HAMD in
all 164 patients. This demonstrated the validity of the fitting
model in assessing depression conditions. In the process of
information communication between people, facial expressions
can convey 55% of the information while 38% of the information
comes from pronunciation, intonation, and speech rhythm, and
only 7% of the information comes from language content itself
(47). This explains why our model has a large proportion of
expression entropy.

In the future, research on the changes of facial expressions
and motion amplitude of patients in the process of psychological
treatment of depression based on deep learning algorithms
can lay the foundation for the intelligent evaluation and
monitoring of different kinds of treatment for patients dealing
with depression.

Conclusion

In conclusion, we presented a multi-modal deep learning
method which combines expression and action features. The
BDD proposed in this paper has demonstrated a beneficial
function in effectively assessing the depression severity of MDD
patients through the observation of their facial expressions
and body movements.

This technique has significant applications in mental health
treatments. It can monitor the symptoms of depression patients
during psychotherapy and accurately assess the interaction
between patients and therapists. At the same time, based on
the patient’s psychological assessment, facial features, action
features, and other data, we can develop a reliable deep
learning evaluation model to train and process the patient’s
multidimensional data, and evaluate the psychological changes
of MDD patients accurately in real-time to guide the treatment.
In addition, this study provides a new paradigm to research
on depression and effectively solves the shortage of medical
resources faced by patients with mental illness.

Although the model proposed in this paper has
demonstrated its effectiveness in depression detection, there are
still some limitations in the algorithm. Firstly, the accuracy of
expression recognition and pose estimation needs to be further
improved. For example, in future work, the 2D pose estimation
algorithm can be replaced by 3D algorithms. Secondly, our
multimodal model only includes two features: facial expressions
and body movements. More features, such as voice tone, eye
changes, and micro movements of patients can be considered in
the future work. We hope this work will inspire others to build
AI-based tools for understanding mental health disorders even
beyond depression.
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