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Category learning in a recurrent
neural network with
reinforcement learning

Ying Zhang, Xiaochuan Pan* and Yihong Wang

Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai,

China

It is known that humans and animals can learn and utilize category information

quickly and e�ciently to adapt to changing environments, and several brain

areas are involved in learning and encoding category information. However, it is

unclear that how the brain system learns and forms categorical representations

from the view of neural circuits. In order to investigate this issue from the

network level, we combine a recurrent neural network with reinforcement

learning to construct a deep reinforcement learning model to demonstrate

how the category is learned and represented in the network. The model

consists of a policy network and a value network. The policy network is

responsible for updating the policy to choose actions, while the value network

is responsible for evaluating the action to predict rewards. The agent learns

dynamically through the information interaction between the policy network

and the value network. This model was trained to learn six stimulus-stimulus

associative chains in a sequential paired-association task that was learned by

the monkey. The simulated results demonstrated that our model was able to

learn the stimulus-stimulus associative chains, and successfully reproduced

the similar behavior of the monkey performing the same task. Two types

of neurons were found in this model: one type primarily encoded identity

information about individual stimuli; the other type mainly encoded category

information of associated stimuli in one chain. The two types of activity-

patterns were also observed in the primate prefrontal cortex after the monkey

learned the same task. Furthermore, the ability of these two types of neurons to

encode stimulus or category information was enhanced during this model was

learning the task. Our results suggest that the neurons in the recurrent neural

network have the ability to form categorical representations through deep

reinforcement learning during learning stimulus-stimulus associations. It might

provide a new approach for understanding neuronal mechanisms underlying

how the prefrontal cortex learns and encodes category information.
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Introduction

Category is a fundamental concept in cognitive

neuroscience. The literature has demonstrated that humans and

animals can use categorical information quickly and efficiently

to identify new objects, make inference and so on (1–3). For

example, we could classify an animal as a dog on the basis of its

physical characteristics, even the animal would be a new type of

dog that we did not know before. And we could infer its basic

properties that belong to the dog category commonly. There are

two types of category in the literature: perceptual category and

functional category. Objects sharing similar physical properties

could be classified into a group as a perceptual category (4). A

functional category indicates that its members that share no any

physical similarity have the similar function, such as associating

the same action or reward (5–7), etc. Many behavioral studies

suggest that animals could form a functional category of a group

of visual stimuli through training the matching-to-sample

task (8, 9). In this task, some arbitrarily selected visual images

(samples) are learned to associate with a common target image.

After learning, it is found that animals could treat these visual

images as equivalent stimuli, known as a functional category

(10, 11). It is an important research topic in the literature of

studying the category that how animals or the neuronal system

could learn, represent and utilize category information.

Various experimental data, including fMRI studies, lesion

studies, and neurophysiological studies, demonstrated that

rather than a single brain area, many brain areas are involved in

the categorical processing, such as the inferior temporal cortex,

the prefrontal cortex (PFC), and the basal ganglia (12, 13).

Different brain areas may have distinct contributions toward

processing category-related information. Neurons in the inferior

temporal cortex are more sensitive to perceptual features of

stimuli than categorical relations (14–16). Neurons in the PFC

can achieve the categorical distinction based on abstract rules

(17). PFC neurons have stronger category coding ability than

do inferior temporal cortex neurons in categorization tasks

(18, 19), and neurons show more similar responses to stimuli

belonging to the same category than to stimuli belonging to

different categories (20, 21). In addition, the execution of

actions in categorization decision-making tasks requires not

only the involvement of the premotor cortex but also relevant

functions of the basal ganglia to help the PFC complete the

adjustment of strategies. Thus, it has been reported that the

premotor cortex and the basal ganglia are also engaged in

category learning (22–25). Although it is known that many

brain areas perform different functional roles during category

learning, the mechanism underlying how these areas cooperate

to learn and encode the category is unclear. Therefore, we

try to construct a network model to further understand the

working mechanism of the neural system in a categorization

decision-making task. In particular, the PFC plays essential roles

in processing category information and we build the network

model to mimic functional roles of the PFC in the categorization

decision-making task.

Some theoretical models have been proposed to explain

how the category is learned in the neural system (26–28). But

most of models show categorical phenomena that are consistent

with some behavioral results, without showing neural activity

that encodes category information observed in the PFC or

other brain areas (29, 30). Hinaut and Dominey constructed

a neural network model of the PFC that demonstrated how

categorization of behavioral sequences can be achieved through

a recurrent system (31). Their model is a three-layer cortical

neural network that is sensitive to the sequence. As a result, a few

neurons in the three-layer model could identify each sequence

and a few other neurons produce an explicit representation

of the category to which sequences belong. However, this

neural network model is able to discriminate categories by

using supervised learning, which is not biologically plausible

for animals learning in the decision-making task. Experimental

studies have demonstrated that animals learn to perform specific

tasks based on the reward feedback for taking action (32), known

as reinforcement learning (RL).

A large number of studies have shown that a combination

of artificial neural networks with RL could make the network

model learn and storage items more efficiently and faster

(33, 34). In particular, the RL has been used to understand

neural mechanisms of association learning in the cerebral cortex

(35, 36). In the RL framework, the agent takes action by trial

and error, and then it can obtain rewards from the external

environment. Its purpose is to maximize the expected amount of

reward (37). Surprisingly, the recurrent neural network trained

with repeated RL can mimic the complex behavior of animals

observed in various decision-making tasks (38, 39). However, in

most of these studies, the recurrent network was trained to learn

stimulus-action associations or stimulus-reward associations in

the tasks with single decision-making. Few studies have reported

that the recurrent neural network with RL could be applied

in category learning. We are interested in whether this type

of model could learn the functional category for a group of

stimuli through stimulus-stimulus associations in the tasks with

multiple decision-makings.

In this study, we constructed a deep RLmodel that combines

a recurrent neural network with RL to investigate how the

category is learned in the network. On the one hand, this

network model uses the gated recurrent unit network structure

where neurons can regulate information transmission through

gating mechanisms. On the other hand, this network model

utilizes the actor-critic algorithm structure where neurons can

update weights and biases through the policy gradient RL

algorithm (40). Then, we investigate whether this model can

mimic the behavior of monkeys and their neural activities in the

PFC reported in a sequential paired-association task (41).
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FIGURE 1

Structures of the neural network model. The deep RL neural

network model, consisting of a policy network and a value

network. In the policy network, sparse connections are made

from the input layer to the information integration layer (IIL),

among neurons in the IIL. Full connections are made from the

IIL to the action output layer. In the value network, full

connections are made among neurons in the input layer, the IIL,

and the value output layer. In addition, in the IIL, red-red or

blue-blue indicates excitatory connections between neurons;

red-blue or blue-red indicates inhibitory connections between

neurons; and black indicates no connection between neurons.

In the sequential paired-association task, this model needs

to learn six stimulus-stimulus associative sequences in a similar

way to train the monkey to learn this task. It was found that the

model was able to successfully learn the six associative sequences

at the end of the training, reproducing the choice behavior of the

monkey observed in the task. Notably, we found two types of

neurons in this model: one type primarily encodes information

about individual stimuli; the other type mainly encodes category

information of associated stimuli in one chain. The ability of

these two types of neurons to encode information was enhanced

during the learning process of this model. Our results suggest

that the neurons in the recurrent neural network have the ability

to form categorical representations through deep RL during

learning stimulus-stimulus associations.

Methods

Neural network model

The deep RL network has been used to simulate stimulus-

response associations or stimulus-reward associations in

previous studies (38, 42). In this study, a new neural network

based on the framework of the deep RL is proposed. The deep

TABLE 1 Training parameters of the deep RL model.

Parameter Value Description

α 0.01 Learning rate

1t 20ms Time step

τ 100ms Time constant

Np_in 11 Number of neurons in the input layer (policy

network)

Nv_in 153 Number of neurons in the input layer (value

network)

Np 150 Number of neurons in the IIL (policy

network)

Nv 100 Number of neurons in the IIL (value

network)

Np_out 3 Number of neurons in the action output layer

(policy network)

Nv_out 1 Number of neurons in the value output layer

(value network)

p0 0.2 Connection probability (policy network)

p1 0.1 Connection probability (policy network)

p2 1 Connection probability (policy network)

δ2rec 0.01 Network noise

Ntrials 24 Number of trials for gradient update

T 121 Maximum time of per trial

RL neural network model is composed of two parts: the policy

network and the value network (Figure 1).

The policy network has three layers: the input layer, the

information integration layer (IIL), and the action output layer.

The number of neurons in the input layer is Np_in = 11,

and these neurons receive stimulus information from the

external environment; the number of neurons in the IIL is

Np = 150, and these neurons can receive stimulus information

from the input layer; the number of neurons in the action

output layer is Np_out = 3, and these neurons represent

three actions: fixation, left and right choices in this study.

The probability of connection from each neuron in the input

layer to neurons in the IIL is p0 = 0.2; the probability

of connection among neurons in the IIL is p1 = 0.1; the

probability of connection from each neuron in the IIL to

neurons in the action output layer is p2 = 1 (fully connected,

see Table 1).

The value network also has three layers. The number of

neurons in the input layer is Nv_in = 153, and these neurons

receive the firing rates of 150 neurons in the IIL and the action

of 3 neurons in the action output layer of the policy network; the

number of neurons in the IIL is Nv = 100, and these neurons

can learn information from the policy network; the number

of neurons in the value output layer is Nv_out = 1, and the

neuron generates a predictive reward for each action. Here, full
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connections are made among neurons in the input layer, the IIL

and the value output layer.

In this model, the policy network generates an action based

on current stimulus and task conditions, and this model takes

the action and receives an actual reward; the value network

integrates neuronal firing rates in the policy network to output

a predictive reward for the action. There is a reward prediction

error between the actual reward and the predictive reward for

the action, and the policy network adjusts the policy in time

according to the error signal to minimize it.

In both the policy network and value network, the IILs

have a recurrent connection structure with gated recurrent units

(a gated recurrent unit is considered as a neuron). The gated

recurrent unit includes an update gate and a reset gate, where

the update gate is used to control the retained historical state

information and receives new information about the candidate

state, and the reset gate is used to control the dependence on

historical state information for candidate information (43). In

this way, information forms a dependency between different

states of the transmission process. In this paper, the equations

of the continuous-time gated recurrent unit network for the

policy network are described in Equations (1)–(4), and the value

network has similar equations for its gated units.

φi (t) = σ





Np
∑

j=1

W
φ,ji
rec xj (t − 1)

+

Np_in
∑

k=1

W
φ,ki
in uk (t)+ b

φ
i (t)



 ,
(

i = 1, . . . ,Np
)

, (1)

ψi (t) = σ





Np
∑

j=1

W
ψ ,ji
rec xj (t − 1)

+

Np_in
∑

k=1

W
ψ ,ki
in uk (t)+ b

ψ
i (t)



 , (2)

hi (t) = (1− ηφi (t)) hi (t − 1)

+ ηφi (t)





Np
∑

j=1

W
ji
rec

(

ψj (t) xj (t − 1)
)

+

Np_in
∑

k=1

Wki
inuk (t)

+ bi (t)+

√

2η−1δ2recε

]

, (3)

xi (t) =
[

hi (t)
]+

. (4)

Here, we use the modified linear activation function [x]+ =

max (0, x) as the output function of each neuron. Because the

gated unit in GRU network is considered as the firing rate

neuron, the value of its output function is defined as the firing

rate of the neuron. The firing rate of each neuron in the IIL

is non-negative. In addition, σ (x) =
[

1+ exp (−x)
]−1

as the

output function of each gate [the update gate φi (t) or the reset

gate ψi (t) , (i = 1, . . . ,Np), (t = 1, . . . ,T)], ε is the Gaussian

white noise with a mean of 0 and variance of 1, and δ2rec is

used to control the size of this network noise. And uk (t) (k =

1, . . . ,Np_in) is the input information of the kth neuron from

the external environment at time t, xi (t) is the firing rate of the

ith neuron at time t. η = 1 t
τ , 1t is the time step, and τ is the

time constant (Table 1), which is used to control the information

dependency of gate recurrent units. W
φ,ji
rec and W

ψ ,ji
rec are the

connection weights from the jth neuron to the ith neuron in the

update gate and reset gate (44), respectively; W
φ,ki
in and W

ψ ,ki
in

are the connection weights from the kth input neuron to the ith

neuron in the update gate and reset gate, respectively; b
φ
i (t) and

b
ψ
i (t) are the bias of the update gate and reset gate, respectively.

In addition, W
ji
rec is the connection weight from the jth neuron

to the ith neuron in the IIL; Wki
in is the connection weight from

the kth neuron in the input layer to the ith neuron in the IIL;

bi (t) is the bias of the ith neuron in the IIL.

Specifically, xπi (t) is the firing rate of the ith neuron

in the IIL of the policy network under the policy of π .

Generally speaking, RL consists of five main elements: an

agent, an environment, actions, states, and rewards. The agent

first observes the external environment and receives the input

information ut (the Np_in dimensional vector), and then

according to the policy πθ (at|ut) chooses an action at (the

Np_out dimensional vector). Here, the action output layer

neurons generate an action based on the policy function:

zl (t) =

Np
∑

i=1

Wπ ,il
out x

π
i (t)

+ bπ ,lout (t) ,
(

l = 1, . . . ,Np_out

)

, (5)

πθ
(

at = l|ut
)

=
ezl(t)

∑Npout

l=1
ezl(t)

. (6)

Where Wπ ,il
out (l = 1, . . . ,Np_out ) is the connection weight

from the ith neuron in the IIL to the lth neuron in the action

output layer of the policy network, bπ ,lout (t) is the bias of the

lth neuron in the action output layer, zl (t) is the linear output

function of the lth neuron in the action output layer, and the

policy πθ (at|ut) is the softmax function. The agent chooses

an action based on the policy function through the random

sampling method. That is to say, when the agent has very limited

information about the external environment from observation,

it cannot completely rely on the information to make a correct

choice. However, the agent obtains a reward provided by the

environment in the occasional event of taking action. In this

case, an evaluation of the action by the value network can better

guide the policy network to implement the adjustment of the

policy. Here, the firing rate of the mth neuron in the IIL of the

value network is xvm (t) (m = 1, . . . ,Nv), and the neuron in the

value output layer generates a predictive reward for the action

based on the value function:

vϕ
(

xπt , at
)

=

Nv
∑

m=1

Wv,m
out x

v
m (t)+ bvout (t) . (7)
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Where the firing rate xπt (the Np dimensional vector) of

neurons in the IIL of the policy network and the action at (the

Np_out dimensional vector) of neurons in the action output layer

as the input information of the value network. Wv,m
out is the

connection weight from themth neuron in the IIL to the neuron

in the value output layer, bvout (t) is the bias of the neuron in the

value output layer, and vϕ is the linear output information of the

value output layer.

Policy gradient reinforcement learning

In this model, the connection weights (Win, W
φ
in, W

ψ
in ,

Wrec, W
φ
rec, W

ψ
rec, W

π
out , and Wv

out) and biases (b, bφ , bψ ,

bπout , and bvout) of neurons are updated by the policy gradient

RL algorithm during training (38). In this study, considering

that the environmental state for the agent is not completely

observable, we use a partially observable Markov decision

process model, which is more suitable for the agent to learn in

the state of limited information about the external environment.

The partially observable Markov decision process model is

discrete and finite (45). The continuous period is discretized

through time steps, and the agent needs to observe the external

environment and chooses an action at every time step. Setting

the time ranges from 0 to time t, I0 : t is the historical

information in the interaction process between the agent and

the environment, including the states, observations, and actions,

as follows:

I0 : t =
(

s0 : t+1, u1 : t , a0 : t
)

. (8)

After the agent chooses an action at at the time t, it obtains

a reward rt+1 at the next time t + 1. In detail, when t = 0,

the environment is in the current state s0 with the probability

κ (s0), and the agent chooses an action a0 according to the policy

πθ , where θ denotes the parameter, including the weights and

biases of the policy network. When t = 1, the environment

enters the new state s1 with the probability κ
(

s1|s0, a0
)

, and the

agent obtains a reward r1. Next, the agent observes the external

environment and receives the input u1, and chooses an action

a1 based on the new policy πθ (a1|u1) and obtains a reward r2.

Thus, a process of the interaction between the agent and the

environment is to keep repeating these steps until the end of each

trial. In general, from the beginning to the end of each trial, the

agent can rely on the policy πθ at time t to choose an action

at that eventually obtain the maximum expected value of the

reward R (θ ):

R (θ) = EI





T
∑

t=0

rt+1



 . (9)

Where the T is the end time of each trial (Table 1), and

the EI is the expected calculation on the basis of the history

I0 :T =
(

s0 :T+1, u1 :T , a0 :T
)

.

Our model utilizes the policy gradient method with an

actor-critic algorithm structure when updating parameters. This

approach uses the policy function and the value function for

learning. Briefly, the actor takes action by adjusting the policy,

which is the policy function; the critic evaluates each policy by

predicting the reward of this action, known as the value function.

In order to update parameters of the policy network (actor)

by the gradient descent method, an objective function is defined

as follows:

Ŵπ (θ) =
1

Ntrials

Ntrials
∑

n=1

−Rn (θ). (10)

Where the parameter θ includes the weights and biases of

the policy network. Notably, when training the network model,

we did not update parameters of the policy network in every

trial; instead updating those after the completion of Ntrials trials.

This method makes learning process of the policy network more

stable. In addition, we use the policy gradient algorithm to solve

∇θRn (θ ):

∇θRn (θ) =

T
∑

t=0

∇θ logπθ (at|ut) ϒ
(

xπt , at
)

, (11)

ϒ
(

xπt , at
)

=

T
∑

t=0

rt+1 − vϕ
(

xπt , at
)

. (12)

Here, theϒ
(

xπt , at
)

is a reward prediction error value of the

Temporal-Difference algorithm, which denotes the difference

between the estimated value of the value function and the actual

reward. This value can be used as an error signal to guide the

policy network to learn. At the time t, vϕ
(

xπt , at
)

is the linear

output function of the value network, and xπt is the firing rates

of neurons in the IIL of the policy network.

In order to update parameters of the value network (critic)

by the gradient descent method, an objective function is defined

as follows:

Ŵv (ϕ) =
1

Ntrials

Ntrials
∑

n=1

Mn (ϕ), (13)

Mn (ϕ) =
1

T + 1

T
∑

t=0

[

rt+1 − vϕ
(

xπt , at
)]2

. (14)

WhereMn (ϕ) is the mean square error, and the parameter ϕ

includes the weights and biases of the value network. In the value

network, the firing rates xπt of neurons in the IIL of the policy

network and the action at of neurons in the action output layer

as its input information at time t, and its output information is

a prediction value vϕ of the action. Here, we solve ∇ϕMn (ϕ)

by Backpropagation through the time algorithm (46). Finally,

our model can learn dynamically based on the interaction of

information between the policy network and the value network.
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FIGURE 2

The sequential paired-association task and its task events. (A) The example of the ABC sequence learned by the monkey. The two correct

stimulus-stimulus associative sequences are A1→ B1→ C1 and A2→ B2→ C2. (B) Timing of task events in a trial of the sequential

paired-association task. The network model needs to fixate on the fixation spot during the stimulus and delay periods. It obtains a positive

reward rt+1 = +1 for each correct choice during the two decision periods (Decision-1 and Decision-2). If this model makes a wrong choice in

the first decision period, it will obtain a negative reward rt+1 = −1 and the current trial is terminated. If this model makes a wrong choice in the

second decision period, it will not obtain a reward (rt+1 = 0) and the trial will end.

Sequential paired-association task

We used the deep RL model to learn the sequential paired-

association task that has been performed successfully by the

monkey (41). In this task, the monkey needed to learn two

stimulus-stimulus associative sequences (Figure 2A). Here, the

visual stimuli were six distinguishable pictures, which were

divided into two associative sequences (A1→B1→C1 and

A2→B2→C2). Figure 2B shows task events that are suitable for

this model to learn. The maximum time of each trial is 2,400ms

(Figure 2B). At the beginning of each trial, the agent is required

to fixate on the fixation spot for 600ms. After that, the first

stimulus A1 or A2 is presented for 400ms. Following the first

stimulus, there is a delay period of 500ms. The agent continues

fixating on the spot during the delay period. After the delay,

the second stimuli B1 and B2 are presented simultaneously on

the left and right positions. The left and right positions of the

two stimuli are random. At this time, the agent is required to

fixate on the spot for 200ms. After the second stimuli is offset,

the agent is given 100ms to make the first choice (selection

of B1 or B2 based on A1 or A2). If the first choice is wrong

and the current trial is terminated. If the first choice is correct,

the agent obtains a reward and the trial is to be continued.

After the first correct choice, the agent is required to fixate

on the spot for 300ms. Then the third stimuli C1 and C2 are

presented simultaneously, and the left and right positions of the

two stimuli are random. At this time, the agent is required to

fixate on the spot for 200ms. After the third stimuli is offset,

the agent is given 100ms to make the second choice (selection

of C1 or C2 based on B1 or B2). When the second choice is

correct, the agent obtains a reward again and the trial is to end.

The design of two associative sequences (A1-sequence and A2-

sequence) allows the network model to select the target stimuli

from the presentation of the target and distractor stimuli.

In the policy network, 11 neurons in the input layer denote

the fixation, stimulus A1, stimulus A2, left stimulus B1, right

stimulus B1, left stimulus B2, right stimulus B2, left stimulus

C1, right stimulus C1, left stimulus C2, and right stimulus

C2, respectively. In the sequential paired-association task, the

fixation is labeled as a value of 1, the stimulus A1 or A2 is labeled

as a value of 2, the stimulus B1 or B2 is labeled as a value of 3,

and the stimulus C1 or C2 is labeled as a value of 4. The agent

needs to take three actions (Nout = 3), and the three neurons

in the action output layer are fixation (at = F), left (at = L),

and right(at = R), respectively. We choose appropriate values

for the number of neurons in the two IILs (N = 150 in the

policy network and N = 100 in the value network) and their

connection probabilities (see Table 1) in order to enable the

model to learn the task successfully. We did not systemically

analyze how changes of these super-parameters affect the model

to learn the task. However, the combination of appropriate

values of these super-parameters is important for the model to

learn the task.

In general, the agent can choose left or right action only

during two decision periods; and it must keep fixation during the

stimulus period and the delay period. When the agent chooses a
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correct action in the first decision period, it obtains a positive

reward rt+1 = +1; when the agent chooses a wrong action in

the first decision period, it obtains a negative reward rt+1 = −1

and the trial is terminated. The agent obtains a positive reward

rt+1 = +1 for the correct action or a reward rt+1 = 0 for the

wrong action in the second decision period. If the agent does not

make a choice (left or right) during the second decision period,

it obtains a negative reward rt+1 = −1. During the stimulus

period or the delay period, the agent chooses the fixation action

to receive a reward rt+1 = 0; if the agent chooses a left or right

action, it obtains a negative reward rt+1 = −1 and the trial

is terminated.

The model is required to learn not only the ABC sequence

(A1→ B1→ C1 and A2→ B2→ C2), but also the

BCA sequence (B1→ C1→ A1 and B2→ C2→ A2)

and the CAB sequence (C1→ A1→ B1 and C2→ A2→

B2). The three sequences have similar task events in a trial.

We divided the six stimuli A1, A2, B1, B2, C1, and C2

into two groups, the A1-group (A1, B1, and C1) and the

A2-group (A2, B2, and C2). The stimuli in the A1-group

are associated each other in one chain and the stimuli in

the A2-group are associated each other in another chain.

When this model is trained, the three sequences (ABC, BCA,

and CAB) appear randomly in the learning process, and

the agent learns six stimulus-stimulus associative sequences

in parallel.

In this task, we set the time constant τ to 100ms, the

time step 1t to 20ms, and the number of trials Ntrials to

24, which denotes this network model updating parameters

after 24 trials are completed (labeled as one iteration).

In addition, when the network model completes 50 policy

iterations, we test the network model with 800 trials to

determine whether the policy is optimal. During the training

process, the network model goes through the learning stage

and testing stage alternately. The agent updates parameters

through policy iterations in the learning stage, and the agent

evaluates each policy without updating parameters in the

testing stage. When the correct rate of choice (the ratio of

correct trials to all trials) reaches 98% in the testing stage,

we consider that the agent has found the optimal policy,

which indicates that the network model can complete the

task successfully.

The sequential paired-association task does not require

the monkey to encode category information for the

associated stimuli. Behaviorally, just memorizing each

stimulus-stimulus association is sufficient for the monkey

to perform the task successfully. However, it was reported

that some prefrontal neurons encoded category information

for the associated stimuli after the monkey learned the

task (41, 47). We are interested in whether and how

the network model forms categorical representations for

associated stimuli during its learning of the sequential

paired-association task.

Category index and stimulus index

After this model learned stimulus-stimulus associations, we

further examined the activity of 150 neurons in the IIL of the

policy network. To characterize the response of each neuron,

we calculate the category index for each of them during the first

stimulus period (0–400ms from the first stimulus onset). First,

for each neuron, we calculate the absolute value of the firing

rate difference of every two stimuli from the A1-group, which

is denoted as FDA1. Similarly, we calculate the absolute value of

the firing rate difference of every two stimuli from the A2-group,

which is denoted by FDA2. Then, we calculate the mean firing

rate difference of stimuli within a category for each neuron,

which is denoted byWCD. The equations are as follows:

WCD =
FDA1 + FDA2

6
, (15)

FDA1 = |xA1 − xB1| + |xA1 − xC1| + |xB1 − xC1| , (16)

FDA2 = |xA2 − xB2| + |xA2 − xC2| + |xB2 − xC2| . (17)

Where || indicates the absolute value. xA1, xB1, and xC1

denote the firing rate of each neuron to stimuli in the A1-group

during the first stimulus period; xA2, xB2, and xC2 denote the

firing rate of each neuron to stimuli in the A2-group during the

first stimulus period. After that, we also calculate the absolute

value of the firing rate difference of each neuron between every

two stimuli across the two groups. Thus, the difference value

between two categories is denoted by BCD. The equations are

as follows:

BCD =
FD1 + FD2 + FD3

9
, (18)

FD1 = |xA1 − xA2| + |xA1 − xB2| + |xA1 − xC2| , (19)

FD2 = |xB1 − xA2| + |xB1 − xB2| + |xB1 − xC2| , (20)

FD3 = |xC1 − xA2| + |xC1 − xB2| + |xC1 − xC2| . (21)

Finally, we define the category index according toWCD and

BCD, which is denoted by CI, and it is given by:

CI =
BCD−WCD

BCD+WCD
. (22)

The range of CI is from−1 to 1. When the category index is

negative, the neuron shows larger response-differences to stimuli

within a category than to stimuli across the two categories.When

the category index is positive, the neuron shows larger response-

differences to stimuli across the two categories than to stimuli

within a category.

Bootstrap test is used to determine whether the category

index of each neuron is statistically significant from zero or

not. We shuffled its firing rates among the six stimuli (A1, B1,

C1, A2, B2, and C2) in the first stimulus period and calculated

the category index based on the shuffled data. This process

was repeated 500 times, generating a distribution of shuffled

category indexes. The original category index value was deemed
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significant if it fell within the top or bottom 2.5% of the shuffled

distribution (p< 0.05).

In addition, noting that some neurons show differential

activity to stimuli from a category, we define the stimulus index

for each neuron based on its firing rates to the three stimuli in

the same category during the first stimulus period (48), denoted

by SI, which is calculated as follows:

SI =
SIA1 + SIA2

2
, (23)

SIA1 =
x (A1)max − x (A1)min

x (A1)max + x (A1)min
, (24)

SIA2 =
x (A2)max − x (A2)min

x (A2)max + x (A2)min
. (25)

Where x (A1)max denotes the maximum firing rate of each

neuron to the three stimuli (A1, B1, and C1) in the A1-group

during the first stimulus period, and x (A1)min denotes the

minimum firing rate to the three stimuli. x (A2)max denotes

the maximum firing rate of each neuron to the three stimuli in

the A2-group during the first stimulus period, and x (A2)min

denotes the minimum firing rate to the three stimuli. The

SI reflects response-differences to stimuli within a category,

ignoring response-differences to stimuli across the categories.

The range of SI is from 0 to 1, SI = 0 indicates that the neuron

shows no differential activity to stimuli from a category, but it

may have differential activity to stimuli from different categories.

Results

Our model was performed using theano0.8.2 based on

Python2.7 software in Windows 10 system, and the model

was able to run successfully in learning the sequential paired-

association task.

Behavior performance of the network
model

The model was trained to learn the six stimulus-stimulus

associations in parallel. In each trial, one of the six associations

was inputted into the model. After 500 policy iterations, the

network model could achieve the correct rate (the ratio of

correct trials to all trials) of 98% in the two decision periods,

indicating that it learned the sequential paired-association task

(Figures 3A,B). It was worth noting that our network model

needed to make two choices in each trial. In the early learning

stage, the network model was trained to improve the correct

rate of the first choice, the correct rate of the second choice

was low. For example, the correct rate of the first choice and

second choice were about 1.8 and 0% at the 50th policy iteration,

respectively. When the network model increased gradually the

correct rate of the first choice, it started to increase the correct

rate of the second choice. At the 200th policy iteration, the

correct rate of the first choice was about 25.4% and the correct

rate of the second choice was about 12.6%. We found that

from the 200th policy iteration, the mean square error (MSE)

of reward prediction for the network model at the second choice

decreased gradually during the training process (Figure 3C). It

indicated that the predictive reward for the action estimated

by the value network was getting closer to the actual reward.

The result reflected that the network model could adjust the

policy and choose a correct action in time through the feedback

information provided by the error signal. The results suggested

that our model could learn that the sequential paired-association

task in different learning stages. Finally, this model was able

to get the maximum reward in each trial (Figure 3D). The

trained network model could reproduce the similar behavior

of the monkey in the sequential paired-association task (41). It

demonstrated that themodel was able to learn stimulus-stimulus

associative sequences.

Various activity-patterns of neurons

The output actions of this model demonstrated that it

was able to correctly choose a target stimulus on the basis

of the sample stimuli, indicating the model remembered

stimulus-stimulus relations. How did neurons encode stimulus

information and stimulus-stimulus relations to make a choice

in our model? To investigate this issue, we further analyzed

activity-patterns of neurons in the IIL of the policy network.

Interestingly, neurons could produce various types of activity-

patterns after our model learned the sequential paired-

association task. During the first stimulus period (from 0 to

400ms after the first stimulus onset), some neurons showed

different responses to stimuli in the A1-group and the A2-group.

For example, there are 19 neurons (19/150; 12.7%) produced

excitatory activity to stimuli in the A1-group, and less activity

to stimuli in the A2-group compared with the baseline activity

(−200 to 0ms from the first stimulus onset) (Figure 4A). Some

neurons produced excitatory activity to stimuli in the A2-group

and less activity to stimuli in the A1-group (Figure 4B), and the

number of this type of neurons is 27 (27/150; 18%). About 14%

(21/150) neurons produced excitatory activity to stimuli in the

both A1-group and A2-group compared to the baseline activity

(Figures 4C,E,F). In contrast, about 14.7% (22/150) neurons

produced inhibitory activity to stimuli in the both A1-group and

A2-group (Figure 4D). We also found that 16 neurons (16/150;

10.7%) showed no differential activity to stimuli in the both A1-

group and A2-group (Figure 4G). Finally, about one third of

neurons (45/150; 30%) kept silent during the whole trial (the

firing rate of neurons was zero) (Figure 4H).
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FIGURE 3

Behavior performance of the deep RL model. (A) Correct rate of the first decision period (the ratio of correct choice trials in the first decision

period to all trial) for each stimulus-stimulus associations. (B) Correct rate of the second decision period (the ratio of correct choice trials in both

decision periods to all trials) for each stimulus-stimulus associations. Here, the gray line denotes 98% of the target value. (C) The mean square

error (MSE) of reward prediction for the network model in the second decision period (see Equation 14). Mean square error between the actual

reward (based on the selected action in the policy network) and the predictive reward (estimated in the value network). (D) The reward obtained

by the network model per trial.

Stimulus-neurons and category-neurons

Neurons in the IIL showed various types of activity-patterns.

One important question is what kind of information these

neurons encode in the model. We found that some neurons

produced similar activity-patterns to the stimuli belonged

to the same group, and differential activity-patterns to the

stimuli belonged to different groups (see Figures 4A–D). The

activity-patterns of these neurons were similar to those of

PFC neurons observed in the sequential paired-association task

(41). Many studies have demonstrated that PFC neurons can

encode the category to which visual stimuli belong (49, 50). We

hypothesized that neurons in this model could encode category

information for each group of stimuli during stimulus-stimulus

association learning.

To demonstrate whether the neuron in our model was able

to represent categorical information, we calculated the category

index for each neuron in the first stimulus period. According

to the definition of category index (see Section Methods), we

calculated the category indexes of 105 neurons (excluding 45

no-response neurons shown in Figure 4H), and the range is

from −0.2 to 1 (Figure 5A). We noted that some neurons

had negative category indexes, indicating these neurons encode

less category information, whereas some neurons had positive

category indexes encoded more category information. In order

to determine whether the category index of individual neuron is

significantly different from zero, the bootstrap method was used

(see Section Methods). The results showed that 58 neurons in

this IIL had an insignificant category index (p > 0.05) and the

mean category index of these neurons was 0.243. We thought

that these neurons could not identify the category to which the

stimulus belongs, but encoded stimulus identity. These neurons

are referred to as stimulus-neurons. In addition, 47 neurons had

a significant category index (p < 0.05) and the mean category

index of these neurons was 0.731. These neurons primarily

encoded category information, denoted as category-neurons. It

suggested that there were individual neurons having the ability

to encode category information in our model.
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FIGURE 4

Various types of activity-patterns found in the IIL of the policy network after the model learned the task. Here, the black rectangle on the

horizontal axis denotes the first stimulus period (0–400ms from the first stimulus onset). During the first stimulus period, neurons show di�erent

(Continued)
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FIGURE 4 (Continued)

activity in response to stimulus A1, A2, B1, B2, C1, and C2. Neural activity is sorted by the six stimulus-stimulus associations. If the firing rate in

the first stimulus period increases compared to the baseline activity (a period of−200 ms-0 from the first stimulus onset), it indicates an

excitatory response. If the firing rate decreases, it indicates an inhibitory response. The averaged firing rate of one neuron indicates that its firing

rates are averaged across all trials. The same figure legends are used in (A–G). (A–D) show example activity of category-neurons (p < 0.05,

Bootstrap test), the category indexes of these neurons are 0.820, 0.872, 0.619, and 0.627, respectively. (E–G) show example activity of

stimulus-neurons (p > 0.05, Bootstrap test), the category indexes of these neurons are 0.393, −0.135, and 0.416, respectively. (H) An example

neuron showing no activity in the whole trial.

FIGURE 5

Classification of neurons and their population activity at two learning stages. (A) The distribution of category indexes. Here, blue bars indicate 58

neurons whose category indexes are not significant (p > 0.05, Bootstrap test), denoted as stimulus-neurons. And the range of category indexes

for these neurons is from −0.2 to 0.6. Red bars indicate 47 neurons whose category indexes are significant (p < 0.05, Bootstrap test), denoted as

category-neurons. And the range of category indexes for these neurons is from 0.5 to 1. (B,C) show population activity of stimulus-neurons (B)

and category-neurons (C) in the early stage of learning (at the 50th iteration), respectively. The activity of each neuron is sorted by its preferred

activity to the three paired stimuli (A1 vs. A2, B1 vs. B2, and C1 vs. C2) and then was averaged across neurons. (D,E) show population activity of

stimulus-neurons (D) and category-neurons (E) in the final stage of learning (at the 600th iteration). The averaged firing rates shown in (B,D) are

firing rates averaged across trials and across the stimulus-neurons. The averaged firing rates shown in (C,E) are firing rates averaged across trials

and across category-neurons.

Next, we created population histograms for stimulus- and

category-neurons at different learning stages, respectively. In

the sequential paired-association task, the stimulus-neurons and

the category-neurons produced different activity to stimuli. We

found that when this model was in the early learning stage (at

the 50th iteration) of the task, the neurons of both populations

could show activity differences between the preferred and non-

preferred stimuli during the first stimulus period and the

first delay period. However, from the second stimulus period,

these activity differences gradually disappeared for the both

types of neurons (Figures 5B,C). When this model was in the

final learning stage (at the 600th iteration) of the task, both

stimulus-neurons and category-neurons show stronger activity

to preferred stimuli than that to non-preferred stimuli in the

whole trial (Figures 5D,E). The results indicated that although

the information encoded by neurons would decay with time
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in the process of transmission, the neurons would gradually

enhance the storage capacity of information and form working

memory through learning.

In order to quantitatively measure activity-changes during

the learning process, we calculated the category index for

each stimulus- and category-neuron in each testing stage,

respectively. The mean category index of the stimulus-

neurons decreased gradually, and the mean category index

of the category-neurons increased gradually during the

learning process of the task (Figure 6A). It meant that

category-neurons enhanced the ability to encode category

information through learning; while stimulus-neurons did

not exhibit the characteristic of enhanced ability to encode

category information.

Second, we quantitatively characterize the ability of both

types of neurons to encode stimulus information during

the learning process. We computed the stimulus index for

each neuron to denote response-differences to within-category

stimuli (see Section Methods). The mean stimulus index of 58

stimulus-neurons increased gradually, and the mean stimulus

index of 47 category-neurons kept relatively stable during the

learning process of the task (Figure 6B). The result of the Mann-

Whitney U test showed that there was a significant difference

in the ability of two populations to discriminate within-category

stimuli in the final learning stage (p = 0.018). For stimulus-

neurons, although their ability for category coding decreased,

their ability for stimulus coding obviously increased.

It was obvious that the ability of these two types of neurons

to encode information was enhanced during the learning process

of this model, and their activity also changed in different task

periods. We further analyzed the characteristics of neurons

encoding information in different task periods. Interestingly, the

category-neurons show the strongest ability to encode category

information in the first stimulus period, and the ability decreased

after the first stimulus period. Even though, the mean category

index of category-neurons was higher than that of the stimulus-

neurons in each task period (Figure 6C). The stimulus-neurons

showed the strongest ability to encode stimulus information in

the first stimulus period, and this ability also decreased after

the first stimulus period. But in each task period, the mean

stimulus index of stimulus-neurons was higher than that of the

category-neurons (Figure 6D).

Although the stimulus-neurons and category-neurons may

play different roles in this model, we found that category-

neurons encoded not only category information but also

stimulus information (see Figure 5E, category-neurons could

discriminate the three preferred stimuli). One question is

whether the stimulus information found in the category-

neurons is directly influenced by external stimuli? It was

worth noting that in the policy network, sparse connections

were used between neurons in the input and IILs. And only

some neurons in the IIL directly received stimuli from the

input layer (these neurons are denoted as directly connected

neurons), while other neurons did not (those neurons that do

not receive direct projections from the input layer as indirectly

connected neurons). We analyzed the activity differences of the

two groups of directly and indirectly connected neurons. In

the first stimulus period, 54 (54/150; 36%) neurons in the IIL

were directly connected with neurons in the input layer. Within

them, 21 (21/54; 38.9%) neurons were identified as the category-

neurons. And their mean category index was 0.715 (Figure 7A).

In addition, 96 (96/150; 64%) neurons did not receive direct

connections from the input layer. Among these 96 neurons, 26

(26/96; 27.1%) of them were identified as the category-neurons.

And their mean category index was 0.745 (Figure 7B). The two

groups of category-neurons had similar distributions of category

indexes (see Figures 7A,B). Furthermore, we found that the

two groups of neurons showed different learning curves of the

category index (Figure 7C). The mean category index of directly

connected neurons increased quickly in the early learning stage

(at the 50th iteration) and changed slightly at later learning

stages (from the 300th iteration to the 600th iteration). The

mean category index of indirectly connected neurons increased

obviously at different learning stages (from the 50th iteration

to the 600th iteration). In the final learning stage (at the 600th

iteration), the two groups of neurons showed similar category

indexes (Mann-Whitney U test, p= 0.250).

We further calculated the stimulus indexes for the two

groups of directly connected neurons, and indirectly connected

neurons (Figure 7D). The mean stimulus index of directly

connected neurons was significantly higher than that of

indirectly connected neurons. The result of the Mann-Whitney

U test showed that external stimuli directly affected the

ability of category-neurons to discriminate between stimuli

(p= 0.002). It indicated that the ability of neurons to encode

category information during category learning was not directly

influenced by external stimuli; whereas the ability of neurons

to encode stimulus information was directly influenced by

external stimuli.

Weight analysis of neurons in the
network

It was found that the neurons in this model were capable

of stimulus coding and category coding. This model updated

weights during learning the sequential paired-association task.

In general, the synaptic plasticity of neurons is crucial in

constructing models (51, 52). This is because the information

is exchanged between neurons with the help of synaptic

connections, and the type of synapses (excitatory or inhibitory

synapses) and their values affect the activity of neurons (53). At

the computational level, excitatory synapses increase firing rates

of neurons, while inhibitory synapses diminish their firing rates.

So how does the interaction of excitatory and inhibitory synapses
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FIGURE 6

The category index and the stimulus index of category-neurons and stimulus-neurons. (A) The time course of the category index for

category-neurons (the red curve) and stimulus-neurons (the blue curve) during the network model learning the task. (B) The time course of the

stimulus index for category-neurons (the red curve) and stimulus-neurons (the blue curve) during the network learning the task. (C) The

category indexes for category-neurons (the red curve) and stimulus-neurons (the blue curve) in five di�erent task periods after the model

learned the task. (D) The stimulus indexes for category-neurons (the red curve) and stimulus-neurons (the blue curve) in five di�erent task

periods. The number “1,” “2,” “3,” “4,” and “5” in the horizontal coordinates indicate the first stimulus period, the first delay period, the second

stimulus period, the second delay period, and the third stimulus period, respectively.

affect the learning process of neurons? Therefore, we discussed

the connection weights of neurons.

In the policy network of this model, the neurons in the

input layer were sparsely connected to the neurons in the IIL

with the probability of 0.2. Most neurons in the IIL could

not directly receive the stimuli from the external environment.

Here, among neurons in the IIL were sparsely connected with

the probability of 0.1, and the neurons indirectly learned the

stimuli from the external environment through information

transmission. When this model was trained, we recorded the

connection weights of neurons in the IIL, where positive values

were excitatory weights and negative values were inhibitory

weights. The connection weights of these neurons were Gaussian

distribution (Figure 8A), and a balance mechanism was formed

between excitatory weights and inhibitory weights.

Next, we asked a question whether the weight change

between two connected neurons was correlated to the similarity

of their activity-patterns. We would expect that neurons

having more similar activity-patterns had stronger connection

weights to form connection structures in the IIL during the

learning process. To understand this problem, we selected

every pair of connected neurons, and calculated the Pearson

correlation coefficient of their activity-patterns in the first

stimulus period. In addition, we also calculated the weight

change (the difference between the weight at the end of

training and the initial weight). Figure 8B shows scatter plots

of the Pearson correlation coefficient and the weight change

for all pairs of neurons. There is no correlation between

them. Specifically, we used the same method to calculate

the Pearson correlation coefficient and the weight change for

the stimulus-neurons (Figure 8C) or for the category-neurons

only (Figure 8D). Even within the same type of neurons,

the similarity of their activity-patterns is not correlated with

their weight changes. Although category-neurons were able to

identify the category to which the stimuli belong, their activity-

patterns were not directly influenced by the weights. As we

know, the structure of recurrent neural networks is extremely

complex. The neurons are not only involved in updating
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FIGURE 7

Category index and stimulus index for two types of category-neurons: directly connected neurons and indirectly connected neurons. (A) The

distribution of category indexes of 21 category-neurons, which have direct connections from the input layer. The range of category index for

these neurons is from 0.5 to 0.9. (B) The distribution of category indexes of 26 category-neurons, which have no direct connections from the

input layer. The range of category index for these neurons is from 0.5 to 1. (C) The time course of category index for the directly connected

neurons (the aquamarine curve) and the indirectly connected neurons (the salmon curve), respectively. (D) The time course of the stimulus

index for the directly connected neurons (the aquamarine curve) and the indirectly connected neurons (the salmon curve), respectively.

weights during the learning process but also influenced by other

factors, such as the decay of information and the importance

of information, which meant that neurons produce similar

activity performance as the result of the synergistic effect of

multiple variables.

Neural activity related to action selection

Till now, we focused on analyzing neuronal activity in

the first stimulus period, and found that majority of neurons

encoded stimulus and category information. During the first
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FIGURE 8

Distributions of weights in the policy network and the correlation analysis between activity-patterns and weight changes. (A) Frequency

distribution histogram about the connection weights of neurons in the IIL of the policy network. The dark red bars denote excitatory weights,

which are positive, and the dark blue bars denote inhibitory weights, which are negative. Left panel: weights of among neurons in the recurrent

network; middle panel: weights of the update gates; right panel: weights of the reset gates. (B–D) show correlation analysis between the

activity-pattern similarity of each pair of neurons (Pearson correlation coe�cient) and their weight change. (B) All pairs of neurons that have

connection in the IIL. (C) Pairs of connected neurons are selected only from stimulus-neurons. (D) Pairs of connected neurons are selected only

from category-neurons.

stimulus period, the model had not to make a choice of action

(left or right), there was no choice-related activity in this period.

In the first decision period after the second stimuli offset, the

model had to make a left or right choice. How was the choice-

related information encoded in the IIL? In order to investigate

this issue, we aligned neural activity at the first stimuli onset

and sorted the activity into stimulus-position conditions (12

stimulus-position conditions, see Figure 9). We mainly found

three types of activity-patterns in the first decision period

(Figure 9). The first type of neurons showed no differential

activity in response to the left position and right position in the

first decision period, but showed differential activity to stimuli
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FIGURE 9

The activity of neurons related to action choices. Here, the two gray lines indicate the second stimulus period, after the second stimulus period,

the network model chooses an action (left or right) during the first decision period. The activity of each neuron is aligned on the first stimulus

onset, and is sorted with stimulus-position conditions. The same figure legends are used in (A–C). (A) An example neuron shows only

stimulus-related activity in the first stimulus and delay periods, no di�erential activity to actions (or positions). (B) An example of neuron shows

not only category-related activity in the first stimulus and delay periods, but also activity related stimulus-action combinations after the second

stimuli o�set. (C) An example of neurons shows only stimulus-action related activity after the second stimuli o�set, no stimulus-related activity

either in the first stimulus period or in the delay period. The averaged firing rate of one neuron indicates its firing rates that are averaged across

all trials.

in the first stimulus and delay periods (Figure 9A). This type

of neurons may encode only stimulus-related information, no

action-related activity. There were 21 neurons (21/150; 14%)

that were classified into this type of neurons in the IIL. The

second type of neurons could simultaneously encode stimulus-

related information in the first stimulus and delay periods

and stimulus-action combined information in the first decision

period (Figure 9B). This type of neurons encoded information

from pure stimulus-related information to stimulus-action

information at different task periods. The number of this type

of neurons was 75 (75/150; 50%) in the IIL. These neurons

may contribute to transfer stimulus information into action

information. The third type of neurons showed stimulus-

action combined information only, no difference in response

to the stimulus (Figure 9C). This neuron mainly discriminated

between left-right actions. There were only 7 neurons found

in the IIL. This type of neurons mainly contributed to action

selection in the model. In addition, one third of neurons

(47/150; 30.9%) showed no response during the whole trial

(see Figure 4H; the firing rate of neurons was zero). The IIL

neurons were able to encode stimulus information and position

information, which were passed to neurons in the action output

layer. The connection weights between neurons in the IIL

and action output layer were dynamically adjusted during the

training of this model. Finally, our model could learn the task.

Discussion

In this study, we demonstrated that the recurrent neural

network using RL could learn the six stimulus-stimulus

associative sequences. Through the trial-and-error method, the
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model first learned correct actions in the first choice and then

in the second choice, a similar learning method was observed

for the monkey in the same task. Various types of neural activity

were found in the IIL in the first stimulus period. Some neurons

encoded information of individual stimulus, and some neurons

encoded category information of a group of stimuli that were

associated together. These types of activity were also reported in

the primate PFC in the sequential paired-association task (41).

Actually, the stimulus-stimulus association task did not require

the monkey and the model to form a categorical representation.

However, some neurons in the PFC and in the IIL of the model

did encode category information for associated stimuli. The

categorical representation might help the monkey or the model

accelerating the learning process. For example, the categorical

representation of an associated stimuli enables them to easily

select the target stimulus from a same category of the sample

stimuli, without the requirement to memorize the specific target

stimulus that is associated with the sample. Some neurons in the

IIL also showed heterogenetic activity in different task periods

(see Figure 9B). This type of heterogenetic activity-pattern was

often observed in the PFC in different cognitive tasks (54). We

found that almost half of model-neurons encoded stimulus (or

category) information in the first stimulus and delay periods

and encoded stimulus-position combined information in the

decision periods. A few neurons encoded only stimulus-position

combined information after the second stimuli offset. We did

not find neurons that encoded pure position information (left or

right action). The model learned stimulus information and then

transferred it into stimulus-position combined information, and

neurons in the action output layer integrated stimulus-position

combined information to generate a correct action.

Many studies, including behavioral, neurophysiological,

and fMRI experiments, suggest that the brain system learns

categorical representations with a two-stage model of category

learning (10, 20, 55). In the first stage, the sensory systems

identify and represent stimulus information based on its

physical properties (56). In the second stage, the associative

brain areas encode meanings of a group of stimuli to form

categorical representations. In our model, two types of neurons

were found: stimulus-neurons and category-neurons. These

neurons encode different aspects of task information, implying

the model may learn category information with two different

representations. Category-neurons encoded not only category

information but also some stimulus information (see Figure 5E).

Although those indirectly and directly connected neurons had

the same level of category-indexes in the final learning stage,

the former learned category information was slower than the

latter (see Figure 7C). And the indirectly connected neurons

also had significantly smaller stimulus-indexes than the directly

connected neurons. These results indicate that inputs from the

input layer may affect neurons in the IIL to learn category

information. Further weight analysis suggested that stimulus-

neurons or category-neurons did not form cluster or hierarchical

structures in the IIL. The similarity of activity-patterns of a

pair of neurons did not correlate to their weight changes (see

Figure 8). In the current model, synaptic connections from the

input layer to the IIL and within the IIL were sparse and random.

A pre-determined connection structure in the IIL may help

the model to learn representing stimulus information, category

information and action information in a hierarchical manner.

The recurrent neural networks with the RL algorithm have

been widely used to simulate behavior and neural activity of

animals in cognitive tasks (57, 58). In this framework, our model

is trained with the RL in a way similar to that the animals

learn the cognitive task with trial and error. Model-neurons

in the recurrent network appear complex and heterogenetic

activity-patterns (see Figure 4). The RL algorithm plays a critical

role in our model. Notably, the RL algorithm has a rich

historical research background in machine learning (59–61).

It has been reported that some brain areas, such as the PFC,

the basal ganglia, and the dopamine system, implement RL

to interact with the environment. Biologically, the PFC is

critical in implementing strategies (62), and its neurons encode

information about actions by adjusting strategies (63, 64). In

addition, the PFC and the basal ganglia are interconnected to

form a recurrent structure (65, 66). Specifically, the PFC and

the striatum are closely linked (67). The dopamine is released

from VTA (68) and SNc to the striatum and then acts on the

PFC, and the information conveyed by dopamine is taken as the

prediction error of the reward (69, 70), then the PFC adjusts

the strategy based on the error signal from the striatum. Thus,

the PFC is regarded as the policy network and the striatum is

regarded as the value network (71).

It has been found that the brain areas, including the visual

cortex, PFC, parietal cortex, premotor cortex, and basal ganglia

are involved in the process of category learning (12, 21), in

which the PFC neurons are more capable of encoding category

information (72). Interestingly, in this model, we found that

some model-neurons could encode category information for

a group of stimuli that are associated each other in one

chain, consistent with the finding that some PFC neurons

encoded category information of those associated stimuli in the

sequential paired-association task (10). While we don’t know

how exactly the PFC or the neuronal system to learn and form

categorical representations for associated stimuli in the task, one

possible way suggested by our current model is that the PFC

and its related brain areas may implement deep RL to encode

category information during learning the task.

It is well known that PFC neurons encode not only stimulus

and category information but also reward information. For

example, in the sequential paired-association task with an

asymmetric reward schedule (47), PFC neurons showed strong

responses to the stimulus that was associated with a large

reward; when the reward amount was reversed for the same

stimulus (large reward became small reward), these neurons

responded slightly to the stimulus. This result demonstrated
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that the neural activity was affected by the amount of reward.

We tried to make this model to learn the sequential paired-

association task with an asymmetric reward schedule, but

the activity-pattern of neurons was not influenced by the

reward reversal. The possible reason is that we did not

take into account the reward amount as a model parameter

in this model. The reward amount is just considered as

an error signal to modify connection weights in the policy

network. Therefore, neurons in the IIL do not encode reward

or stimulus-reward information. Remarkably, environmental

stimuli as input information affect the neural activity in the

model. If model-neurons receive different reward amounts

as input information, their activity may reflect reward and

stimulus-reward combined information, and this model might

be able to complete the sequential paired-association task

with an asymmetric reward schedule. This issue should be

further investigated.

The simulated results in this study also demonstrate that

the network model is able to encode categorical information

efficiently. Hinaut and Dominey reported that some neurons

in a three-layer recurrent neural network with randomly-

initiated weights could encode the categorical structure of

a set of behavioral sequences without the requirement to

modify the weights (31). But the three-layer recurrent neural

network did not encode category information efficiently, the

percentage of such categorical neurons was very low (0.4%

of total neurons) (31). Our model shows efficient ability to

encode category information, almost one-third (47/150) of

neurons have category-selectivity. However, there are still some

limitations in the current model. For example, although it was

found that neurons need the capacity of working memory to

learn the sequential paired-association task, there was lack

of detailed description of the working mechanism by which

neurons store memory information. It is known that the brain

has extremely complex neuronal circuits that are involved in

category learning. Our model is a single-layer recurrent neural

network, which has a relatively simple network structure.

In the future, combination the long-short-term memory

network (73, 74) with the asynchronous actor-critic algorithm

(75, 76) should be included to construct models with multilayer

recurrent structures to simulate functions of category-related

neuronal circuits.

In summary, we use the framework of deep reinforcement

learning (the recurrent network + reinforcement learning)

to build the novel network model that is trained to learn

the sequential paired-association task. This task requires the

network model to make two sequential choices to learn

stimulus-stimulus associations in one trial. Our new findings

in this study are that the network model can perform the

task correctly after being trained with the trial-and-error

method, indicating that the model has the ability to learn

the complex structure of the task, not just to learn simple

stimulus-action or stimulus-reward associations as reported in

previous studies (38, 42). More importantly, we found stimulus-

neurons and category-neurons in the IIL of the policy network.

These two types of neurons represent different aspects of task

parameters, and their ability to encode category and stimulus

information was strengthened during the learning process.

The model neurons in the IIL show heterogenetic activity to

encode information of the stimulus, category, action and their

combinations. These responsive properties of neurons in the

IIL are similar to activity-patterns observed in the primate

PFC in the same task (41, 47), indicating the IIL could mimic

functions of the PFC in the categorization tasks. The simulation

results indicate that the recurrent neural network could learn

the categorical representation for a group of stimuli in the

matching-to-sample task (stimulus-stimulus associations) using

the RL algorithm, without additional requirements such as

the network structure, prior knowledge or specific categorical

rules. Our results might provide a new way for understanding

neuronal mechanisms underlying how the brain system learns

category information.
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