AUTHOR=Lindner Philip , Ramnerö Jonas , Ivanova Ekaterina , Carlbring Per TITLE=Studying Gambling Behaviors and Responsible Gambling Tools in a Simulated Online Casino Integrated With Amazon Mechanical Turk: Development and Initial Validation of Survey Data and Platform Mechanics of the Frescati Online Research Casino JOURNAL=Frontiers in Psychiatry VOLUME=11 YEAR=2021 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2020.571954 DOI=10.3389/fpsyt.2020.571954 ISSN=1664-0640 ABSTRACT=

Introduction: Online gambling, popular among both problem and recreational gamblers, simultaneously entails both heightened addiction risks as well as unique opportunities for prevention and intervention. There is a need to bridge the growing literature on learning and extinction mechanisms of gambling behavior, with account tracking studies using real-life gambling data. In this study, we describe the development and validation of the Frescati Online Research Casino (FORC): a simulated online casino where games, visual themes, outcome sizes, probabilities, and other variables of interest can be experimentally manipulated to conduct behavioral analytic studies and evaluate the efficacy of responsible gambling tools.

Methods: FORC features an initial survey for self-reporting of gambling and gambling problems, along with several games resembling regular real-life casino games, designed to allow Pavlovian and instrumental learning. FORC was developed with maximum flexibility in mind, allowing detailed experiment specification by setting parameters using an online interface, including the display of messages. To allow convenient and rapid data collection from diverse samples, FORC is independently hosted yet integrated with the popular crowdsourcing platform Amazon Mechanical Turk through a reimbursement key mechanism. To validate the survey data quality and game mechanics of FORC, n = 101 participants were recruited, who answered an questionnaire on gambling habits and problems, then played both slot machine and card-draw type games. Questionnaire and trial-by-trial behavioral data were analyzed using standard psychometric tests, and outcome distribution modeling.

Results: The expected associations among variables in the introductory questionnaire were found along with good psychometric properties, suggestive of good quality data. Only 6% of participants provided seemingly poor behavioral data. Game mechanics worked as intended: gambling outcomes showed the expected pattern of random sampling with replacement and were normally distributed around the set percentages, while balances developed according to the set return to player rate.

Conclusions: FORC appears to be a valid paradigm for simulating online gambling and for collecting survey and behavioral data, offering a valuable compromise between stringent experimental paradigms with lower external validity, and real-world gambling account tracking data with lower internal validity.