AUTHOR=Li Xiaojian , Dong Fang , Zhang Yunmiao , Wang Juan , Wang Zhengxi , Sun Yaning , Zhang Ming , Xue Ting , Ren Yan , Lv Xiaoqi , Yuan Kai , Yu Dahua TITLE=Altered resting-state electroencephalography microstate characteristics in young male smokers JOURNAL=Frontiers in Psychiatry VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2022.1008007 DOI=10.3389/fpsyt.2022.1008007 ISSN=1664-0640 ABSTRACT=
The development of nicotine addiction was associated with the abnormalities of intrinsic functional networks during the resting state in young adult smokers. As a whole-brain imaging approach, EEG microstate analysis treated multichannel EEG recordings as a series of quasi-steady microscopic states which were related to the resting-state networks (RSNs) found by fMRI. The aim of this study was to examine whether the resting-state EEG microstate analysis may provide novel insights into the abnormal temporal properties of intrinsic brain activities in young smokers. We used 64-channel resting-state EEG datasets to investigate alterations in microstate characteristics between twenty-five young smokers and 25 age- and gender-matched non-smoking controls. Four classic EEG microstates (microstate A, B, C, and D) were obtained, and the four temporal parameters of each microstate were extracted, i.e., duration, occurrence, coverage, and transition probabilities. Compared with non-smoking controls, young smokers showed decreased occurrence of microstate C and increased duration of microstate D. Furthermore, both the duration and coverage of microstate D were significantly negatively correlated with Fagerstrom Test of Nicotine Dependence (FTND) in young smoker group. The complex changes in the microstate time-domain parameters might correspond to the abnormalities of RSNs in analyses of FC measured with fMRI in the previous studies and indicate the altered specific brain functions in young smokers. Microstate D could be potentially represented as a selective biomarker for predicting the dependence degree of adolescent smokers on cigarettes. These results suggested that EEG microstate analysis might detect the deviant functions of large-scale cortical activities in young smokers and provide a new perspective for the study of brain networks of adolescent smokers.