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Background:Major depressive disorder (MDD) is a life-threatening, debilitating

mental health condition. An important factor in the development of depression

is endoplasmic reticulum stress (ERS). However, their roles in MDD have not yet

been established. The goal of this study was to examine ERS and its underlying

molecular mechanisms in MDD.

Methods: We used data from two microarray datasets (GSE98793 and

GSE39653) and the GeneCards database to examine the reticulum stress-

related di�erentially expressed genes (ERSR-DEGs) associated withMDD. Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set

Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were used

to further investigate the function and mechanism of ERS in MDD. Moreover,

we constructed protein-protein interaction (PPI) networks to identify hub

genes as well as the regulatory network of microRNAs (miRNAs), transcription

factors (TFs), and potential drugs related to ERSR-DEGs. CIBERSORT was

then used to evaluate the immune activity of MDD samples and conduct a

correlation analysis between the hub genes and immune cells.

Results: In total, 37 ERSR-DEGs and five hub genes were identified (NCF1,

MAPK14, CASP1, CYBA, and TNF). Functional enrichment analysis revealed

that ERSR-DEGswere predominantly enriched in inflammation-and immunity-

related pathways, such as tumor necrosis factor signaling, NF-κB signaling,

and Toll-like receptor signaling pathways. Additionally, 179 miRNAs, 25 TFs,

and 15 potential drugs were tested for their interactions with the ERSR-DEGs.

CIBERSORT found high proportions of Tregs, monocytes, and macrophages

M0 in the MDD samples. Among these, hub genes showed a significant

correlation with immune cell infiltration in patients with MDD.

Conclusions: NCF1, MAPK14, CASP1, CYBA, and TNF are potential ERS-related

biomarkers for the diagnosis of MDD. Our research has revealed a significant

correlation between immune cells and ERS-related genes with MDD.
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Not only did our study contribute to a better understanding of the regulatory

mechanisms of ERS in underlying MDD pathology, but it also established a

paradigm for future studies on ERS.

KEYWORDS

endoplasmic reticulum stress-related di�erentially expressed genes (ERSR-DEGs),

bioinformatics analysis, major depressive disorder (MDD), endoplasmic reticulum

stress (ERS), immune infiltration

Introduction

Major depressive disorder (MDD) is a severe, recurrent,

and life-threatening mental disorder with a high prevalence and

low remission rate (1). According to epidemiological statistics

from US adults, the lifetime prevalence of MDD is 20.6% and

the 12-month prevalence is 10.4% (2). Depression seriously

affects psychosocial functioning and is the primary cause of

disability (3). MDD is a highly heterogeneous and multifactorial

disease, making diagnosis and therapy more challenging (4).

Even though various research has been undertaken to discover

biomarkers for the diagnosis of MDD, most have not yet been

applied in the clinical context due to insufficient specificity and

efficacy (5–7). Although numerous antidepressants exist, only

30% of patients achieve complete remission, reflecting current

therapies fail to address important biological processes involved

in MDD pathology (8, 9). Therefore, discovering the biological

basis of MDD progression and identifying novel diagnostic

indicators and treatment targets for patients is crucial.

ERS, characterized by the accumulation of incompletely

folded and unfolded proteins in the lumen, stimulates the

unfolded protein response (UPR) (10). Numerous studies

(11–13) have demonstrated that ERS is closely linked with

the pathophysiology of depression. According to reports,

the ERS signaling proteins GRP78, CHOP, and XBP1 are

continuously activated in MDD patients (14). Moreover, a

variety of pathological processes are associated with ERS,

such as immunological responses, inflammatory responses, and

oxidative stress (15–17), and these mechanisms also contribute

to MDD (18–21). These studies demonstrate that ERS can alter

the course of depression, either directly or indirectly, through

its participation in some crucial biological processes. Of note,

the potential of ERS as a target for novel antidepressants has

been demonstrated in preclinical studies (13, 22). However,

TABLE 1 The characteristics of the two microarray datasets.

Dataset Organism Tissue Array platform MDD samples HC samples Study

GSE98793 Homo sapiens Whole blood samples GPL570 [HG-U133_Plus_2]

Affymetrix Human Genome U133 Plus 2.0 Array

64/128 64/128 Leday

et al. (25)

GSE39653 Homo sapiens Whole blood samples GPL10558 Illumina

HumanHT-12 V4.0 expression beadchip

21/45 24/45 Savitz

et al. (26)

the molecular mechanisms by which ERS contributes to the

pathogenesis of MDD remain unknown for the time being.

Consequently, this study aimed to investigate the association

between ERS and the etiology and immunological infiltration

of MDD, using an exhaustive bioinformatics approach.

Two microarray datasets from patients with MDD were

downloaded from the Gene Expression Omnibus (GEO)

database, along with endoplasmic reticulum stress-related

genes (ERGs) from the GeneCards Database. Next, reticulum

stress-related differentially expressed genes (ERSR-DEGs)

were screened. Based on these ERSR-DEGs, we conducted

functional annotation, including Gene Ontology and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses. Statistically significant pathways related to MDD

were determined by Gene Set Enrichment Analysis (GSEA)

and Gene Set Variation Analysis (GSVA) for further validation.

Furthermore, a protein-protein interaction network for ERSR-

DEGs, as well as potential drugs and transcription factors to

target ERSR-DEGs, was created. Five hub genes were identified

from 37 ERSR-DEGs, and RNA binding proteins (RBPs)

-hub gene networks were constructed. Using the CIBERSORT

software, we also explored the correlation between hub genes

and immune cell infiltration. Based on our understanding of

ERS and its relation to immunological infiltrations, we may find

promising biomarkers or therapeutic targets for MDD.

Materials and methods

Data pretreatment and identification of
di�erentially expressed genes

We retrieved two microarray datasets from the GEO

database using the GEO query R package (https://www.ncbi.

nlm.nih.gov/geo/) (23, 24). The first dataset, GSE98793 (25),

Frontiers in Psychiatry 02 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1008124
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyt.2022.1008124

contains 64 samples from patients with MDD and 64 samples

from healthy individuals, derived from the GPL570 sequencing

platform. The second dataset, GSE39653 (26), obtained from

the GPL10558 sequencing platform, included 21 blood samples

from patients with MDD and 24 blood samples from healthy

individuals. Table 1 lists the details of the dataset.

The GEO datasets were quantile-normalized using the

normalized between arrays function (27) from the “limma”

R package (28) and visualized using a boxplot. Additionally,

principal components analysis (PCA) was used to visualize

the discrepancy between MDD and control groups using the

“factoextra” R package (29). Differentially expressed genes

(DEGs) were screened utilizing the “limma” program (P-value

< 0.05 and |logFC| > 0).

The GeneCards (https://www.genecards.org/) database is

a searchable, integrated resource for comprehensive, user-

friendly, annotated, and predicted information (30). We

retrieved ERGs with a relevance score >2 from GeneCards

searched using the keyword “Endoplasmic Reticulum Stress.”

We identified ERSR-DEGs by intersecting ERGs with DEGs in

GSE98793 and GSE39653. The expression levels of ERSR-DEGs

in the GSE98793 and GSE39653 datasets were visualized using

the R package “heatmap”.

GO and KEGG enrichment analysis

To obtain a better understanding of the ERSR-DEGs, GO

annotation, and KEGG pathway enrichment analyses were

performed. Bioconductor’s “clusterProfiler” (31) and “pathview”

(32) packages in the R software were utilized for GO enrichment,

KEGG pathway analysis, and plotting. Benjamin-Hochberg

(BH) adjustment was used to calculate the false discovery rate

(FDR). A q-value of 0.05 was used as the cut-off criterion.

Gene set enrichment analysis and gene
set variation analysis

Gene set enrichment analysis (GSEA) is used to analyze

the contribution of individual genes to phenotype by assessing

the distribution of preset gene sets across gene lists sorted

by phenotype correlation (33). GSVA is a non-parametric and

unsupervised method for estimating the score of a pathway or

signature based on transcriptome data (34). We used GSEA on

the GSE98793 dataset to analyze global patterns of differential

gene expression and to determine if there were gene expression

features that were significantly enriched in either the MDD

or normal groups. GSEA analyses were conducted using the

reference gene sets “h.all.v7.2. symbols.gmt”, “c2.kegg.v7.4.

symbols” and “c5.go.v7.4. symbols” in the MSigDB database

(35). Using the same dataset, GSVA was employed to compare

pathway enrichment in the MDD and control groups.

PPI network construction and
identification of the hub genes

GeneMANIA (36) and STRING (37) are two wellknown

web tools that provide a list of genes associated with a query

gene based on diverse biological associations. An investigation

of the association between genes can clarify the role of genes

in biological processes. We analyzed the PPI network of ERSR-

DEGs using GeneMANIA software and the STRING database,

followed by visualization using Cytoscape (38). Meanwhile,

utilizing the CytoHubba (39) plug-in and MCC algorithm, the

top five hub genes were selected.

Construction of the molecule-molecule
network

RNA-binding proteins are thought to be critical for

gene regulation through the regulation of RNA stability and

translation. In certain diseases, miRNAs and transcription

factors interact with target genes to regulate gene expression

(40). We identified RBPs that target hub genes using ENCORI

(https://starbase.sysu.edu.cn/) (41). MiRNAs associated with

ERSR-DEGs were identified using the ENCORI (41), TargetScan

(42), andmiRDB databases (43). Significant transcription factors

(TFs) were identified using the JASPAR database (44).

DSigDB is a comprehensive database for identifying targeted

drugs related to DEGs (45). The database has 22 527 gene sets

and is an accessible way to access disease or drug functions

through the Enrichr website (46). In this study, the prediction

of protein-drug interactions or molecular drug identifications is

a crucial component. DSigDB was used to search for drugs or

chemicals that might interact with the ERSR-DEGs.

Evaluation of immune cell infiltration

Based on the principle of linear support vector regression,

CIBERSORT is used to deconvolve the expression matrices of

immune cell subgroups (47). We applied CIBERSORT to assess

the proportions of immune cell types in the MDD and healthy

control groups. Spearman’s correlation was used to analyze the

relationship between hub genes and immune cells in patients

with MDD.

Statistical analysis

The R software was used for all data processing and analyses

(version 4.0.2). For the comparison of two sets of continuous

variables, the Student’s t-test was used to analyze the statistical

significance of normally distributed variables, while the Mann-

Whitney U test was used for variables that were not normally
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FIGURE 1

The workflow of this study.

distributed. In this study, all statistical p-values were two-sided

and p < 0.05 was considered statistically significant.

Results

Identification of ERSR-DEGs

The workflow of this study is illustrated in Figure 1.

After standardizing the datasets (Figure 2), we detected DEGs

between the MDD and healthy control groups. In total,

2,427 and 2,097 DEGs were extracted from GSE98793 and

GSE39653, respectively, according to the predefined criteria.

In addition, the separation between the MDD and control

samples was excellent in the PCA analysis of the GSE98793 and

GSE39653 datasets (Figure 3). Among the DEGs depicted in the

volcano plots, GSE98793 contained 1,472 upregulated genes and

955 downregulated genes, whereas GSE39653 contained 1,128

upregulated genes and 969 downregulated genes (Figures 4A,B).

A total of 153 common differentially expressed genes (co-

DEGs) were identified from the two datasets. In addition, 3,880

ERGs were collected fromGeneCards using the specified criteria

(Supplementary Table 3). The co-expressed ERSR-DEGs were

integrated using a Venn diagram in R (Figure 4C). A total of 37

ERSR-DEGs were extracted, and the expression levels of these

genes in GSE98793 and GSE39653 were further visualized using

a heat map (Figures 4D,E).

Gene ontology and KEGG pathway
analysis

To understand the functional properties of ERSR-DEGs,

GO enrichment and KEGG pathway analyses were conducted

(Figure 5; Table 2). The GO enrichment results showed that
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FIGURE 2

Boxplots of the gene expression data before and after normalization. (A) The boxplot of GSE98793 data before normalization. (B) The boxplot of

GSE98793 data after normalization. (C) The boxplot of GSE39653 data before normalization. (D) The boxplot of GSE39653 data after

normalization.

for BP, ERSR-DEGs were considerably enriched in response to

the tumor necrosis factor, inflammatory response regulation,

oxidoreductase activity regulation, etc. For CC, ERSR-DEGs

were primarily abundant in the ER to Golgi transport vesicle

membrane, NADPH oxidase complex, an integral component of

the endoplasmic reticulum membrane, and rough endoplasmic

reticulum. In MF, ERSR-DEGs were markedly enriched in

superoxide-generating NADPH oxidase activity, oxidoreductase

activity, and NADPH.

KEGG pathway enrichment analysis revealed that

ERSR-DEGs were significantly enriched in immune-related

pathways, including the NF-κB signaling pathway, osteoclast

differentiation, NOD-like receptor (NLR) signaling pathway, Fc

epsilon RI signaling circuit, Toll-like receptor (TLR) signaling

pathway, and TNF signaling pathway.

NF-κB signaling and osteoclast differentiation, the two

strongly enriched pathways, were visualized using the Pathview

program based on KEGG pathways (Figure 6).
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FIGURE 3

Principal component analysis (PCA). (A) PCA plot for GSE98793. (B) PCA plot for GSE39653.

FIGURE 4

Endoplasmic reticulum stress-related gene (ERSR-DEGs) expressions. (A) Volcano plot of GSE98793. (B) Volcano plot of GSE39653. (C) Venn

diagram for overlapping ERSR-DEGs based on 3 datasets. (D) Heatmap of ERSR-DEGs identified in GSE98793. (E) Heatmap of ERSR-DEGs

identified in GSE39653.
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FIGURE 5

GO functional and KEGG pathway enrichment analysis of ERSR-DEGs. (A) GO enrichment analysis of ERSR-DEGs. (B) KEGG pathway analysis of

ERSR-DEGs. Red nodes suggest upregulated genes, and blue nodes mean downregulated genes. Quadrilateral color indicates Z-score. Red

indicates a positive Z-score (activated function), and blue indicates a negative Z-score (inhibited function). (C) The chord plot displays the

relationship between ERSR-DEGs and GO and KEGG entries.
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TABLE 2 The details of GO and KEGG terms for ERSR-DEGs with their corresponding p-values.

Gene ontology ID Description p-value Count

BP GO:0034612 Response to tumor necrosis factor 5.52E-07 7

BP GO:0050727 Regulation of inflammatory response 6.95E-07 8

BP GO:0051341 Regulation of oxidoreductase activity 2.09E-06 5

BP GO:0071356 Cellular response to tumor necrosis factor 5.31E-06 6

BP GO:0051353 Positive regulation of oxidoreductase activity 5.43E-06 4

BP GO:0072593 Reactive oxygen species metabolic process 6.78E-06 6

CC GO:0012507 ER to Golgi transport vesicle membrane 0.000219 3

CC GO:0030176 integral component of endoplasmic reticulum membrane 0.000242 4

CC GO:0031227 Intrinsic component of endoplasmic reticulum membrane 0.000291 4

CC GO:0043020 NADPH oxidase complex 0.000313 2

CC GO:0030139 Endocytic vesicle 0.000404 5

CC GO:0005791 rough endoplasmic reticulum 0.000499 3

MF GO:0016175 Superoxide-generating NAD(P)H oxidase activity 0.000176 2

MF GO:0050664 Oxidoreductase activity, acting on NAD(P)H, oxygen as acceptor 0.000408 2

MF GO:0042277 Peptide binding 0.000435 5

MF GO:0016651 Oxidoreductase activity, acting on NAD(P)H 0.000734 3

MF GO:0033218 Amide binding 0.001173 5

KEGG hsa04621 NOD-like receptor signaling pathway 4.43E-05 6

KEGG hsa04380 Osteoclast differentiation 9.59E-05 5

KEGG hsa05418 Fluid shear stress and atherosclerosis 0.000142 5

KEGG hsa04064 NF-kappa B signaling pathway 0.00055 4

KEGG hsa04660 T-cell receptor signaling pathway 0.00055 4

KEGG hsa04664 Fc epsilon RI signaling pathway 0.00197 3

KEGG hsa04620 Toll-like receptor signaling pathway 0.006544 3

KEGG hsa04625 C-type lectin receptor signaling pathway 0.006544 3

KEGG hsa04668 TNF signaling pathway 0.008028 3

KEGG hsa04723 Retrograde endocannabinoid signaling 0.017051 3

KEGG hsa00480 Glutathione metabolism 0.01876 2

Gene set enrichment analysis and gene
set variation analysis

GSEA analysis was conducted to further study the probable

biological pathways and processes between the function

of differential genes in MDD and healthy controls (HC),

and ERS (Supplementary Table 1). The MDD group was

considerably enriched in biological processes associated with

ERS (Figure 7A). We discovered that the GSE98793 dataset

was predominantly involved in specific granules, vesicle lumen,

specific granule membrane, ran methylation, and ribosome

biogenesis processes (Figures 7B,C). In addition, the highly

enriched pathways in the hallmark gene sets were the IL6-

JAK-STAT3 signaling pathway, the reactive oxygen species

(ROS) pathway, notch signaling, E2F targets, MYC targets

V2, MYC targets v1, and epithelial-mesenchymal transition

(EMT) (Figures 7D,E). Among Reactome and KEGG pathways,

the most enriched pathways converge on ErbB2 activate

PTK6 signaling, interferon-alpha/beta (IFN-α/β) signaling, and

lysosomes (Figures 7F,G).

We conducted GSVA analyses of the hallmark pathways,

KEGG, and GO, to further investigate the biological roles of the

MDD genes (Supplementary Table 2). GO analysis revealed that

the MDD group genes were considerably abundant in the BP,

encompassing the cell cycle, RNA polymerase III transcription,

immune system development, protein maturation, and cell

population proliferation regulation (Figure 8A). MDD was

enriched in the following KEGG pathways: Fas signaling

pathway, caspase cascade, G1 and S phases, programmed cell

death, and CD40 pathway map (Figure 8B). In the hallmark

gene sets, the pathways with the highest enrichment were

the epithelial-mesenchymal transition (EMT), reactive oxygen

species (ROS) pathway, and mTORC1 signaling (Figure 8C).

According to these data, immune, inflammatory, oxidative, and

apoptotic pathways, as well as biological processes related to

ERS, are significantly linked to major depressive disorders.
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FIGURE 6

Pathview map. (A) NF-κB signaling pathway. (B) Osteoclast di�erentiation signaling pathway.
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FIGURE 7

Gene set enrichment analysis (GSEA). (A) The ridgeline plot of the GSEA illustrates the biological processes associated with endoplasmic

reticulum stress in MDD. (B,C) The results of GSEA (GO terms). (D,E) The results of GSEA (Hallmark pathways). (F,G) The results of GSEA (KEGG

pathways).

PPI network construction and hub genes
screening

An analysis of GeneMANIA gene interaction networks was

conducted to further investigate 37 ERSR-DEG interactions

(Figure 9A). A protein-protein interaction (PPI) network of

ERSR-DEGs was created using the Cytoscape program and

STRING database (Figure 9B). The MCC approach using the

Cytohubba plug-in selected NCF1, MAPK14, CASP1, CYBA,

and TNF as the top five hub genes (Figure 9C).

Construction of the molecule-molecule
network

A total of 116 RBPs that bound to five hub genes

were predicted using the ENCORE database (Figure 10A).

To better investigate the molecular mechanisms of the

37 ERSR-DEGs in MDD, we constructed the ERSR-

DEGs-TF, ERSR-DEGs-miRNA, and ERSR-DEG-Drugs

regulatory networks. A regulatory network of the

mRNA-TF-target gene was established, involving 22

mRNAs and 25 TFs (Figure 10B). The mRNA–miRNA

interaction network contained 31 mRNAs and 179 miRNAs

(Figure 10C).

Using DSigDB to predict drugs target the 37 ERSR-

DEGs, 15 potential drugs or compounds for MDD were

identified, including cinnamaldehyde, dexamethasone, estradiol,

phencyclidine, sodium dodecyl sulfate, rottlerin, retinoic acid,

calcitriol, phorbol 12-myristate 13-acetate, angiotensin II, tetra

dioxin, cube root extract, zinc sulfide, 2,4-Dinitrofluorobenzene,

ethanol (Figure 10D).

Immune infiltration analysis

Using the “CIBERSORT” algorithm, the difference in

immune infiltration between the MDD and HC samples of

GSE98793 was estimated. The percentages of 22 specific immune

cells are depicted in a bar graph using various colors for each

sample (Figure 11A). Immune cell infiltration investigations

demonstrated that regulatory T cells (Tregs), monocytes, and

Macrophages M0 were higher in the MDD group, whereas

resting T cell CD4 memory and T cell gamma delta levels were

lower (Figure 11B). A scatter plot illustrates the relationship

between hub gene expression and immune cell infiltration. As

shown in Figure 12, correlation analysis revealed a positive

correlation between CASP1 and neutrophils (R = 0.42, P =
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FIGURE 8

The gene set variation analysis (GSVA) for two groups based on the GSE98793 database. (A) Bar graph depicting “GO” pathway scores computed

by the GSVA. (B) Bar plot of “KEGG” pathway score calculated by GSVA. (C) Bar plot of “Hallmark” pathway score calculated by GSVA.

5.9e-07). A positive correlation was observed between CYBA

and monocyte levels (R = 0.41, P = 1.8e-06). MAPK14 was

positively correlated with neutrophils (R = 0.58, P = 4.6e-13)

and negatively correlated with resting mast cells (R = −0.46, P

= 4.8e-08). A negative correlation was observed between NCF1

and CD4 memory resting T cells (R=−0.44, P = 1.8e-07).
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FIGURE 9

Protein-protein interaction (PPI) network analysis and hub gene screening. (A) The Gene interaction network of ERSR-DEGs was constructed

and visualized using geneMANIA. (B) PPI network of ERSR-DEGs was constructed using STRING and visualized in Cytoscape. Green or orange

are gene expressions down or upregulated, respectively. (C) Top 5 hub genes screened by MCC of cytohubba. The deeper the color, the higher

the MCC score.
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FIGURE 10

Interaction network analysis of endoplasmic reticulum stress-related di�erentially expressed genes (ERSR-DEGs). (A) In the RBPs-hub genes

regulatory network, where the highlighted blue circle nodes represent the hub genes, and the yellow nodes represent RBPs. (B) In the TF-gene

regulatory network of ERSR-DEGs, the highlighted blue circle nodes represent ERSR-DEGs, and pink nodes represent TF genes. (C) In the miRNA

-gene regulatory network of ERSR-DEGs, the highlighted orange circle nodes represent the ERSR-DEGs, and the green nodes represent miRNA

genes. (D) In the Drug-gene interaction network of ERSR-DEGs, where the highlighted blue squares represent the ERSR-DEGs, and the red

squares represent the related drugs.
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FIGURE 11

Immune infiltration analysis. (A) A bar chart showing the proportions of 22 di�erent types of immunocytes in the GSE98793 dataset. (B) The

violin plot shows the di�erence in immune infiltration between healthy control (HC) and MDD samples.

Discussion

MDD is among the most prevalent and debilitating mental

disorders and has high mortality and morbidity rates (1, 2).

Depression affects millions of people worldwide, placing a

burden on families and communities (3). Owing to its high

heterogeneity and complex pathophysiology, the identification

and diagnosis of MDD remains a global problem with enormous

dimensions (48). Despite extensive research efforts, MDD is

yet to be definitively diagnosed using specific and sensitive

biomarkers. Therefore, innovative biomarkers are required for

the accurate diagnosis and treatment of MDD. Prior clinical

and experimental research has demonstrated that endoplasmic

reticulum stress contributes to the pathogenesis of depression

(11, 13). However, little research has investigated ERS-related

biomarkers of MDD and the relationship of ERS-related genes

with immune infiltration in MDD. In this work, for the first

time, the biological significance of ERS-related genes and their

association with immune infiltration in MDD were explored in

depth, and prospective biomarkers were identified.

In this study, MDD-related and ERS-related genes were

identified using the GEO andGeneCards databases, respectively.

After the analysis, 37 ERSR-DEGs were identified. To further

understand the role of ERSR-DEGs in MDD, several functional

enrichment analyses were conducted. BP analyses of the

GO annotation revealed that ERSR-DEGs are involved in

tumor necrosis factor response, oxidoreductase regulation, and

inflammation. Among the MF annotations, NADPH oxidase

activity was the most significant GO term. Consistent with our

data, previous research has confirmed that NADPH oxidase
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FIGURE 12

Correlation analysis of immune cell infiltration and the hub genes. The vertical axis represents the Hub genes expression level, and the

horizontal axis represents infiltrated immunocytes expression level.
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(NOX) plays a critical role in promoting and maintaining

depressive behavior (49). NOX is a key factor linking oxidative

stress and ESR-induced apoptosis (50). KEGG analysis showed

that ERSR-DEGs were mainly involved in various inflammatory

signaling pathways, including the NF-κB, NLR, TLR, and TNF

signaling pathways, which have collectively been confirmed

as essential mechanisms in the development of MDD (51–

53). In addition, GSEA and GSVA analyses revealed that most

genes in the MDD group were associated with inflammation

and oxidative stress-related pathways, including the IL6-JAK-

STAT3 signaling pathway and the reactive oxygen species

(ROS) pathway. A growing body of evidence suggests that ERS

triggers inflammatory signaling pathways by interacting with

UPR components and cytokine-regulating transcription factors

such as TLRs, NLRs, NF-κB, and TNF-α (52, 54, 55). Among

these, TLRs, which are key players in modulating inflammation

and host immunity, have been shown to provide a link between

depression and UPR (52). According to these findings, the

interactions between ERS, inflammation, and oxidative stress

may contribute to the pathogenesis of depression.

Interestingly, we found that ERSR-DEGs were highly

enriched in the osteoclast differentiation pathway. A similar

study found that osteoclast differentiation was significantly

upregulated in bipolar disorder type II (BDII) (56). Studies

have found that ERS-related PERK and CREBH pathways play

crucial roles in osteoclast differentiation and function (57–59).

MDD has been identified as a risk factor for low bone mineral

density in previous studies (60, 61). The association between ERS

and MDD as well as osteoclast differentiation has been studied

separately, but their interrelationships remain unknown.

Five hub genes were identified by PPI network analysis

of ERSR-DEGs: NCF1, MAPK14, CASP1, CYBA, and TNF.

Recent research has revealed that the CASP1-mediated

signaling pathway links environmental stress to depression-

like behaviors by controlling the membrane integrity of

glutamate receptors (62). CASP1 activation is a crucial choke

point for inducing NLRP3 inflammasome activation in the

inflammatory cascade (63). ERS has been reported to induce

NLRP3 inflammasome activation in different cell types,

and the interaction between ERS, NLRP3 inflammasome,

and inflammation promotes the development of depression

(64, 65). TNF-α has been implicated in the pathophysiology

of depressive disorders and the mechanism of antidepressant

treatment (51). Previous studies have shown that TNF-α can

selectively activate one or more ERS pathways, triggering

inflammatory or apoptotic responses (55, 66). MAPK14

(P38α) is one of the major isoforms of p38 MAPK and is

activated by numerous stress conditions, including ERS and

inflammatory cytokines (67). Recent research has indicated

that p38 MAPK is a critical modulator of stress-induced

depression-like and drug-seeking behaviors, and selective

p38 MAPK deletion in serotonergic neurons promotes stress

resilience (68).

For the first time, we discovered that NCF1 and CYBA

might be key target genes that explain the role of ERS in

the pathogenesis of depression. NCF1 (p47phox) and CYBA

(p22phox) are both essential components of the NADPH

oxidase system (69, 70). Pieces of evidence supported the

view that NADPH oxidase plays a pivotal role in developing

and maintaining depression (49, 71). Yi et al. discovered that

p47phox phosphorylation is a key regulator of the signaling

cascade that governs the induction of long-term depression

(LTD) and synapse weakening (72). Similarly, it has been

reported that heterozygous deletion of p47phox can alleviate

depressed behaviors (49). It is well known that NADPH oxidase

is a major source of reactive oxygen species (ROS). The NADPH

oxidase subunits NOX4 and NOX2, both of which rely on

p22phox, have been shown to contribute to ROS generation

in response to ERS. p22phox-dependent NADPH oxidases are

important mediators of ERS driving the UPR (73). Furthermore,

NOX2, NOX4, and p22phox are essential signaling components

in ERS-induced apoptosis (50, 73). Although there is no direct

evidence of CYBA involvement in MDD, it seems likely that

CYBA is acting through NADPH oxidase and ERS. Recent

research has revealed that NCF1 and NOX2 complex-derived

ROS are critical regulators of the immune and inflammatory

pathways (70). Oxidative stress and proinflammatory signaling

have been identified as contributing factors to MDD (74).

Consequently, it can be speculated that ERS may contribute to

depression via a variety of mechanisms.

Accumulating evidence has demonstrated the significance

of an abnormal inflammatory response in the development of

MDD (18, 75). As previously reported, the proportions of Tregs,

monocytes, and M0 macrophages in patients with MDD were

significantly higher than those in controls, which is consistent

with our findings (76–78). In addition, we discovered that ERS-

related hub genes, such as CASP1 and MAPK14, were positively

associated with immune cells, specifically neutrophils. CYBA

was positively associated with resting monocytes, whereas NCF1

was negatively associated with resting CD4 + memory T cells.

In different cell types, MAPK14 (P38α) is considered a critical

regulator of inflammation. Certain subsets of cytokines and

chemokines are tightly regulated by p38 signaling in astrocytes

(79). CASP1 is known to exert pro-inflammatory effects, which

can regulate IL-1β’s maturation (80). Ncf1 (p47phox) is essential

for direct suppression of CD4+ effector T cells (Teffs) by

regulatory T cells (Treg) (81). CYBA (p22phox) has been

identified as a novel regulator of monocytes (Mos) and dendritic

cells (DCs) differentiation (82). Our findings provide additional

evidence that immunity contributes to MDD development. It

also verifies our hypothesis that ER stress can modulate the

immunological microenvironment of MDD to influence the

disease’s course.

According to the DSigDB database, we identified fifteen

small molecule medications targeting ERSR-DEGs that may

be effective in treating MDD, including cinnamaldehyde,
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estradiol, and ketamine. Trans-Cinnamaldehyde (TCA) has

been reported to have significant antidepressant-like effects

(83). And supplementation with cinnamaldehyde can induce

autophagy and minimize ER stress (84). Estradiol has been

identified in previous clinical investigations as a potential

treatment or prophylactic for perimenopausal depression

(85) and postpartum depression (86). As revealed in a

systematic review, estradiol may play a role in depression

by regulating the expression of genes that are associated

with 5HT neurotransmissions, such as TPH-2, MAO-A and-

B, SERT, and 5-HT1A (87). Estradiol, an ERS modulator,

has been shown to prevent chondrocyte apoptosis caused

by ERS (88). Ketamine is a phencyclidine derivative, which

has been approved for treatment-resistant depression (89).

Moreover, a recent animal study has shown that ketamine-

induced neurotoxicity is associated with an ER stress-dependent

apoptotic pathway (90). It has been shown in previous studies

that ERS is a potential target for antidepressant therapies

(13, 22). The results of our study demonstrate once again

that MDD can be treated by targeting genes related to the

endoplasmic reticulum.

Our study had a few limitations. First, our research is based

on the analysis of data, and further experiments are required

to verify our findings. Second, an integrated analysis of both

blood samples and brain tissue is required to identify MDD

dysfunctions comprehensively, which was not carried out in

the current study due to the difficulty in obtaining normal

human brain tissue samples. Third, not all patients demonstrate

significant ERS due to the heterogeneity of depression. Future

research must include subgroup analysis based on the clinical

and pathological characteristics of depressed patients. Fourth,

the sample size of our study was relatively small, which may

have affected our analysis of gene expression in MDD. Although

microarray-based bioinformatics analysis can be useful for

identifying potential biomarkers of MDD, additional research is

necessary to establish the biological significance of ERS.

Conclusions

Depression affects many people and imposes an enormous

economic burden. Therefore, more effort is required to improve

its diagnosis and treatment. The heterogeneity, stigma, and

lack of effective treatments for depression are significant

difficulties. The development of non-invasive validated objective

markers not only aids psychiatrists in developing personalized

diagnostic and therapeutic strategies for patients with MDD,

but also contributes to a more complete understanding of

the pathophysiology of depression. Our study was the first

to examine comprehensively the biological significance of

ERS-related biomarkers and their association with immune

infiltrations inMDD. NCF1, MAPK14, CASP1, CYBA, and TNF

were identified as MDD biomarkers related to ERS. A putative

connection between ERS and the immune system may also play

a role in the development of MDD. In addition, regulatory

networks upstream and downstream of ERS as well as novel

perspective ERS-targeting drugs that may postpone the onset of

MDDwere investigated. We believe these findings can aid in the

development of early diagnostic tools, preventative strategies,

and pharmaceutical treatments for MDD.
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