AUTHOR=Gu Xi-xi , Jin Yi , Fu Ting , Zhang Xiao-ming , Li Teng , Yang Ying , Li Rong , Zhou Wei , Guo Jia-xin , Zhao Rui , Li Jing-jing , Dong Chen , Gu Zhi-feng TITLE=Relevant Characteristics Analysis Using Natural Language Processing and Machine Learning Based on Phenotypes and T-Cell Subsets in Systemic Lupus Erythematosus Patients With Anxiety JOURNAL=Frontiers in Psychiatry VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2021.793505 DOI=10.3389/fpsyt.2021.793505 ISSN=1664-0640 ABSTRACT=
Anxiety is frequently observed in patients with systemic lupus erythematosus (SLE) and the immune system could act as a trigger for anxiety. To recognize abnormal T-cell and B-cell subsets for SLE patients with anxiety, in this study, patient disease phenotypes data from electronic lupus symptom records were extracted by using natural language processing. The Hospital Anxiety and Depression Scale (HADS) was used to distinguish patients, and 107 patients were selected to meet research requirements. Then, peripheral blood was collected from two patient groups for multicolor flow cytometry experiments. The characteristics of 75 T-cell and 15 B-cell subsets were investigated between SLE patients with- (