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Panic disorder (PD) is unique among anxiety disorders in that the emotional

symptoms (e.g., fear and anxiety) associated with panic are strongly linked

to body sensations indicative of threats to physiological homeostasis. For

example, panic attacks often present with feelings of suffocation that

evoke hyperventilation, breathlessness, or air hunger. Due to the somatic

underpinnings of PD, a major focus has been placed on interoceptive signaling

and it is recognized that dysfunctional body-to-brain communication

pathways promote the initiation and maintenance of PD symptomatology.

While body-to-brain signaling can occur via several pathways, immune

and humoral pathways play an important role in communicating bodily

physiological state to the brain. Accumulating evidence suggests that

neuroimmune mediators play a role in fear and panic-associated disorders,

although this has not been systematically investigated. Currently, our

understanding of the role of immune mechanisms in the etiology and

maintenance of PD remains limited. In the current review, we attempt

to summarize findings that support a role of immune dysregulation in

PD symptomology. We compile evidence from human studies and panic-

relevant rodent paradigms that indicate a role of systemic and brain immune

signaling in the regulation of fear and panic-relevant behavior and physiology.

Specifically, we discuss how immune signaling can contribute to maladaptive

body-to-brain communication and conditioned fear that are relevant to

spontaneous and conditioned symptoms of PD and identify putative avenues

warranting future investigation.

KEYWORDS

panic, fear, neuroimmune, panic disorder, interoception, body-to-brain

Introduction

A complex interplay and engagement of the central nervous system (CNS) and
periphery is key to the genesis of emotional responses (1). Peripheral modulation of
the-emotional responses was first postulated early under the peripheral feedback theory
by William James (2) and later championed as interoceptive emotional modulation
by several investigators (3, 4). Dysregulated interoceptive processing and maladaptive
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emotional responses are a hallmark of fear –associated
disorders, particularly Panic Disorder (PD), a debilitating
psychiatric illness which occurs in ∼4–8% of Americans (5–
7). PD typically begins in the second decade of life (8)
and is second only to major depressive disorder in terms
of associated debility among psychiatric conditions in the
United States (9). PD is characterized by recurrent panic
attacks that consist of incapacitating periods of acute-onset
respiratory, cardiovascular, gastrointestinal autonomic, and
cognitive symptoms. According to the DSM-5 (10), recurrent
panic attacks in PD are categorized as being either spontaneous
(unexpected) or cued (expected). Recurrence of panic attacks
leads to anticipatory anxiety, conditioned fear and avoidance
of panic contexts, cues and reminders leading to compromised
functioning and disability (11–15). Current treatments have
limited therapeutic efficacy and a delayed onset of action (15–
17). While studies in the past few decades have improved our
understanding of panic neurobiology [reviewed in: (18–20)],
the mechanistic basis of spontaneous panic and sustained fear
is still poorly understood yet could lead to improvements in
treatment outcomes.

The association of PD with dysregulated interoceptive
processing suggests an important role for body-to-brain
signaling in PD pathology. While body-to-brain signaling can
occur via several pathways, immune and humoral pathways
play an important role in communicating bodily physiological
state to the brain (21). Immune activation in conjunction
with humoral interoceptive mechanisms can mediate discrete
changes in brain and behavior that may predispose to psychiatric
disorders (21–24). Strong evidence supports a role for the
immune system and associated cellular mediators in regulation
of behaviors associated with depression and anxiety such as
sickness behavior, anhedonia and learned helplessness [reviewed
in (22–25)]. Accumulating evidence suggests that neuroimmune
regulatory mechanisms also play a role in fear and panic-
associated disorders, although this has not been well studied.
Interestingly, mounting epidemiological evidence supports a
high comorbidity of PD with inflammatory conditions such
as Crohn’s disease, asthma, inflammatory bowel syndrome
(IBS) and fibromyalgia (26–31), suggesting a potential role of
dysregulated immune signaling in PD pathology. However, our
understanding of the role of immune mediators in the etiology
and maintenance of PD remains limited.

Thus, in the current review, we attempt to summarize
findings that support a role of immune dysregulation in PD
symptomology. We compile evidence from human studies
and panic-relevant rodent paradigms that indicate a role of
systemic and brain immune signaling, in the regulation of fear
and panic-relevant behavior and physiology. Specifically, we
discuss how immune signaling can contribute to maladaptive
body-to-brain communication and conditioned fear that are
associated with spontaneous and conditioned aspects in PD
onset and maintenance.

Relevance of interoception and
conditioned fear in panic disorder

Clinical observations and collective evidence from challenge
studies in the laboratory, neuroimaging, symptomology,
treatment responses and translational animal models have
led to an increased understanding of PD (11, 12, 14, 18–20,
32–41). As illustrated in Figure 1, PD frequently originates
with patients experiencing spontaneous panic attacks that seem
to occur without an explicit trigger. Over time, PD develops
as the result of associative conditioning processes that lead to
fear and phobic avoidance as well as anticipatory anxiety of
future attacks (15). Thus, to improve our understanding of PD
and develop novel treatments, clinical and preclinical work has
sought to understand the mechanisms underlying these various
aspects of panic pathology, including both spontaneous panic
attacks and attacks driven by conditioned responses, as well as
the relationship between these processes.

Panic disorder is highly heterogenous with variable
symptom profile and intensity in panic episodes experienced
by the same individual and across patients (14, 15, 42).
Interestingly, PD is unique among anxiety disorders in that fear
and anxiety associated with panic are primarily directed toward
somatic symptoms (32). In these individuals, body sensations or
physiological signals linked to risk of suffocation (e.g., dyspnea,
breathlessness, or air hunger) elicit dysfunctional defensive
responding leading to anxious apprehension, fear, panic,
contributing to the persistence of PD symptomatology. Due to
the somatic underpinnings of PD, a major focus has been placed
on interoceptive signaling and body-to-brain communication
pathways, as interoceptive inputs serve an important regulatory
function in generation of adaptive behaviors and physiology
key to emotional regulation (3, 4, 37). Indeed, strong evidence
now supports a primary role of homeostasis and interoception
“an individual’s sensing and monitoring of the physiological
condition of the body itself ” in driving panic attacks (3,
4, 37, 43). In particular, it has been proposed that while
the expected or cued panic attacks in PD are triggered by
exteroceptive triggers (i.e., context of previous panic attack
or other unrelated stressors, or traumatic experiences), the
unexpected or spontaneous panic attacks may be provoked by
interoceptive sensory triggers caused by fluctuations in the
internal milieu that challenge homeostasis (37).

This theory of interoceptive signaling driving PD is
primarily based on observations that patients with PD show
heightened sensitivity to homeostatic disturbances, particularly
those that induce acidosis such as CO2 inhalation and sodium
lactate infusion (18, 38, 40, 44–62). In people with PD, these
threats to internal homeostasis drive increased fear, respiratory,
and cardiac responses that can result in panic attacks, suggesting
this heightened sensitivity may confer vulnerability to panic
attacks (38, 58). The ability to evoke panic attacks in
clinical populations within the lab has greatly improved our
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FIGURE 1

The cycle of panic disorder: Vulnerability factors such as genetic predisposition, early life adversity, chronic illness, physiological state (i.e.,
dehydration), or other psychiatric disorder diagnosis associate with innate sensitivity to homeostatic triggers. These homeostatic triggers are
threats to internal homeostasis that lead to a heightened state of alarm, the activation of threat responses systems and a panic attack. The
emotional, behavioral and physiological responses occurring during panic attacks such as fear, anxiety, hyperventilation and cardiovascular
responses are evoked in an effort restore physiological homeostasis. The engagement of these systems and the conditioned responses to
contexts where panic attacks occurred can lead to hypersensitivity to future homeostatic triggers, novel stressors or trauma, and exposure to
previous panic contexts. This can lead to a cycle of recurrent panic attacks, and anticipatory anxiety and avoidance of panic-associated
contexts, that ultimately facilitates the development of panic disorder.

understanding of the behavioral, emotional and physiological
aspects of panic attacks. It has also allowed researchers to
investigate the effects of pharmacological treatments or other
therapies (i.e., cognitive behavioral therapy, etc.). Additionally,
it has allowed for quantification of molecular biomarkers within
blood or saliva immediately before and after panic attacks.

CO2 inhalation is the interoceptive stressor most commonly
used to probe the mechanisms underlying panic attacks and
PD. In this model, individuals are exposed to either low-dose
CO2 inhalation (5–7.5% CO2) or a single beath of high-dose
35% CO2 by breathing in air composed of non-hypoxic levels
of oxygen (∼21%) and varied nitrogen levels used to balance
differing CO2 percentages (19, 34, 38, 45, 46, 49, 55, 56, 58, 59,
63, 64). CO2 inhalation evokes fear, anxiety and physiological
responses in both patients with PD and in healthy individuals
(38, 45, 46, 55). Responses to CO2 inhalation increase in
intensity as the concentration of CO2 increases and tend to
be stable across time (53). Interestingly, CO2 sensitivity seems
to lie on a spectrum. Compared to individuals without PD,
patients with PD show a left-shifted CO2 inhalation response
curve, presenting with heightened emotional and physiological
responses, and a greater likelihood of a resultant panic attack
across all CO2 inhalation concentrations. First-degree family
members of patients with PD present with an intermediate CO2

sensitivity phenotype between healthy individuals and those
with PD suggesting there may be a genetic influence on this

phenotype (38). Although not clearly defined, predisposition
factors associated with PD such as genetics, early life adversity,
underlying respiratory abnormalities and other factors are
thought to promote sensitivity to interoceptive stressors like
CO2 inhalation (18, 20, 52, 53, 61, 65, 66). Given the strength
of the association between sensitivity to interoceptive stressors
and PD, studies seeking to understand the mechanisms driving
CO2 sensitivity may improve our understanding of PD and lead
to identification of novel treatments.

Although spontaneous panic attacks are key to panic
etiology, the development to PD also involves associative
conditioning processes leading to fear and phobic avoidance
(15, 32, 37, 67, 68). This can be particularly detrimental to
quality of life in patients as they begin to avoid situations
or contexts they believe may elicit panic attacks. Studies
exploring conditioned fear responses, particularly contextual
associations, have improved our understanding of PD and
aided the development of behavioral therapies (32, 37, 67, 68).
Studies investigating the transition from initial spontaneous
panic attacks to development of conditioned fear are more
limited yet understanding this transition may improve our
ability to prevent the development of PD or improve treatments.
Previous evidence suggests that initial panic attacks associated
with dysfunctional interoceptive body-to-brain signaling could
lead to sensitized fear-arousal-stress regulatory circuits to
promote the chronicity and maintenance of PD (see Figure 1).
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However, the specific mechanisms by which dysfunctional
interoceptive signaling could promote sensitized fear-arousal-
stress responding are unclear.

Given the relevance of systemic and CNS interactions and
crosstalk in panic genesis, the immune system provides an
interesting regulatory pathway that can provide mechanistic
insights on panic physiology. Historically, interoceptive
signaling has largely focused on neural-mediated mechanisms
(4, 33, 37, 41) however humoral signals are increasingly being
recognized as important mediators in communicating bodily
physiological state to the brain (21). Immune mediators and
pathways can regulate neuronal activity and function leading
to altered behavior and physiology (69–72). Reciprocally,
sympathetic and neuroendocrine signals from the brain
regulate immune response and function (24, 73–75). Relevance
of immune mediators and inflammation in fear associated
disorders such as PTSD is recognized (75–77). Whether
dysfunctional immune signaling in the periphery or brain
contributes to panic symptomology has not been systematically
assessed. In the following sections we provide support for a
potential PD-neuroimmune link based on evidence from genetic
studies and cytokine measurements in human studies as well as
panic-relevant animal paradigms simulating interoceptive and
conditioned fear aspects of PD.

Immune contributions in panic
and fear: Clinical evidence

Mounting evidence from the clinic supports a potential
role of dysregulated immune function in PD. Most work has
focused on identifying specific genes, epigenetic associations or
alterations in immune effectors comparing individuals with PD
to those without a PD diagnosis that we will discuss below:

1) Immune-associated genes in Panic Disorder

Genetic studies indicate a heritability of PD at about
40% (78) suggesting a strong role for genetic variance in
mediating risk to develop PD. Identifying the specific genes
or gene clusters (groups of genes involved in similar functions
or pathways) associated with PD could help improve our
understanding of the mechanisms underlying PD and point
to putative therapeutic targets. Multiple genetic studies have
identified associations between immunomodulatory genes and
PD. Single nucleotide polymorphisms (SNPs) within the INF-
γ (+ 874 A/T), TNF-α (-308 G/A), and IL-10 (-1082 G/A)
genes were investigated in patients with PD (79). The group
reported that the G allele in IL-10-1082 G/A might have a
protective role in reducing the manifestations of PD in female
patients. IL-10 is an anti-inflammatory cytokine inhibiting
the generation of several inflammatory cytokines (80, 81).
Interestingly, IL-10 inhibits the nearly ubiquitous expression

of indoleamine 2,3-dioxygenase (IDO), an enzyme responsible
for directing tryptophan degradation, a pathway that has been
implicated in anxiety disorders (82–84). Another study found
an association of polymorphisms in the IKBKE (inhibitor
of kappa light polypeptide gene enhancer in B cells, kinase
epsilon) gene in patients with PD (85). IKBKE is involved
in regulation of innate immunity, inhibiting NF-kappa B
signaling in response to inflammatory cytokines, particularly
IL-1 (85, 86), suggesting a potential role of innate immune
signaling in PD. Association of a MASP-2 YA haplotype
and Mannan-binding lectin (MBL) deficiency was reported in
patients with PD, an observation explained to be associated
with innate immune alterations that may increase susceptibility
for infections and autoimmune states due to their roles in
complement activation (87). In strong support of an immune
dysfunction in PD, Shimada-Sugimoto et al. (88), performed
pathway analyses in order to overcome the limitations of
conventional single-marker analysis in identifying associated
SNPs with modest effects. Using multiple pathway analyses the
group reported that pathways related to immunity show the
strongest association with PD. For further investigation, the
group studied HLA polymorphisms in candidate susceptibility
genes HLA-B and HLA-DRB1, associated with the major
histocompatibility complex (MHC) and immune dysfunction in
PD patients and control subjects (89). Patients with PD were
significantly more likely to carry HLA-DRB1 further supporting
links to immune regulation and genes involved in immune-
related pathways are associated with PD.

In addition to gene polymorphism and pathway analysis
studies, epigenetic contributions have been investigated in the
context of immune modulation. A recent study investigated
whether aberrant DNA methylation of inflammation-related
genes was associated in the development of PD (90).
Methylation levels of CCL3, CRP, CSF2, CXCL8, IFNG, IL12B,
IL1A, IL-4, IL-6, TNF was investigated. Significantly higher
methylation levels of the IL-4 gene were observed in PD patients
than control subjects. Importantly, the methylation levels of IL-
4 gene showed a significant positive correlation with the severity
of panic and anxiety (90). In another study, (91), a significant
association between panic severity score and methylation levels
of Asb1, a member of the suppressors of cytokine signaling
(SOCS) family was observed in PD subjects, suggesting a
role of epigenetic factors. Furthermore, in a follow up mouse
study, the authors found a correlation between peripheral
Asb1 and IL-1β mRNA expression after acute social defeat
stress suggesting a relationship between Asb1, IL-1β and stress
responding (91). Assessment of T cell receptor excision circles
(TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation
of regulatory T cells (Tregs) and relative telomere lengths (RTLs)
was conducted in patients with PD and age- and sex-matched
healthy controls in order to test for a potential dysfunction
and premature aging of the immune system (92). Significantly
reduced TRECs in PD patients and FOXP3 hypermethylation
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in female patients with PD was observed, reflecting immune
system-related deficits in PD.

Other studies support differences in the expression of
immune-associated genes in panic pathology. Our lab found
significantly higher expression of immunomodulatory gene
T-cell death associated gene 8 (TDAG8) in peripheral monocytes
collected from PD subjects and healthy volunteers (93). TDAG8,
also expressed in brain microglia, is an acid sensing GPCR
regulating CO2-associated fear (94). Interestingly, a significant
positive correlation was observed between monocytic TDAG8
expression and panic symptom severity score and TDAG8
expression was lower in individuals with symptom remission,
suggesting potential utility of TDAG8 as a treatment response
biomarker (93). Lastly, one group, Maron et al. (95) conducted
gene expression profiling following cholecystokinin CCK-4, a
commonly used panic provocation agent challenge in control
subjects. Interestingly, several immune regulatory genes showed
alterations between “panickers” and “non-panickers,” suggesting
that acute panicogenesis may engage immune system targets.

Collectively, genetic evidence suggests dysregulation
of immune function and possibly epigenetic mechanisms
in panic etiology. Although some association with
immunomodulatory genes have been reported in PD, more
follow up investigation is warranted.

2) Immune effectors in PD

Measurement of alterations in immune mediators such
as cytokines, chemokines and T cells have been conducted
in individuals with PD. Several studies have reported altered
cytokine concentrations in PD, however directionality and
targets assessed differ between studies and are not always
consistent. In general, a broad spectrum of cytokines appear to
be upregulated in PD (96, 97) suggesting dysregulated immune
signaling, however, specific associations and contribution to
panic physiology is not well understood. Due to variability in
study layouts and for correct interpretation, we have divided
available evidence into measurements performed at baseline (no
challenge) or following a panic-relevant challenge or stressor.

i) Immune alterations in panic disorder under non-challenge
conditions

Proinflammatory mediators within the interleukin (IL)
family have been the most studied in the context of PD with
measurements reported on IL-6, IL-1β, IL-2, IL-3, IL-12, IL-
10, and TNFα [see (97)]. Multiple studies have shown elevated
IL-6 concentrations in the serum of PD subjects (96, 98–
100). One study showed that while patients with both PD
and generalized anxiety disorder (GAD) showed higher IL-6
compared to healthy individuals, PD subjects had even greater
IL-6 than individuals with GAD (98). Interestingly, the utility of
IL-6 as a potential treatment response biomarker is supported

by significantly lower IL-6 concentrations in individual with
remitting symptoms compared to those with current panic
symptoms (99). Furthermore, another study observed as
association of pretreatment IL-6 with poor treatment response
(100). However, other studies have reported no significant
changes in IL-6 in PD patients (101, 102), suggesting that factors
other than a panic diagnosis may contribute to IL-6 alterations.

The IL-1 family of cytokines have also been investigated
in PD. A study by Brambilla et al. (103) measured IL-
1β plasma concentrations before and after treatment with
alprazolam, and reported significantly higher IL1β both before
and after treatment (103). However, other studies have reported
no associations of IL-1α/IL-1β with PD (102, 104). These
inconsistencies have been contributed to differences in assay
methodologies (97).

C-reactive protein (CRP), an inflammatory marker shows
significant elevation in patients with PD as compared to healthy
controls (105). Following 8 weeks of selective serotonin reuptake
inhibitor (SSRI) treatment, CRP concentrations decreased only
in treatment-responsive individuals. Additionally, the authors
found reduced γ globulin and higher cortisol levels in PD
patients compared to controls prior to initiation of treatment.
Collectively, these observations suggest engagement of the acute
phase response in PD.

Measurement of broad spectrum panel of cytokines and
inflammatory markers such IL−6, IL−1α, IL−1β, IL−8,
MCP−1, MIP−1α, Eotaxin, GM−CSF, and IFN−α revealed
that 87% of individuals with PD or PTSD had six or
more detectable levels of these cytokines, compared with
only 25% of control (96). In PD patients compared to
controls, 17 of 20 cytokines and chemokines examined showed
significant elevation, suggesting that PD may associate with a
generalized inflammatory state and that specific “inflammatory
signatures” may differ on an individual basis. This could
associate with the general heterogeneity in symptomology
shown within PD patients.

Among other members of the interleukin family, higher IL-
2 concentrations were reported in PD subjects compared to
healthy controls by one study (104), however no associations
were reported by other studies (101, 102, 106). One study
reported increased IL-18 concentrations in PD the magnitude
of which was comparable to a concurrently tested group of
depression subjects (107).

ii) Immune alterations post stressor in patients with PD

The ability to respond appropriately to stressors and adapt
is critical to survival by increasing alertness and preparing the
body to fight (108). Engagement of stress responses with the
immune system may have originated from a need to prepare
the body to fight infection from wounds (109). Mounting
evidence suggests that immune system engagement may also
regulate fear learning which may be beneficial to survival by
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helping an individual remember that a fearful environment
should be avoided (109). Immune responses to stressors occur
in healthy individuals, but evidence suggests these responses
may be dysregulated in those with psychiatric diagnoses (22,
70, 73, 110). As both homeostatic and psychogenic stressors are
relevant to panic physiology (Figure 1), investigating immune-
associated alterations following panic-relevant stressors in
individuals with PD can provide valuable information.

To date, only one study directly studied alterations in
immune factors pre- and post -CO2 inhalation (101), a well-
established interoceptive stressor in PD described above.
No significant differences in either baseline or post CO2

concentrations of TNF-α, IL-6, IL-8, IL-10, IL-1RA, soluble sIL-
2R, soluble sIL-6R or positive acute phase protein haptoglobin
were observed. Lipopolysaccharide-stimulated cytokine
production (TNF-α, IL-6, IL-1β, IL-10, IFN-γ) in whole blood
was comparable for PD patients and their matched controls.
Limitations of the study suggested by the authors included:
the low number of subjects and a gender-biased sample with
underrepresentation of women. Given the relevance of panic
provocation challenges in PD, more larger “n” studies are
warranted; not only for CO2 inhalation, but other interoceptive
challenges such as sodium lactate.

Dysfunctional stress response systems such as the
hypothalamic pituitary adrenal (HPA) axis and sympathetic
nervous system (SNS) have been reported in PD [reviewed
in (111)]. These stress response systems have bidirectional
regulatory associations with the immune system, with either
system engaging the other to regulate immune and stress
responses (24, 112–114). Accumulating evidence indicates
stress-neuroimmune interactions in anxiety disorders including
PD (115). Given strong evidence of immune dysregulation
within PD patients under non-stressful conditions, it is
important to determine whether immune responses to stressful
stimuli are dysregulated and whether immune dysregulation
could contribute to CO2 sensitivity in patients with PD.

Exposure to acute psychological stressors have previously
been reported to show engagement with the immune system,
particularly cytokine release. For example, public speaking or
performing complex tasks in public elevated plasma cytokines
and CRP (116–118). One study compared immune mediators in
healthy individuals and those with PD following the Trier Social
Test (TSST) (119). They found PD patients have higher baseline
and post stressor concentrations of IL-10, and also show blunted
cortisol responses. Interestingly, peak IL-6 concentration
associated with PD symptom severity. Heightened startle
responses have also been reported in PD patients compared to
healthy controls only under fear-associated threat conditions
(120). Interestingly, there is an association between heightened
startle reactivity and inflammation (75).

Collectively, evidence suggests altered immune mediators
in PD, that may represent underlying immune dysfunction,
however, additional studies especially following panic-relevant

triggers and stress challenges are required for understanding
their association with PD physiology. Human studies are
limited and cannot provide mechanistic information on brain
neuroimmune alterations and association with panic-relevant
behaviors. Furthermore, it is difficult to probe neurocircuits
orchestrating body to brain signaling. In the following
section, we discuss selected paradigms that may be relevant
to understanding the mechanistic association of immune
dysregulation and panic associated behavior and physiology.

Understanding
panic-fear-neuroimmune links:
Relevant translational models

Several panic-relevant rodent models have been developed
over the last few decades that provide valuable insights on
panic pathophysiology. Consistent with the importance of
uncued/spontaneous and cued triggers in generating behavioral
and physiological responses in PD, these models have focused
on homeostatic and stress challenges, respectively [reviewed in
(18–20, 34, 48, 52, 121–124)]. Previously reviewed literature
has primarily focused on acid-base homeostasis, PD-relevant
neurotransmitter systems, region-targeted interventions,
genetic and transgenic manipulations. Despite emerging
evidence from human studies, contribution of immune
mechanisms in panic and fear has not been systematically
investigated using translational paradigms. In this section, we
assess selected rodent paradigms that provide information on
the potential role of immune cells, targets and signaling that
may regulate panic-relevant responses and provide mechanistic
insights on panic-fear-immune links (see Table 1).

1) CO2 inhalation and microglial acid sensing by TDAG8

As described in preceding sections, homeostatic triggers that
promote acid-base imbalance such as low-dose, non-hypoxic
CO2 inhalation induce intense fear, anxiety, physiological
responses and panic attacks in PD subjects (18, 19, 34, 38,
41, 47, 56). Several investigators including our laboratory, have
used CO2 inhalation to simulate panic-relevant behavior and
physiology in mice and rats (48, 65, 94, 125–133). The partial
pressure of CO2 in the blood and CNS increases following
CO2 inhalation challenge. In the extracellular fluid, CO2 is
hydrolyzed to carbonic acid (H2CO3) by carbonic anhydrase
which readily dissociates into bicarbonate (HCO3

−) and H+

(134). The resulting acidosis constitutes a homeostatic threat
that is sensed by acid-sensing chemosensors in the brain
and periphery (18, 19, 34, 38, 41, 47, 56). This model has
strong translational value due to its strong face, predictive and
etiological validity [discussed in: (18, 19, 48, 127)].

Given its strong translational value, CO2 inhalation
in rodents is commonly used to investigate mechanisms
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TABLE 1 Animal studies of immune regulation of spontaneous/conditioned fear.

Model PD-relevant
phenotype and effect

Potential immune
effectors

Brain region(s)
implicated

References

Panic-relevant (spontaneous)

CO2 Inhalation Freezing, respiration, blood
pressure

TDAG8, IL-1β, IL-1RA SFO Vollmer et al. (94)

Freezing, rearing IL-1β, IL-1R1, IL-1RA SFO, mPFC, amygdala, PAG McMurray et al. (152)

Microglia Nucleus tractus solitarius,
locus coeruleus

Marques et al. (169)

Panic-relevant (conditioned fear)

Fear conditioning (FC)
(without prior stress; no
follow up behavior)

Conditioned fear (freezing),
extinction (freezing)

IL-6 Young et al. (76)

Contextual extinction
acquisition (freezing)

TNF-α Whole brain and
hippocampus

Yu et al. (203)

Auditory extinction
acquisition (freezing)

IFN- α, IL-1β, TNF-α Amygdala Bi et al. (215)

Extinction acquisition
(freezing)

IL-6 Amygdala Hao et al. (202)

Contextual fear extinction
(Freezing); Open field (center
duration), Elevated Plus
Maze (open arm time)

Nlrp3 inflammasome: cleaved
Casp1, IL-1β, and TNFα

Hippocampus Dong et al. (204)

Models of panic vulnerability (stressors exacerbating later panic-relevant outcomes)

Early life stressor: neonatal
maternal separation

Impaired response to
influenza infection: IL-1,
IL-6, IL-12, IFN-g, and TNFa
mRNA in lung (IL-1, TNFa
and IFNg only in females)
corticosterone

Avitsur et al. (228)

Open field (center time),
forced swim test (immobility)

CD8+ T cells, spleen T cell
CD4/CD8 ratio, thymocytes,
corticosterone

Roque et al. (229)

CD8/CD4 cell ratio, natural
killer cells, lymphocytes
(monkeys)

Lubach Coe and Ershler (230)

Cardio/respiratory control Synaptic pruning via
microglia

Medulla, Nucleus tractus
solitarius, dorsal motor
nucleus of vagus

Baldy et al. (168)

CO2 sensitivity: respiratory
response to 6% CO2

inhalation

N/A Luchetti et al. (164), Cittaro
et al. (163), Giannese et al.
(166), Battaglia et al. (126),
D’Amato et al. (65), Giannese
et al. (166)

Early life stressor: repeated
cross fostering

CO2 sensitivity: respiratory
response to 5% CO2

inhalation

N/A Genest et al. (167)

Neonatal dexamethasone
treatment increases
susceptibility to experimental
autoimmune
encephalomyelitis in adult
rats corticosterone, TNFα,
IL-1β release Changes
peripheral T cell Vbeta
repertoire

Peritoneal macrophages Bakker et al. (231), Bakker
et al. (232)

changes in microbiota Daft et al. (233)

(Continued)
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TABLE 1 (Continued)

Model PD-relevant
phenotype and effect

Potential immune
effectors

Brain region(s)
implicated

References

Anxiety-relevant behaviors in
males

Bartolomucci et al. (234)

Fear conditioning (freezing) IL-1β (Astrocytes) Hippocampus Jones et al. (208), Jones et al.
(210), Jones et al. (210)

Stress-enhanced fear learning
(SEFL)

N/A IL-1β, IL-18, IL-6, IL-10,
monocyte chemotactic
protein (MCP-1), DAMPs
(uric acid and Hsp72)

Plasma Maslanik et al. (235)

Inescapable shocks Fear memory peripheral T lymphocytes Clark et al. (205)

Predator stress Fear conditioning acquisition
(freezing), 2-way
Avoidance/Escape (active
responding, escape failures),
motor activity, fatigue

plasma TNF; corticosterone;
dysregulated immune
pathway gene expression

PFC, Amygdala, Periphery
(plasma/spleen)

Azzinnari et al. (236)

Social defeat/chronic social
stress

Anxiety-relevant behavior
(Open field test, elevated plus
maze)

Monocytes, macrophages,
IL-1β

Spleen, whole brain Lisboa et al. (182)

Tachycardia, heart rate
variability

Morais-Silva et al. (192)

Anxiety-relevant behavior
(open field test, light-dark
preference)

IL-1β, IL-1R1, TNFα, IL-6 Brain Wohleb et al. (184)

Social defeat/chronic social
stress restraint stress

Social exploration IL-1R1 Hippocampus DiSabato et al. (185)

Inescapable shocks Anxiety-relevant (Open field
test)

IL-1β, monocytes McKim et al. (186)

Predator stress Anxiety-relevant (light-dark
preference)

Macrophages, IL-1b, IL-6,
TNFa

Brain Wohleb et al. (187)

Social defeat/chronic social
stress

Monocyte-derived
microRNA106b∼25

Pfau et al. (188)

IL-6 periphery Hodes et al. (189)

Social interaction Dihydrocaffeic acid (DHCA)
and malvidin-3′-O-glucoside
(Mal-gluc), IL-6

Wang et al. (190)

IL-6 Nucleus accumbens Menard et al. (191)

Bradypnea Dorsal medial hypothalamus,
nucleus of the solitary tract

Brouillard et al. (194)

underlying PD to simulate panic-relevant behaviors and
physiology. To date there have been somewhat limited
investigations into the role of immune dysregulation in
mediating PD-relevant behaviors and physiological outcomes
in CO2 inhalation models. However, support for immune
dysregulation in these models is growing. Our lab cloned acid-
sensing G protein coupled receptor, T- cell death associated
gene-8 (TDAG8) in rodent brain (135), and reported TDAG8
expression on microglia, innate immune cells of the CNS (94),
that are recruited in physiological responses to homeostatic
fluctuations (136–140). On sensing subtle imbalance in ionic
homeostasis, microglia transform rapidly from a resting to an
activated state in accordance with their role in maintenance of
the CNS microenvironment. Interestingly, TDAG8-expressing
microglia were enriched within the sensory circumventricular

organs (CVOs) (94). Sensory CVOs such as the subfornical
organ (SFO) are integrative sites that lack a blood-brain
barrier and have access to systemic and CNS compartments
for maintenance of homeostasis (141). Importantly, the SFO
has been identified as a site where interoceptive stimuli can
be sensed and relayed to panic-generating CNS areas, and
has been implicated in regulating panic-relevant responses to
other panicogens such as intravenous lactate (142–144). More
directly, our data showed targeted infusion of acidified artificial
cerebrospinal fluid (aCSF; a homeostatic stress) into the SFO
triggers fear-relevant behaviors like freezing; an effect which
is dependent on TDAG8 (145). Our data further revealed
the necessity of microglial acid-sensor TDAG8 to orchestrate
CO2-evoked behavioral (freezing) and cardiovascular responses
relevant to panic via microglial activation, IL-1β signaling, and
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SFO neuronal firing (94). Thus, the SFO likely represents a
primary locus for detecting interoceptive triggers in “body-to
brain” transmission of panic.

Recruitment of SFO immunomodulatory mechanisms in
panic-relevant outcomes is novel, although not surprising, as
the SFO is also known to drive immune responses and sickness
behaviors, particularly fever (141, 146–148). The SFO also
regulates blood pressure (149) as well as respiration (150),
and previous studies reported IL-1β-IL-1R signaling mediated
cardiovascular activation via the SFO (151). More recent
observations from our lab show significant attenuation of CO2-
evoked freezing following SFO-targeted infusion of the IL-1
receptor antagonist, IL-1RA (152), suggesting a primary role of
SFO IL-1R1 signaling in CO2-associated fear behaviors. Notably,
the IL-1R1 receptor is localized on endothelial cells within the
SFO (152, 153) and is required for CO2-evoked activation of
SFO neurons (94). The SFO could be mediating these effects
though its direct projections to brain areas mediating defensive
behaviors and physiological responses relevant to panic such as
the hypothalamus, prefrontal cortex, BNST, and periaqueductal
gray (154, 155). Collectively, our data highlight a contributory
role of neuroimmune signaling and specialized sites such as the
SFO in regulation of panic-relevant behavior and physiology.

2) Early Life Stress- CO2 respiratory dysfunction paradigm

Strong evidence supports significant variance and individual
differences in responding to CO2 inhalation (38, 47, 156). People
with panic lie at one extreme of the sensitivity distribution,
showing paroxysmal hyperventilation and panic when they
undergo CO2 challenges (38, 52, 58, 61, 157). Modeling
CO2 sensitivity in rodents as a proxy for human panic has
unique strategic advantages such as an opportunity to dissect
mechanistic contributions. Studies performed by Battaglia and
coworkers have highlighted gene x environment interactions in
mediating increased CO2 sensitivity [reviewed in (158–160)].
Chronic stress in the form of early life adversity for example
childhood parental loss, contributes to these relationships
(158, 161), and stressful life events occurring in childhood-
adolescence heighten young adults’ CO2 sensitivity (162).

Translationally relevant paradigms such as neonatal
maternal separation (NMS) and repeated cross fostering (RCF)
model have effectively simulated the effects of early life stress on
CO2 sensitivity and provided mechanistic insights [reviewed in
(158, 160)]. Heightened ventilatory response to CO2 inhalation
is observed in adult animals with a history of NMS or RCF
as neonates (65, 126, 163–167), that may be regulated by
gene x environment factors and epigenetic alterations in gene
methylation patterns (163, 166). Interestingly, significant
increase in microglial density and reduced arborization was
observed within the nucleus of the solitary tract (cNTS) and
the dorsal motor nucleus of the vagus (DMNV), two key
areas regulating breathing (168) suggesting that NMS may

compromise microglial ability to perform optimal synaptic
pruning that could lead to aberrant respiratory control. In
a more recent study (169), the group reported a significant
effect of ovarian hormones on microglial activation within in
CO2/H+ sensing brain stem areas, suggesting that hormonal
fluctuations may influence anomalies of respiratory control
via neuroimmune mechanisms. Given that effects of early life
stress on immune signaling, neuroimmune physiology and
function are well established [for review see (110, 170–172)],
more investigation is warranted on the delineating the links
between ELS-immune signaling and panic-relevant physiology.

3) Chronic Social Defeat paradigms - body to brain immune
signaling in anxiety and fear

As described in preceding sections, exposure to
exteroceptive stressors and aversive contexts can facilitate the
recurrence of panic attacks. Furthermore, dysregulation of stress
response systems has been implicated in PD, particularly the
sympathetic nervous system that regulates the immune system
via innervation of the spleen and lymphoid organs [Webster
Marketon and Glaser (173); Dantzer (174)]. A primary role
of chronic stress mediated immune dysfunction and CNS
remodeling has been recognized in the genesis of psychiatric
illnesses, including mood and anxiety disorders [reviewed in
(24, 71, 72, 175)]. Recurrent or chronic stress engages intrinsic
neuronal pathways that lead to physiological effects, such
as neuroendocrine and sympathetic activation (176, 177).
These systemic responses to stress further promote the release
and trafficking of myeloid cells with enhanced inflammatory
potential into various organs, including the brain (178, 179).
Preclinical rodent models of stress-induced behavior and
physiology can provide important information on brain-to-
body as well as body-to-brain communication mechanisms.
In this regard, psychosocial stress paradigms, particularly
repeated social defeat (RSD) stress exposure [reviewed in (114,
179–181)] have yielded important mechanistic information
on body-brain neuroimmune crosstalk in regulating fear
extinction (182), anxiety and social avoidance behaviors
[reviewed in (179)] that are relevant to persistent fear, anxiety
and comorbid depression observed in PD. Coordinated events
including activation of brain threat appraisal sites, microglial
activation and peripheral immune signaling is reported to
orchestrate RSD-mediated behavioral deficits. Exposure to
RSD leads to increased sympathetic activation promoting
elevated noradrenergic signaling in the periphery and increased
production and release of glucocorticoid-insensitive monocytes
into the circulation from the bone marrow and spleen [reviewed
in (114, 183)]. Pharmacological and genetic intervention
strategies using adrenergic receptor antagonists, microglial
activation blockers, cell specific IL-1R transgenic mice highlight
a key role of sympathetic activation, microglia-mediated
trafficking of reactive IL-1β- releasing monocytes to the brain,
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and the recruitment of endothelial and neuronal IL-1R1 in
promoting RDS induced expression of anxiety-associated
behaviors and reduced social interaction (184–187). Although
IL-1-mediated mechanisms appear to be important in the
RDS model, it would be important to note that other cytokine
mediators, like interleukin-6 have also been implicated in
social defeat stress- induced blood brain barrier alterations and
impaired social interaction behavior (188–191). In addition to
adverse behavioral effects, social defeat exposure has long term
effects on cardiovascular responses (192, 193) and aberrant
respiratory patterns (194) that are of relevance to PD. Immune
dysfunction and inflammatory mechanisms contribute to
increased cardiovascular and autonomic activation in stressed
mice (195, 196).

In summary, previous work has highlighted the relevance
of social defeat stress paradigms to anxiety and depression
physiology. However, the observed crosstalk of sympathetic
activation, peripheral immune signaling and brain networks
regulating behavior and physiological responses in this model
may also relate to panic physiology.

4) Fear Conditioning paradigms

Pavlovian fear conditioning has been central to
understanding the etiology of anxiety disorders such as PD
[reviewed in (197)]. The clinical relevance of fear conditioning
to PD is based on conditioned fear responses to panic-evoking
stimuli and contexts, as well as generalized fear to resembling
cues. Conditioning processes contribute by conferring fear and
anxiogenic valence to these conditioning triggers that enable
the maintenance of the disorder well after the termination
of the unconditioned stimulus (i.e., the panic attack). The
measurement of Pavlovian fear conditioning and extinction in
rodents offers a relatively simple paradigm that is translatable as
an approach to study biological underpinnings of fear-related
disorders (198–201). While most rodent studies highlight the
applicability of their findings to PTSD, they are also pertinent
to PD symptomology. In this section we discuss evidence
supporting a role of several immune factors and neuroimmune
signaling in regulating conditioned fear associated behaviors.
We discuss selected fear conditioning studies in this section
excluding models of neurodegeneration, addiction or severe
inflammatory insults.

A role of IL-6 in the maintenance of fear memory was
reported using auditory cue fear conditioning, an effects
dependent on fear extinction, suggesting that IL-6 and other
IL-6 related pro-inflammatory cytokines may contribute to
the persistence of fear memory (76). Another study reported
impairment of acquisition and extinction of fear following intra-
amygdala injection of IL-6 (202). Fear regulatory effects of
other cytokines and T cells have also been investigated. Levels
of TNF-α were increased in microglia from mice representing
retention of fear memory, and returned to basal levels in mice

representing extinction (203), suggesting that sustained fear is
facilitated by microglial TNF-α signaling. A role of NLRP3
inflammasome activation and IL-1β has also been reported
in the regulation of fear memory (204). Genetic knockout
and pharmaceutical inhibition of the NLRP3 inflammasome
enhanced the extinction of contextual fear memory. IL-
1β administration inhibited extinction, while, IL-1RA (IL-
1R antagonist) facilitated extinction. In addition to cytokines
associated with innate immune signaling, the role of CD4(+)
T cells in promoting fear responses by enhancing learning
and memory processes has been reported (205). Lymphocyte
deficient Rag2(-/-) mice showed attenuated fear responses in
a cued fear conditioning paradigm compared to wild-type
mice and reconstitution with CD4(+) T cells promoted fear
learning and memory.

Stress-enhanced fear learning (SEFL), which encompasses
both trauma and memory components in rodents, has emerged
as a valuable preclinical model for PTSD [reviewed in
(206)], and may be pertinent to the conditioned aspects
of PD physiology. SEFL simulates the impact of traumatic
stress in the form of several footshocks on subsequent fear
conditioning to a single shock delivered in a novel context
(207). Maladaptive behavioral outcomes following traumatic
footshocks in the SEFL paradigm have been associated
with immune dysregulation, specifically, a central role of
hippocampal IL-1β has been reported (208–210). Exposure
to footshocks induced a time-dependent increase in IL-1β

expression within the hippocampal dentate gyrus, and IL-
1RA treatment prevented the development of SEFL (208).
Interestingly, hippocampal astrocytes were reported to be
the source of IL-1β (209). To confirm a key role of
astrocyte signaling in SEFL, the same group investigated the
effects of glial-expressing DREADD construct [AAV8-GFAP-
hM4Di(Gi)-mCherry] delivered in the dorsal hippocampus
(210). Inhibition of astroglial Gi activation was sufficient to
attenuate SEFL, suggesting that IL-1β signaling involves glial-
neuronal interactions in stress potentiation of fear.

Collective evidence from these studies suggests that immune
signaling has regulatory effects on fear learning and memory
processes and that dysregulated immune status in PD could
promote sustained and generalized fear.

Potential immune links in panic
disorder: Takeaways and future
directions

Mounting evidence supports a role for neuroinflammation
in PD, however, questions remain about the specific mechanisms
and effectors contributing to pathology. Clinical observations
suggest that PD associates with heightened peripheral
inflammation at baseline. Patients with PD also present
with hyperactive homeostatic stress responsivity, particularly
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in response to acid-base imbalance, which associates with
dysregulated immune responses to stress. Our working model
(see Figure 2) proposes a complex interplay between peripheral

and central inflammatory mechanisms, and a hyperactive
response system to homeostatic stress. While it is currently
unclear if hyperactive homeostatic stress responsivity leads

FIGURE 2

Body to brain signaling: Mechanisms of acidosis evoked peripheral and central inflammation: (A) panic disorder is associated with dysregulated
inflammatory responses to homeostatic/interoceptive triggers like acidosis. Panic disorder is also associated with baseline chronic
inflammation. Regardless of which inflammatory response occurs initially, either can facilitate the development of the other and result in
peripheral and central inflammation. Acidosis could lead to altered neuroimmune signaling through a variety of mechanisms. In the periphery,
acidosis may activate acid-sensing receptors on peripheral macrophages. This could lead to either (1) macrophage infiltration across the blood
brain barrier (BBB), (2) cytokine release that activates cytokine receptors on endothelial cells, or (3) release of cytokines that cross the BBB.
Peripheral acidosis could acidify the brain via protons (H+) that cross the BBB and activate acid-sensing receptors on microglia. Alternatively,
acidosis could occur directly within the brain (5) activating acid-sensing receptors on microglia resulting in cytokine release and activation of
cytokine receptors on endothelial cells or (6) directly on neurons or other cell types. It is also possible that acidosis could activate acid-sensing
receptors on peripheral macrophages that have previously infiltrated the brain, possibly as a result of prior trauma or other risk factor (disease,
etc.). Ultimately, Inflammation within the brain is thought to drive emotional, behavioral and physiological responses that occur during panic
attacks and increase vulnerability to develop panic disorder. (B) Peripheral inflammation can alter neuronal activity either by neuro-immune
signaling occurring either in the periphery or directly in brain. In the periphery, neuro-immune signaling could result in vagal stimulation that
terminates in the nucleus tractus solitarius (NTS) and mediates cardiovascular and respiratory responses. There could also be direct humoral
signaling within circumventricular organs the subfornical organ (SFO) or Area Postrema (AP). These areas are known to project directly to fear,
respiratory and cardiovascular regulatory areas throughout the brain. Alternatively, inflammation could occur directly in the brain in response to
stress (interoceptive/homeostatic or exteroceptive), trauma, or panic context re-exposure. Many studies have shown increased inflammation in
fear-associated regions prefrontal cortex (PFC), hippocampus (HPC), amygdala (AMY) or the NTS. Inflammation in these areas could affect
neuronal activity and drive the emotional, behavioral and physiological responses associated with panic disorder pathology.
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to dysregulated inflammatory signaling or if a heightened
inflammatory state increases sensitivity to homeostatic
stressors, it is likely the relationship is bidirectional with
either facilitating the other. The exacerbation of sensitivity to
homeostatic stressors like acidosis and peripheral inflammation
then promotes the behavioral, emotional and physiological
symptoms of panic attacks through neuroinflammatory
mechanisms and dysregulated neuroimmune signaling within
the brain and ultimately, leads to the development of PD.

An important question going forward involves the
relationship between peripheral and central inflammation, and
how inflammation reaches the brain to ultimately drive panic
symptomology. Though it is unclear how inflammation could
reach the brain in PD, homeostatic stressors like acidosis could
lead to altered neuroimmune signaling within the brain through
a variety of mechanisms (Figure 2A). In the periphery, acidosis
may activate acid-sensing receptors on peripheral macrophages
and lead to release of cytokines that either activate cytokine
receptors on endothelial cells or cross the BBB to activate
receptors directly within the brain. Alternatively, peripheral
acidosis could acidify the brain via protons (H+) that cross
the BBB and activate acid-sensing receptors on microglia.
Another possibility is that acidosis occurs directly within the
brain activating acid-sensing receptors on microglia resulting
in cytokine release and activation of cytokine receptors on
endothelial cells or directly on neurons or other cell types.
The BBB generally protects against infiltration from peripheral
immune cells, however mounting evidence suggests mood,
anxiety and stress-associated psychiatric disorders like PTSD
and depression associate with changes in BBB permeability (191,
211–213). In PD, it is possible that prior trauma, chronic stress
or comorbidities such as PTSD or depression which associate
with changes in BBB permeability could cause peripheral
macrophages to penetrate the brain, which could then be
activated by subsequent acidosis. It is also possible that repeated
activation of peripheral macrophages could alter the BBB
and lead to changes in how peripheral macrophages interact
or engage with the peripheral-endothelial-BBB interphase.
Future studies are needed to identify which, if any, of these
mechanisms contribute to neuroinflammation in PD and
determine whether targeting these mechanisms could improve
treatment outcomes.

Future studies are also needed to identify how inflammatory
signaling is translated into neuronal signaling within the brain
to ultimately regulate panic symptomology. The conversion
of immune signaling into neuronal signaling could originate
either in the periphery or directly in brain (Figure 2B). In
the periphery, neuro-immune signaling could result in vagal
stimulation that terminates in the nucleus tractus solitarius
(NTS) and mediates cardiovascular and respiratory responses
(214). There could also be direct humoral signaling within
circumventricular organs the subfornical organ (SFO) or area
postrema (AP). These areas are known to project directly to

fear, respiratory and cardiovascular regulatory areas throughout
the brain (147). Alternatively, inflammation could occur directly
in the brain in response to stress (interoceptive/homeostatic
or exteroceptive), trauma, or panic context re-exposure. Many
studies have shown increased inflammation in fear-associated
regions prefrontal cortex (PFC), hippocampus (HPC), amygdala
(AMY) or the NTS (75, 83, 204, 208, 209, 215–217).
Inflammation in these areas could affect neuronal activity and
drive the emotional, behavioral and physiological responses
associated with PD pathology.

Another consideration is the level of inflammation
associated with pathology. Historically, most studies on the
role of innate immune cells within the brain have focused on
the effects of high levels of neuroinflammation more typically
associated sickness that can have more dramatic effects such
as increased phagocytosis. Yet even mild perturbations in
the immune milieu can have neuromodulatory effects. Innate
immune cells contribute to homeostatic maintenance of the
CNS and dysregulation of this functionality may lead to
pathology (140). For example, microglia have an important
role in the synaptic pruning (72). Dysregulated synaptic
pruning could have lasting effects on neurotransmission and
mounting evidence suggests an association of dysregulated
synaptic pruning with psychiatric disorders like depression
or autism. There is also an association between inflammation
and increased oxidative stress in psychopathology which could
exacerbate cell damage, alter cell signaling within the brain
and result in behavioral changes (218–221). Additionally, at
lower concentrations cytokines may act as neuromodulators
within the brain, changing excitability and having more mild
effects on cognition/memory/decision making rather than
inducing robust sickness behaviors at higher concentrations
(70). In the case of PD, a lack of evidence for drastic effects on
immune function might be due to relatively mild changes on
the innate immune system, resulting in changes to homeostatic
maintenance or monocyte trafficking to endothelial cells at the
BBB rather than increased cell death or infiltration of peripheral
monocytes/T cells as a result of BBB degradation.

Lastly, the high level of co-morbidity between PD and
inflammatory diseases such as multiple sclerosis (222), lupus
(89, 223), asthma (30, 224), and irritable bowel syndrome
(225), as well as other psychiatric disorders associated with
inflammation like depression (6, 14, 226), PTSD (6, 227) and
substance use disorders (6, 14) supports a role for dysregulated
immune signaling in PD risk and pathology. However,
the mechanisms driving high comorbidity are unclear and
particularly complex as either PD or the inflammatory disorder
may pre-date the other. For example, initial presentation with
an inflammation-associated disorder could drive changes in
homeostatic sensitivity and lead to increased risk for developing
panic, innate sensitivity to homeostatic stressors could lead to
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development of a heightened inflammatory state and increase
risk for developing inflammation-associated co-morbidities,
or the same underlying inflammatory pathways may drive
pathology in PD and commonly co-morbid inflammatory
disorders and be dysregulated in affected individuals. Future
studies are needed to determine the relationship between
these disorders and the mechanisms through which one may
lead to the other.

Overall, strong evidence supports the hypothesis that
dysregulated body to brain signaling is central to the
development of PD. Emerging clinical and preclinical evidence
points to a strong role for dysregulated immune signaling in
driving the dysfunctional body to brain signaling underlying
spontaneous and cued panic attacks. However, further
studies are needed to better understand neuroinflammatory
mechanisms in PD.
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