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Prediction and prevention of negative clinical and functional outcomes represent the

two primary objectives of research conducted within the clinical high-risk for psychosis

(CHR-P) paradigm. Several multivariable “risk calculator” models have been developed

to predict the likelihood of developing psychosis, although these models have not been

translated to clinical use. Overall, less progress has been made in developing effective

interventions. In this paper, we review the existing literature on both prediction and

prevention in the CHR-P paradigm and, primarily, outline ways in which expanding

and combining these paths of inquiry could lead to a greater improvement in individual

outcomes for those most at risk.
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INTRODUCTION

The ability to detect, predict, and delay or prevent the onset of psychotic disorders has been the
focus of the clinical high-risk for psychosis (CHR-P) research paradigm for the past 25 years (1).
Approximately 20–25% of at-risk individuals develop psychosis within a 2–3-year study period.
The prospective nature of the CHR-P paradigm (2) is conducive to building prognostic models (3)
to enable more accurate prediction of psychosis (4, 5). A set of such predictive algorithms is now
available (6–10), but none has thus far been widely implemented clinically (11). Significantly less
progress has been made in developing interventions that delay or prevent psychosis transition (12)
and in tailoring treatment selection based on individual risk profiles. Here, we critically review the
status of research on prediction of outcomes and prevention of psychosis. We argue that a better
understanding of heterogeneous outcomes of the at-risk state could improve efforts to develop
effective and personalized interventions (13). We outline concrete directions for this new scope
of inquiry, including incorporating prognostic stratification into intervention studies, considering
an array of clinical outcomes (e.g., remission, social and functioning outcomes, and treatment
outcomes), validating these outcomes with clinical and biological markers, and implementing state-
of-the-art methods within these respective lines of research toward the goal of understanding,
predicting, and intervening at the level of the individual.
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PREDICTING CLINICAL OUTCOMES

Prediction of Psychosis Transition
Most of the work within the CHR-P paradigm to date has
focused on building models to predict and individual’s likelihood
of transition to psychosis. A handful of externally-validated
multivariable prediction algorithms—or “risk calculators”—are
now available (11, 14). These models, largely comprised of
clinical, demographic, and neurocognitive measures, have the
potential for assessment in a single outpatient clinic visit.

In the first iteration of the North American Prodrome
Longitudinal Study (NAPLS) (6), an empirically derived model
identified additional risk factors beyond the CHR syndrome
criteria to predict psychosis transition, including genetic risk for
schizophrenia with recent functional decline, unusual thought
content, and either suspiciousness and paranoia or impaired
social functioning. These additional factors increased the positive
predictive power from 35 to 74–81% (4). In NAPLS2, predictor
variables were selected from the literature for inclusion in an
individualized risk calculator for determining risk of psychosis
transition (15). These variables included several from the
NAPLS1 model plus verbal learning and memory performance,
speed of processing, age, stressful life events, and history of
trauma. This risk calculator ultimately performed well, achieving
a Harrel’s C-index of 0.71 (15). Importantly, this model was
externally validated in the Early Detection, Intervention, and
Prevention of Psychosis Program (EDIPPP) (16) sample (C-
index = 0.79) (17) and was later also later validated in the
Shanghai at Risk for Psychosis study (SHARP) (10) sample (Area
Under the Curve [AUC] = 0.63) (18). This latter validation step
showed that while this risk calculator model has potential for
eventual broad use in samples outside of the U.S., there may still
be significant differences in, for example, a Chinese population
which consists of different social and cultural backgrounds
that are potentially not captured by a model derived in an
American sample.

Outside of the U.S., the Melbourne-based Personal
Assessment and Crisis Evaluation (PACE) study (9) developed
a classification algorithm based on symptom information
(accuracy= 64.6%) (19), which has not been externally validated
in an independent sample. Although robust internal cross-
validation techniques were used to test generalizability, this
approach does not provide sufficient evidence for generalizability
given that the model learns iteratively from all of the data. The
Shanghai-based SHARP study identified individual SIPS items to
include in a prediction model (SIPS-RC). These items overlapped
with previous models and included functional decline, unusual
thought content, suspiciousness, social anhedonia, expression
of emotion, ideational richness and dysphoric mood (AUC =

0.80) (20). When externally validated alongside the NAPLS2 risk
calculator in a small (n = 68) North American SIPS-based CHR
sample, the SIPS-RC and NAPLS2 risk calculator performed
with fair and moderate accuracy, respectively, in discriminating
between converters and non-converters (SIPS-RC AUC = 0.65,
NAPLS2 risk calculator AUC = 0.71) (21). For a more detailed
description of each of these predictive algorithms, please refer to
Worthington, Cao and Cannon (14).

While external validation has shown promising initial results
for these risk algorithms, performance in primary care settings
or secondary mental health care settings (e.g., outside of highly
specialized CHR-P samples) has yet to be thoroughly tested.
A recent study evaluated the performance of the NAPLS2
risk calculator in the European-based Personalized Prognostic
Tools for Early Psychosis Management study (PRONIA,
www.pronia.eu), which includes individuals experiencing recent-
onset depression (ROD) in addition to psychosis risk syndromes
(22). After significant calibration across samples to account
for cross-consortium differences in demographics and symptom
severity, the original NAPLS2 model performed best when
validated in the broader risk sample (e.g., CHR-P/ROD),
demonstrating the potential prognostic utility of psychosis risk
signatures in broader risk populations.

Identifying psychosis in non-risk enriched mental health
care settings requires the consideration of comorbid diagnoses
from more widely-used instruments such as the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition
(DSM-5) (23) or the International Statistical Classification of
Diseases and Related Health Problems, Tenth Revision (ICD-
10) (24–26). One such risk calculator was developed using
a sample from the South London and the Maudsley (SLaM)
National Health Service Foundation Trust services (n = 91,199).
Psychosis risk syndrome criteria were necessary but insufficient
in predicting the development of psychotic disorders in this
secondary mental health care setting. Beyond the CHR-P criteria,
ICD-10 diagnoses of acute and transient psychotic disorders
and bipolar disorder predicted psychosis onset with fairly high
accuracy when externally validated [C-index = 0.79 (27) and C-
index = 0.73 (28)]. When validated in a comparable US-based
sample (n > 2,000,000), the model maintained a good level of
accuracy in detecting eventual psychosis onset (C-index = 0.67)
(29). A significant challenge to this specific replication included
differences in help-seeking behaviors and recruitment strategies
between the UK-based discovery sample and the US-based
replication sample. Accounting for differences in healthcare
culture and economics will be discussed more in depth in a latter
portion of this paper.

Prediction of Functional Outcomes
Levels of global, social and role functioning are consistently
evaluated alongside attenuated psychotic symptoms (APS) as
ecological markers of personal and occupational impairment.
However, level of functioning is infrequently considered as a
primary outcome of interest, potentially due to the lack of
diagnostic outcome associated with functioning as compared
to transition to psychotic illness, which represents a putative
disorder. Further, studies vary in the subtype of functioning
that is assessed—global functioning as measured by the one-
item Global Assessment of Functioning (GAF) scale (30), and
social or role functioning as measured by the Global Functioning
Social scale (GFS), the Global Functioning Role scale (GFR)
(31), and the Social and Occupational Functioning Assessment
Scale (SOFAS) (32)—and often focus on the level of functioning
that is most impacted in a given sample, which may also
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potentially dilute the strength and consistency of findings
regarding “functioning” in the CHR-P syndrome.

While functioningmay improve over time for non-converters,
this group often remains impaired as compared to nonpsychiatric
healthy controls (33). Among non-converters, remitters have
shown improved social functioning, but role functioning
remained impaired for all CHR groups as compared to healthy
controls (34). Non-remitting non-converters (e.g., “sustainers”)
continued to show significant functioning impairments at 6
years of follow-up, suggesting that functioning deficits in
this population are enduring and may require specialized
interventions (35). Although several “risk calculators” exist to
predict psychosis transition, only two comparable multivariable
models have been developed to predict functioning outcomes,
despite potentially enduring functioning deficits exhibited in
non-converters that may require specialized interventions (34,
35). One limitation of developing such models is that it is
necessary to either predict functioning on a continuous scale,
which may not translate to clear clinical decisions, or to
determine cutoffs signifying positive or negative outcomes, which
collapses much of the nuance captured in the continuous scales.
Nevertheless, it remains important to understand an individual’s
likelihood for achieving positive or negative functional outcomes
independent of the progression of APS.

The PRONIA study team developed accurate and
generalizable models to predict social and role functioning
at 1 year of follow-up (36). A model that incorporated both
clinical and structural neuroimaging data outperformed clinical
raters’ estimations of social functional outcomes (combined
model AUC = 0.86; clinical rater AUC = 0.72). Models
predicting role functioning, however, did not outperform clinical
raters’ estimations. Role functioning may be more sensitive to
temporal fluctuations of environmental and clinical factors,
creating an additional challenge in producing reliable predictive
models of this particular outcome (36, 37). The PACE study team
also developed a model predicting functioning, which performed
similarly to their model predicting psychosis transition (accuracy
= 62.5%) (19). In this model, attention disturbances, asocial
anhedonia and thought disorder were most predictive of negative
functional outcomes. It is worth noting that neither of these
algorithms have yet been replicated in external samples.

Prediction of Remission Outcomes
Remission from a CHR-P syndrome is an important and
relatively unexplored outcome. In NAPLS2, trajectory modeling
of non-converters showed that a third remitted in symptoms
and functioning (38). Predicting CHR-P remission at the level
of the individual could inform treatment decisions by allocating
more intensive treatments to those most likely to experience
negative outcomes than for those more likely to naturally recover
(“remitters”). Understanding protective factors associated with
remission could also help to inform and tailor interventions for
the CHR-P population as remissionmay serve as amore proximal
treatment outcome for intervention studies as compared to
psychosis prevention. Further, remitters are a confound in
randomized clinical trials (RCTs) wherein the true efficacy of
an intervention may not be detected if a significant portion

of participants naturally remit, potentially contributing to an
inflated placebo effect (39).

While criteria for both symptom and functional remission
have been established (35, 40), the clinical validity associated
with the timing and duration of remission has not been
adequately studied. An individual may meet remission criteria
at only a single study visit and relapse at the next or may
remain remitted throughout the remainder of the study—both
would be considered “remitters” even though the actual clinical
picture may vary considerably. This lack of clarity in remission
outcome timing contributes to discrepancies in understanding
recovery rates. Between 24 and 51% of non-converters may
exhibit symptom remission during follow-up while only 24–28%
demonstrated full clinical and functional recovery (33, 34, 41, 42).
It is also unknown whether remission represents a risk factor
for later relapse of APS (or even eventual psychosis transition)—
an outcome that can only be studied with very long follow-
up periods.

Individual clinical predictors of remission may include higher
neurocognitive functioning at baseline, higher levels of social
and/or role functioning at baseline, and lower levels of APS
at baseline (34, 43, 44). Only one study has developed a
generalizable multivariable model predicting remission as an
outcome variable. This study took a data-driven approach to
selecting relevant features and building a model predicting
remission in the NAPLS3 sample and performed well when tested
in an independent validation sample (AUC = 0.66), exhibiting
performance comparable to models predicting conversion to
psychosis (45).

Gaps and Future Directions in Prediction
Although progress has been made in developing generalizable
risk models for multiple outcomes from the CHR-P syndrome,
there is still room for improvement before prediction algorithms
enter the clinic. Thorough external validation strategies have
been limited to date. External testing in diverse risk cohorts
and varied health care settings is necessary to: (1) account
for cross-site and cross-country sample differences; (2) ensure
compatibility across clinical instruments; (3) test the risk
signatures measured by each algorithm; and (4) ensure the
specificity of eventual psychosis onset as compared to negative
outcomes more broadly (26, 46, 47). Methodological differences
in both feature selection (e.g., data-driven and theory-driven)
and model development (e.g., Cox regression and machine
learning classifiers) provide novel avenues of model discovery
but limit the possibility of direct comparisons of performance
between models developed in heterogeneous samples (11).

Levels of patient distress and pathways of ascertainment
differ across cohorts and pose an additional challenge to the
development of prediction models. The studies described here
rely on either intensive outreach to the general population
(self-referral), relationships with established healthcare providers
(clinician-referral), or a combination thereof. These approaches
yield samples with different levels of baseline conversion risk.
Self-referrals result in a less enriched risk sample and a lower
eventual rate of psychosis transition (48). This heterogeneity
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in recruitment strategies may contribute to a reduction in
performance when replicating models in other samples.

Further, the two main frameworks used to describe at-risk
populations—the Criteria of Prodromal Syndromes (COPS) (49)
and the Comprehensive Assessment of At-Risk Mental State
(CAARMS) (50)—may be more or less amenable to these
recruitment strategies. As the CAARMS permits for a broader
range and duration of APS, a broader recruitment strategy may
be warranted. In NAPLS2 (COPS criteria), the sample is younger,
has a higher severity of APS at baseline, and experiences a higher
psychosis transition rate than the PRONIA study (CAARMS
criteria) (22). The CAARMS criteria also tends to be used in
countries with socialized medicine (e.g., PRONIA in Europe,
the PACE clinic in Australia) whereas the COPS criteria tend
to be used in the US, which operates through a privatized
healthcare system. Milder cases with more general symptoms
may be detected earlier using the CAARMS criteria in countries
with significantly reduced barriers to specialized healthcare.

Another notable difference across studies includes the
domains of clinical information from which predictor variables
are sampled for a givenmodel. Symptom information and certain
demographic variables are the most commonly sampled domains
included in the models described above, and neurocognitive
measures have been included in some, but not all, models.
Beyond these domains, other important health-related factors
such as substance use (51, 52), sleep patterns (53), and history
of traumatic brain injury (54) have been studied in CHR-P
samples but rarely included in multivariate prediction models
and could differ across cohorts. A more systematic approach
across studies to selecting predictors from different variable
domains and ensuring the availability of data from these domains
could reduce variability in this area as well. In particular, it should
be noted that exposure and adherence to pharmacological or
psychosocial interventions at baseline may have an association
with later transition to psychosis (55, 56); however, medication
exposure, medication adherence, and participation in therapy are
rarely included in prognostic models. While some descriptive
studies have shown that eventual converters and non-converters
show no difference in baseline antipsychotic exposure (57),
emerging trends suggest that antipsychotic use may predict
negative outcomes that may be more pronounced in milder
CHR-P cases (57, 58). As antipsychotic medications are typically
administered for more severe symptom presentations (2), and
administration is difficult to control for in naturalistic studies,
more systematic research is needed to clarify and establish
the relationships between severity, treatment utilization, and
eventual clinical outcomes through prediction studies.

Variance in ascertainment and sample enrichment could be
addressed through a clinical staging model involving sample
stratification based on the severity of symptom clusters (59).
More general and less severe symptoms are categorized as a
lower risk stage whereas more severe prodromal symptoms are
categorized at a higher risk stage, and interventions would be
allocated based on this stratification. More research is needed
to validate such a staging model, as baseline symptoms may
not predicate linear progression of the psychosis risk syndrome.
Poor outcomes could include psychosis transition or worsening

symptoms, but may also include the development of other forms
of psychopathology. The ability to measure these outcomes will
depend on the risk enrichment within the sample, resulting from
the ascertainment strategies implemented. To validate prediction
models across heterogeneous samples, patient distress, and/or
method of ascertainment should be included as a co-variate and
future studies should explore the relationships between distress,
ascertainment method and level of risk for psychosis.

In examining the most predictive variables included in the
prediction models described (e.g., suspiciousness and unusual
thought content), it is worth considering the potentially
tautological relationship with the definition of psychosis
transition (e.g., the presence of psychotic levels of positive
symptoms). The question arises of whether the at-risk state
is explained by severity of specific positive symptoms which
precede eventual transition to psychosis, or whether a more
complex risk profile—which may include these symptoms—best
explains the at-risk syndrome. In other fields of biomedicine,
risk syndromes signal a state during which intervention could
successfully delay or prevent the onset of disease. Mild Cognitive
Impairment (MCI) is a condition between normal cognitive
functioning and impaired cognitive functioning which typically
precedes Alzheimer’s disease and instantiates the risk state
for eventual severe cognitive decline. With proper assessment,
early identification and intervention may slow the development
of Alzheimer’s disease from this precursor state (60). In the
clinical high-risk state, positive symptoms seem to be specific
to psychosis (2) and thus signal an important opportunity for
more intensive assessment and/or intervention regardless of the
presence of other risk factors. Nevertheless, the interaction of
positive symptoms with other risk factors suggest that these
symptoms alone may not be sufficiently predictive of either
conversion to psychosis or remission (15), thus reaffirming the
ongoing effort to build informative multivariate models that
predict heterogeneous outcomes from the CHR-P state that could
inform the optimal intervention for a given risk profile.

Another significant methodological challenge in validating
and implementing risk models is the necessity of converting
a continuous output value to a binary classification output. In
the models described, the output is a score ranging from 0.0
to 1.0 indicating the likelihood an individual will experience
the outcome of interest (e.g., psychosis transition). The optimal
score cutoff that correctly classifies the eventual outcome may
differ across studies. In NAPLS2, a score of 0.2 indicated
that conversion occurred at a higher rate than non-conversion
above the 0.2 predicted risk level (15); however, when tested
in the PRONIA sample, the 0.2 cutoff did not yield the
same results, and accounting for between-cohort differences in
average demographics and symptom severity were necessary
to achieve robust external validation at the 0.2 cutpoint (22).
These adjustments pose a barrier to clinical implementation
and the assessment of new help-seeking individuals and further
inquiry into how to calibrate across diverse risk samples will
be an essential step toward the clinical implementation of
prediction models.

Beyond clinical information, several biomarkers have also
been considered for inclusion in the predictionmodels described.
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The role of biomarkers in prediction has been reviewed
elsewhere (61); thus, we will focus on the additive value of
biomarkers to existing clinical models. In this context, no
added biomarkers have been shown to replicate across models
or studies. In the PRONIA study, a combined clinical and
neuroimaging model outperformed either modality alone in
predicting social functioning outcomes. This finding, although
not yet replicated, suggests that specific configurations of clinical
and biological information may achieve the best predictive
accuracy as compared to eithermethod independently, consistent
with findings that both neuroanatomical and behavioral changes
are associated with psychosis transition (62).

Two studies have examined the potential additive role of
biomarkers to the NAPLS2 risk calculator. The first added a
measure of deviance in neuroanatomical maturity (or “brain
age”), previously shown to predict psychosis transition in 12–
17 year-olds (63). When added to the risk calculator, however,
brain age completely overlapped with chronological age (64),
itself a significant predictor of conversion in this sample, with
younger cases showing a higher risk. Another study added
baseline cortisol to the NAPLS2 risk calculator and found that
this measure did contribute significantly to the model’s ability
to discriminate between eventual converters and non-converters
(65). This finding (also not yet replicated) suggests that this
measure of baseline cortisol may capture a meaningful biological
pattern not otherwise captured through clinical measures.

Further considerations for the inclusion of biomarkers relate
to the portability to clinical practice. Amajor advantage of clinical
prediction models is that clinical assessments are inexpensive,
non-invasive, and scores can typically be determined within a
single day, if not immediately. Thus, clinical decisions could be
made quickly. Administering biological tests typically involves
a higher cost, longer time to administer or obtain results (e.g.,
assaying blood or saliva samples, processing MRI scan results),
and more invasive or uncomfortable procedures. To optimize
clinical utility, biomarkers should contribute significantly to the
predictive accuracy of clinical risk models in order to outweigh
the higher costs in time, money, and subject burden inherent in
obtaining these measures.

As psychosis transition has been the primary outcome of
interest in the CHR-P research paradigm, the most substantial
progress has been made in predicting this outcome. Other
outcomes of interest have received less attention in the field
until recently, but warrant further exploration, as it has been
understood for some time that the CHR-P population comprises
heterogeneous clinical presentations and outcomes (66). The
future of risk prediction in the CHR-P paradigm might include
the use of a set of algorithms to predict an array of outcomes
and the predicted time course of each of these outcomes. This
ambitious goal will be discussed more in depth in a latter portion
of this paper.

PREVENTION

Complementary to the goal of predicting clinical outcomes
is the goal of delaying or preventing psychosis through early

interventions. A recent review found that only 20 randomized
controlled trials (RCTs) testing the effectiveness of either
psychosocial (10 of these trials), pharmacological interventions
(7 trials), or both (3 trials) had been completed specifically
for CHR-P individuals (67). Even within this small number of
trials, modalities of treatment and measured outcomes varied
greatly. While psychosis transition is a primary outcome, other
outcomes include change in positive symptoms, change in
negative symptoms, levels of functioning, quality of life and
other outcomes related to psychopathology, such as depression
and anxiety.

Cognitive behavioral therapy (CBT) has been studied more
than other psychosocial modalities (e.g., family interventions,
cognitive remediation, and integrative psychotherapy), but has
yielded mixed results in either preventing the onset of psychosis
or reducing APS. While some studies demonstrated a reduction
in rates of psychosis transition (68, 69) or APS reduction (70),
others showed no effect of CBT (71) or a larger effect of
another modality (e.g., directive listening) in reducing symptom
distress (72). Of the other psychosocial modalities, family-
focused therapy (FFT) reduced symptoms but not transition rates
(73); integrative psychological therapy decreased transition rates
at 12 and 24months (74); and cognitive remediation had no effect
on symptoms (75) but improved verbal memory, processing
speed and social adjustment (76, 77). Of the pharmacological
therapies tested, large trials of omega-3 fatty acids showed no
effect in reducing transition rates and symptoms as compared to
placebo (78, 79) despite promising earlier studies to this effect
(80). Trials of the N-methyl-D-aspartate receptor modulators D-
serine and glycine showed no effect in either reducing transition
rates or APS (81, 82). Trials with antipsychotics have also
been mixed. Antipsychotic medications alone improved positive
symptoms but not transition rates (83, 84) and antipsychotics in
combination with psychosocial therapy had a more significant
effect (85, 86).

Importantly, recent meta-analyses showed that, integrated
across studies, no psychosocial or pharmacological interventions
significantly reduce APS or transition rates, despite promising
results from individual trials (87–90). Further, limitations
inherent in both pairwise and network meta-analytic methods
render the results of these studies even less conclusive due
to comparing unequal control groups across studies, the small
number of overall intervention studies, and unequal comparisons
across SIPS-based studies and CAARMS-based studies (67). In
addition, more recent intervention studies were powered based
on higher rates of psychosis transition observed in early CHR-
P studies that have since declined, thus resulting in studies that
were ultimately underpowered (67).

Gaps and Future Directions in Prevention
A significant gap in prevention work to date is that the
heterogeneity within CHR-P samples has been largely ignored,
potentially contributing to the mixed and null results described
(12). One way to overcome this is to incorporate some measure
of an individual’s outcome likelihood into clinical trial design
and analysis. A recent study incorporated predicted risk of
conversion (15) into re-examining the efficacy of FFT and found
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that higher risk individuals showed greater APS improvement
with the FFT intervention as compared to the control group, but
lower risk individuals showed no difference in APS improvement
between the two intervention groups (91). A concrete step
toward improving our understanding of effective interventions
would be to similarly re-examine results of existing trials by
incorporating conversion risk as either a measure of stratification
or as a covariate in predicting the trial outcome. Another
step toward improving the precision of clinical trials would
be to incorporate baseline risk assessment and subsequent
stratification into the initial design and randomization scheme.
These two recommendations represent a crucial way in which
the interdigitation of prediction and prevention could broaden
the field’s scope of inquiry and improve outcomes.

Another way to address outcome heterogeneity is to develop
a core outcomes assessment set (COS) for clinical trials. The
primary target of interventions would be expanded beyond
psychosis transition to include change in positive, negative,
anxiety, or depression symptoms, functioning, neurocognition,
and recovery or remission (92). Determining a set of outcomes
that were included in all trials would facilitate direct comparisons
of interventions across trials (93). As prediction models start
to extend beyond measuring conversion to psychosis as the
primary outcome of interest, so should target outcomes of
clinical trials. Whether it is possible to prevent the development
of frank psychosis is unknown; however, interventions could
likely ameliorate APS and comorbid symptoms of anxiety and
depression or improve functioning. Given that the majority of
CHR-P individuals do not convert to psychosis yet continue
to manifest moderate levels of symptoms and functional
impairments (33, 41, 94), targeting non-conversion outcomes is
essential to alleviating impairment for this group.

FUTURE DIRECTIONS OF INQUIRY

Ultimately, joining the two tasks of prediction and prevention
more systematically could significantly increase the utility and
precision of findings from the CHR-P paradigm. Understanding
an individual’s probable trajectory is most helpful when there
is a chance to intervene and potentially improve this trajectory.
Approaching this goal could be relatively straightforward
[e.g., adding risk scores to clinical trial outcome analysis or
stratification (91)], although expanding the scope of inquiry
and methods used to interrogate relevant questions will help
support the effort to leverage predictive analytics toward
improving outcomes.

Improving Prediction Algorithms for

Treatment Selection
Increasingly sophisticated machine learning classification
algorithms, such as random forest, support vector machines,
Bayesian classifiers, etc., have been used in the CHR population
(and psychiatry more broadly) to predict individual outcomes
(95). Multi-site consortium studies (e.g., NAPLS, PRONIA,
PSYSCAN [http://psyscan.eu]) produce large sample sizes
and the opportunity to develop generalizable and robust

prediction models with external validation procedures. In these
large samples, which are most conducive to implementing
machine learning techniques, certain guidelines should inform
the implementation of these methods (96). Beyond sample
size, the number and type of predictor variables included
should be carefully considered. Too many predictors could
lead to over-fitting, instability and poor generalization of a
model. Thus, feature selection should be performed prior
to model fitting either through a data-driven approach, a
theory-driven approach, or a hybrid of these two approaches
which could leverage the strengths of each (97). The number
of features to retain for model development is another key
consideration; in general, it is recommended that the ratio
of predictors to outcome instances should be approximately
10:1 (98).

A major obstacle faced for prediction in the CHR-P
population is the low base rate of conversion to psychosis
(99). Machine learning algorithms are biased toward predicting
the majority outcome class and accuracy alone cannot provide
sufficient information about discrimination between true positive
and true negative cases. An algorithm predicting remission
in 20/100 CHR-P individuals that is 80% accurate could fail
to correctly detect any remission cases but still appear to
perform well. Thus, metrics such as sensitivity, specificity,
balanced accuracy, and area under the curve (AUC) should
also be included. Further, balanced sampling techniques should
be considered when severely imbalanced classes threaten the
generalizability of a model. One such approach is the synthetic
minority oversampling technique (SMOTE) which creates a new
data set by oversampling the minority outcome class based
on information from neighboring data points, thus reducing
bias induced during model learning (100). Balanced sampling
approaches should only be used in discovery samples and
models should not be validated in synthetically balanced samples.
Implementing these sampling approaches has shown to increase
model performance in predicting remission (45) and should
be considered as a tool to improve prediction in the CHR-
P population.

Biomarkers and neuroimaging data may be able to improve
prediction algorithms that face a potential limitation in achieving
the highest level of predictive accuracy with clinical information
alone (61). The inclusion of neurobiological data has not
yet yielded these results; however, there is some progress
in this direction (36, 65). In a controlled simulation, it
was shown that environmental, clinical, neuroimaging and
blood biomarker assessments were sequentially examined as
testing stages, wherein each subsequent modality added to the
positive predictive values (PPV) not detected from the previous
modality (59). This type of staged or dynamic approach to risk
assessment could greatly increase our ability to predict outcomes,
but may become cumbersome in clinical implementation.
If overwhelming evidence suggests that the inclusion of a
biomarker reliably adds value to individual prediction, it should
be included in a prognostic assessment. A decision then arises of
whether the field should focus on improving prognostic accuracy
by adding biomarkers, or on mobilizing existing prediction
efforts with more pragmatic clinical models to inform the
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selection and development of interventions to improve outcomes
more proximally.

A method that warrants more in-depth study involves
updating baseline prediction models with clinical information
from follow-up visits, called joint modeling (101). This method
has been applied in two CHR-P samples and showed significantly
better performance than baseline clinical models alone (102,
103). Very few studies have approached risk prediction with
heterogeneous clinical profiles and developmental trajectories in
mind (33, 38). Ascertaining an individual’s probable outcome
from a baseline assessment fails to account for variability in
syndrome history (e.g., duration of prodromal symptoms prior
to initial assessment), and the progression, deterioration, or
improvement of symptoms after baseline. Although the baseline
“snapshot” approach has been useful to date, a framework
that continuously updates based on new or changing clinical
information for an individual has the potential to significantly
improve outcome prediction.

A related gap in our current research paradigm that warrants
expansion is the study of more secondary outcomes such as
functioning, remission, and treatment response. This is an
area where biomarkers could also help to validate clinical
constructs that have not been fully pinned down. Within
the example of remission, described previously, the lack of
agreement on the time course, duration, and clinical picture
of remission could be clarified through careful examination
of how symptoms and biomarker signatures co-evolve over
time. A very long follow-up period (e.g., > 2 years) would be
necessary to understand the time course of remission onset and
duration, how remission relates to recovery and relapse, whether
neurobiological patterns map onto these clinical presentations,
and what would predispose an individual to spontaneous
remission as opposed to intervention-driven remission. Similar
questions could guide our understanding of outcomes such as
social and role functioning as well as neurocognition.

Improving Treatments and Treatment

Selection With Predictive Analytics
The existing literature on psychosocial interventions for the
CHR-P population is inconclusive; however, predictive analytics
could help account for heterogeneity and inform the type and
intensity of recommended services. Biomarkers could potentially
play a role in these decisions and more robust inquiry could
reveal which mechanisms (e.g., inflammation, neuroplasticity,
neurocognition) should be targeted with psychosocial or
pharmacological interventions. At this point, mechanisms of
these interventions for the CHR-P syndrome are not understood
well-enough to match components of an individual’s clinical

profile to components of effective interventions; however, it
would be valuable to have this level of understanding to inform
treatment selection.

As no biomarker has consistently replicated in studies
assessing individual risk of conversion, the role of clinical
predictors is again emphasized. Given that psychosis and its
risk syndrome are assessed at the clinical level, symptom-
level measurements should also summarize underlying
neurobiological changes.With precise clinical measurements, the
brain-behavior link is manifested in the individual’s responses.
Nevertheless, there is room to refine clinical instruments to
maximize clinical utility and portability which may also increase
consistency in measurements used across consortium studies.
Recently, NAPLS investigators developed an abbreviated version
of the SIPS—the Mini-SIPS—which could minimize the time
and patient burden required to arrive at a relevant risk syndrome
diagnosis (104). This measure is yet to be validated although
this and similar initiatives could greatly increase the accessibility
and transportability of risk assessment measurements in both
specialized high-risk clinics and broader healthcare settings.

CONCLUSIONS

Risk prediction and intervention are currently separate but
related goals of the clinical high risk for psychosis research
paradigm. Progress has been made in ascertaining risk and some
progress has been made in identifying effective interventions;
however, very little work has combined these tasks—assessing
the likelihood of experiencing heterogeneous clinical outcomes
and selecting treatment accordingly—to ultimately improve
outcomes. The continuation of large multi-site consortium
studies will help to facilitate the following ongoing goals:
developing and validating risk prediction algorithms for a range
of clinical outcomes; identifying time-dependent biomarker
signatures that validate clinical trajectories; accounting for
sample heterogeneity in clinical trial design; and matching
individual clinical profiles to specific mechanisms of effective
interventions. Although there is still a lot of work to be done,
the future of the CHR-P paradigm holds great promise to
significantly improve outcomes for those at the highest levels
of risk.
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