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Virtual reality (VR) offers children with autism spectrum disorder (ASD) an inexpensive and
motivating medium to learn and practice skills in a personalized, controlled, and safe
setting; however, outcomes of VR interventions can vary widely. In particular, there is a
need to understand the predictors of VR experience in children with ASD to inform the
design of these interventions. To address this gap, a sample of children with ASD (n=35,
mean age: 13.0 ± 2.6 years; 10 female) participated in a pilot study involving an immersive
VR experience delivered through a head-mounted display. A data-driven approach was
used to discover predictors of VR safety and sense of presence among a range of
demographic and phenotypic user characteristics. Our results suggest that IQ may be a
key predictor of VR sense of presence and that anxiety may modify the association
between IQ and sense of presence. In particular, in low-anxiety participants, IQ was
linearly related to experienced spatial presence and engagement, whereas, in high-anxiety
participants, this association followed a quadratic form. The results of this pilot study,
when replicated in larger samples, will inform the design of future studies on VR
interventions for children with ASD.

Keywords: autism spectrum disorder, virtual reality, technology-aided intervention, usability study, sense of
presence, oculus, data-driven, machine learning
INTRODUCTION

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder defined by differences
in social communication and the presence of restricted and/or repetitive behaviors (1). ASD is a
highly heterogeneous condition with large variability in etiology (2, 3), neurobiology (4, 5), and
phenotypic presentation (6). ASD is also associated with several co-occurring conditions such as
anxiety, attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder, epilepsy,
and intellectual disability. Variability in the presence and severity of these co-occurring conditions
further adds to the heterogeneity of ASD and intervention outcomes.

Timely and appropriate interventions and supports can improve long-term health and societal
outcomes for many children with ASD (7, 8); however, most available evidence-based interventions are
g August 2020 | Volume 11 | Article 6691
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costly and resource-intensive (e.g., up to 40 h/wk of 1-on-1 therapy).
The heterogeneity of ASD necessitates significant personalization of
interventions, which further challenge treatment development.
Technology-based interventions, if used appropriately, hold
significant promise to reduce these barriers. One such technology
is virtual reality (VR): computer-generated, interactive
environments that simulate the real world by presenting the user
with three-dimensional imagery. VR provides an inexpensive way to
learn and repeatedly practice skills in a personalized, controlled, and
safe setting (9, 10), and can improve ecological validity of
interventions and generalizability of learned skills (11, 12).
Feasibility studies have demonstrated the potential of VR for skills
training across several domains including job interview training
(13), vocational training (14), social cognition skills training (15–
19), driving simulation (20, 21), and anxiety reduction (22). Despite
this promise, the outcomes of VR interventions are highly variable.
Moreover, VR use by children may be associated with physical,
social, and psychological risks (23) including low therapeutic value,
cybersickness, and increased screen time which may lead to social
isolation, lack of physical activity, and obesity (24–26). Many VR
systems now use head-mounted displays (HMDs), a mode of
delivery of VR experiences that relies on glasses-like displays
covering the user’s eyes to provide a three-dimensional view of a
scene. While HMDs can enhance the sense of presence and
immersiveness of VR experiences, their use has been associated
with side effects, including cybersickness, a physical condition
characterized by eye strain, headache, dizziness, and nausea.
There is a significant gap in understanding these risks and
predictors of optimal user experiences, especially given the highly
diverse needs of children with ASD. This paucity of knowledge is a
critical barrier to the implementation of VR for interventions in
ASD, and identifying subgroups who may respond to VR in a
similar manner will be a necessary precursor to investigations on
clinical effectiveness. To address this gap, the present pilot study
examined predictors of VR experience (sense of presence and
safety) in children with ASD.

VR experience can be quantified through various measures
including the sense of presence in the virtual environment (27),
the degree of engagement with presented content (28–30), and
the perceived ecological validity (31). In the general population,
these dimensions of VR experience have been associated with
anxiety (32), gender (33), and age (34) among other factors.
However, the extent to which these predictors may impact VR
experience in children with ASD is not well-understood. It also
remains unclear whether additional variables such as ASD
symptoms severity, IQ, and attention difficulties may also affect
VR responses in children with ASD.

Two factors challenge our study of VR predictors in children
with ASD. First, ASD is a multi-faceted condition with
differences in several symptom domains that may impact VR
experiences. These differences translate into a large number of
candidate predictors of VR and limit the statistical power of
traditional regression analyses. Second, the large variability
across the autism spectrum can result in complex and
nonlinear patterns of association between user characteristics
and VR experiences. This necessitates the use of analytical tools
Frontiers in Psychiatry | www.frontiersin.org 2
beyond traditional linear regression methods that allow for the
characterization of complex patterns.

To address the above challenges, the present paper proposes a
machine-learning-based approach to discovering predictors of
VR sense of presence and safety for children with ASD. Machine
learning algorithms are powerful tools for discovering patterns of
association among sets of variables directly from the data, often
without prior assumptions on what these associations may be.
When trained on appropriate datasets, these algorithms can
capture highly complex and non-linear patterns in high
dimensions. These algorithms also allow for effective variable
selection, even with modest sample sizes. As such, these
approaches hold significant potential as analytical tools for
characterizing the heterogeneity in samples of children with
ASD (35).
MATERIALS AND METHODS

Participants
The dataset used in this study has been described in our previous
work (36). The set contains data from a sample of 35 children
and youth (mean age: 13.0 ± 2.6 years; 10 female) with ASD. The
inclusion criteria were a clinical diagnosis of ASD, 8–18 years of
age, full-scale and verbal IQ greater than 70, and normal or
corrected-to-normal hearing and vision. Exclusion criteria were
the use of beta-blockers as these affect autonomic responses, and
contraindications for use of VR (history of migraines, seizures,
vestibular conditions, hypertension, cardiovascular and
circulatory diseases, history of difficulty differentiating between
reality and fiction, and predisposition to motion sickness).

Participants were recruited through mail outs and study
flyers. Figure 1 shows the recruitment and screening process.
Of the 58 individuals who were interested in the study, 35
were enrolled.

The research ethics board at the Holland Bloorview Kids
Rehabilitation Hospital and the University of Toronto approved
the study. Participants who were deemed to have the capacity for
consent provided written consent. Others provided assent and
their legal guardians provided written consent.

Measures
Participant Characteristics
Participants had a clinical diagnosis of ASD, confirmed by the gold-
standard instruments: Autism Diagnostic Observation Schedule
(ADOS) (38) and the Autism Diagnostic Interview-revised (ADI-
R) (39). IQ was measured using the Wechsler Abbreviated Scale of
Intelligence (WASI), second edition (40). ASD symptomatology was
measured by the Social Communication Questionnaire (SCQ) (41,
42), a 40-item parent-report questionnaire probing ASD-like
behaviors. ADHD symptoms were quantified using the attention
problems subscale of the Child Behaviour Checklist (CBCL) (43), a
parent report questionnaire of behavioral and emotional challenges
in children. Baseline anxiety symptom severity was measured using
the Screen for Child Anxiety Related Emotional Disorders
August 2020 | Volume 11 | Article 669
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(SCARED) (44), a 41-item parent report of anxiety symptoms
in children.

Safety
The VR safety dimensions considered in this study included
symptoms of cybersickness and anxiety. Cybersickness
symptoms were quantified using the negative effects subscale of
the Independent Television Commission—Sense of Presence
Inventory (ITC-SoPI) (45), a 39-question self-report that
measures four dimensions of user experience on a five-point
Likert scale: spatial presence, engagement, ecological validity/
naturalness, and negative effects. The ITC-SoPI has substantial
psychometric evidence and has been used in previous studies
examining the experience of VR in adults (9, 46) and adolescents
(47, 48) with ASD. Items on the negative effects subscale probe
symptoms related to dizziness, eyestrain, headache, nausea, and
tiredness. Anxiety symptoms were quantified using the State-
Trait Anxiety Inventory (STAI) (49, 50), which is a 20-question
self-report questionnaire. We used the difference between STAI
score at baseline and that after VR exposure as our measure
of anxiety.

Sense of Presence
We quantified users’ sense of presence of the VR experience
using three subscales of the ITC-SoPI questionnaire (spatial
presence, engagement, and naturalness). The participants were
also asked if they prefer the VR condition to the video condition
(VR preference; yes/no/neutral).

Procedures
Participation in this study entailed a single 2–3 h study visit to a
research laboratory. The protocol consisted of a VR condition
using an HMD (Oculus Rift, 2160 by 1200 resolution) and a
monitor-displayed 360° video control condition (ViewSonic
VP2468, 1920 by 1080 resolution). The HMD’s integrated
Frontiers in Psychiatry | www.frontiersin.org 3
audio system and Sony on-ear headphones provided audio for
the VR and control conditions, respectively. Both conditions
depicted the same 5-min scenario developed by Shaftesbury
Films (shaftesbury.ca, 4096 by 2048 resolution, 29.97 frames
per second) and in partnership with families and clinicians who
had extensive experience with the challenges faced by children
with ASD on school buses. The scenario placed the user seated
inside a stationary school bus, with a driver and other children
on the bus. During the scenario, seven children entered the bus
and engaged in verbal interactions among each other. Several
sensory and social triggers were presented, including street noise
(e.g., sirens, construction equipment), and social stimuli (e.g.,
children entering the bus, children exhibiting behavioral
issues, the driver reprimanding the children).

During the study visit, participants were seated in front of a
computer monitor that displayed the stimuli and the study
questionnaires (Supplementary Figure 2) and familiarized
with the study protocol using a visual storyboard. Participants
were instructed to explore the scenario by moving their head
(VR) or a computer mouse (control). Following an initial
baseline task, VR and control conditions were each repeated
twice (presentation order of VR or control first was randomized)
and separated by a subsequent baseline task in which
participants watched 5-min clips from the Blue Planet series
on a computer monitor (Supplementary Figure 1). The self-
report questionnaires were administered throughout the study
protocol as follows: the STAI following the initial baseline; STAI
following each initial VR and control condition; and the ITC-
SoPI following each final VR and control condition
(Supplementary Figure 1).
Analyses
Analyses were conducted in Python 3.7.3 using Scikit-learn
toolbox (51) and JMP® (Version 13.2.1. SAS Institute Inc.,
FIGURE 1 | CONSORT (Consolidated Standards of Reporting Trials) (37) chart of recruitment, enrollment, and retention of participants.
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Cary, NC, 1989-2019). The significance level for type I error in all
tests was set to a = 0.05.

Features
A feature vector with 14 user characteristics that affect VR
experiences was associated with each participant (Supplementary
Table 1). These features were age, sex, IQ (full-scale, verbal, and
non-verbal), previous experience with VR (yes or no), SCQ total
score, ADHD problems score from CBCL, and SCARED scores
(subscales and total score). For the SCARED, subscale scores for
panic disorder, generalized anxiety disorder, social phobia, and
separation anxiety disorder were binarized based on clinical
cut-offs.

Top Features
The objective of this study was to identify top predictors of
measures of safety (cybersickness, anxiety) and sense of presence
(spatial presence, engagement, naturalness, preference) from
user characteristics listed in Supplementary Table 1. Data-
driven regression methods were used to identify predictors of
continuous measures (spatial presence, engagement, naturalness)
whereas classification was used to determine predictors of user
preference (yes/no/neutral). Note that these are different than
traditional linear regression analyses. In particular, four data-
driven methods were used for both regression and classification.
These included regularized linear regression using the elastic net
method (52). Regularization can reduce model variability (53)
and provides a built-in capacity for variable selection. To this
end, we used the magnitude of regression coefficients to compute
the importance of each predictor variable in the model (53).
Elastic net was used with four combinations of parameters, with
a=0 corresponding to traditional linear regression. We also used
two ensemble methods namely, AdaBoost (54) and random
forests (55) regression. These methods are shown to offer
robustness to outliers (56) and enhanced performance
compared to other regressors in a wide range of applications
(57). They also provide outputs and feature weights that are
readily interpretable (52, 55). The importance of each feature in
these models was quantified as the permutation accuracy
importance (55, 58). Finally, we used a multi-layer perceptron
(MLP) as artificial neural networks provide flexibility to capture
high complexity in the data (52). When used with a large number
of features and layers, these models are difficult to interpret as the
estimated parameters of the model, known as weights, are not
directly convertible to a meaningful measure of relevance.
However, given our simple design, the MLP can be used
effectively for feature selection (59). To determine the
importance of each feature, the dependent resampled input
method was used (60).

Parameters of each model were determined based on a grid
search in a leave-one-out cross-validation scheme (61). For the
random forest, the criterion was based on the Gini coefficient, and
10 (maximum depth 5) and 25 (maximum depth 5) estimators
were used for regression and classification, respectively. For
AdaBoost, the weak learners were 20 and 50 decision trees with
depths of 3 and 1 for regression and classification, respectively. For
the MLP, a two-layer network with three neurons was used. The
Frontiers in Psychiatry | www.frontiersin.org 4
activation functions were tanh, linear, and Gaussian for regression
(one from each) and relu for classification. For each feature, its
overall importance on a given model was derived by averaging its
importance in that model over all rounds of cross-validation.
Significant features were determined using the elbow of the feature
importance plot.

Evaluation Metrics
The machine learning approaches used here do not directly
provide traditional regression statistics (e.g., R2, p value for the
association of outcomes and predictors). Instead, the
performance of these methods is commonly evaluated by
examining the statistics for the association between true
outcomes and those predicted by the regressor, with the null
hypothesis of no association (regression coefficient is equal to
zero; prediction are not better than chance). To mitigate the risk
of over-fitting, leave-one-out cross-validation was used to
evaluate the performance of each model. In this approach, data
from all but one user were used to train the model, and the
testing was performed on the remaining user data. The process
was repeated for each participant, and performance was averaged
over all folds of cross-validation.

Classification performance was quantified using precision
and balanced accuracy. The latter is the percentage of correctly
identified samples, where each sample is weighted according to
the inverse prevalence of its true class to take into account class
imbalance. To compute an aggregate measure for the three-class
problem, the measures were averaged for each pair of classes. To
evaluate if classification accuracy was greater than chance, the
permutation test was used by training the classifier on 100 sets
generated by randomizing the data labels (62).
RESULTS

Participants
Three of 35 participants did not complete the full study protocol.
Reasons for dropout were seemingly related to the bus scenario
(participant had prior negative experiences with school buses,
participant was agitated by the whistling sounds in the scenario).
As experience measurements of non-completers were
incomplete, we were unable to include their data in the sense
of presence and safety analyses. Participants’ demographic and
phenotypic characteristics are shown below in Table 1 [see also
TABLE 1 | Participant Information.

Variable Median (IQR)

Age (years) 13.5(4.75)
Sex (male: female) 22:10
Verbal IQ 93(18)
Performance IQ 105(23)
Full-scale IQ 103(25)
SCQ 22(8.25)
SCARED 24(16)
Experience with VR (Y/N) 20:12
CBCL—ADHD Problems 66(14)
August 2020 | Volume 1
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(36)]. Seventy-four percent of participants preferred the HMD-
VR to the video condition.

Models
The statistics for the regression line characterizing the association
between true values of the sense of presence measures and those
predicted by each of the data-driven methods are reported in Table
2. For spatial presence, better than chance performance (significant
associations between true outcomes and predictions) was achieved
by the neural network (R2 = 0.4, b=0.42 ± 0.12, p=0.01), random
forest (R2 = 0.4, b=0.35 ± 0.1, p<0.001), and AdaBoost (R2 = 0.4,
b=0.37 ± 0.1, p<0.001). For engagement, better than chance
performance was achieved by the neural network (R2 = 0.5,
b=0.39 ± 0.1, p=0.03) and random forest (R2 = 0.2, b=0.32 ± 0.1,
p=0.02). None of the models were able to predict negative effects or
STAI difference.

For the classification problem, VR preference was predicted
with better than chance accuracy by the random forest
(permutation test; p=0.03). None of the other classifiers
provided greater than chance accuracy (Supplementary Table
2; p=0.03).

Top Features
For each regressor, the importance of user characteristics was
computed as described in Analyses. The elbow in the scores plot
occurred after the top two or three features for each regressor
(Supplementary Figure 3). IQ consistently ranked as a top
predictor of the sense of presence outcomes in all models
except in one, followed by the SCARED scores.

Figure 2 revealed two subgroups stratified by SCARED score:
the first group, characterized by below-threshold score on the
SCARED (n=16; SCARED<25), showed a linear association
between IQ and spatial presence/engagement (spatial presence:
R2 = 0.56, b=−0.07 ± 0.01, p=0.008; engagement: R2 = 0.50, b=
−0.05 ± 0.01, p=0.002). For the second subgroup (n=15;
SCARED≥25), the association between IQ and spatial
presence/engagement, followed a quadratic function (spatial
presence: R2 = 0.49, b1=−0.019 ± 0.012, b2=−0.003 ± 0.000,
p=0.02; engagement: R2 = 0.55, b1=−0.012 ± 0.011, b2=−0.003 ±
Frontiers in Psychiatry | www.frontiersin.org 5
0.000, p=0.007). Detailed statistical results are presented in
Supplementary Table 3.
DISCUSSION

In this pilot study, we used data-driven approaches to discover
predictors of VR safety and sense of presence for children with
ASD. These approaches have the potential to address the
complexity that arises from the large variability in the
characteristics of children with ASD. They are also particularly
useful for generating hypotheses regarding key predictors among a
large number of demographic and phenotypic characteristics that
may impact the VR experience. In particular, we examined four
TABLE 2 | Regression results for sense of presence.

Spatial presence Engagement Naturalness

R2 b ± SD p R2 b p R2 b p

Elastic net
(a=0)

−.05 −.03 ± .1 n.s. −1.1 −.03 ± .1 n.s. −1.3 −.03 ± .1 n.s.

Elastic net
(a=1, l1 = 0)

−.1 .09 ± .1 n.s. −.4 .02 ± .1 n.s. −.4 −.03 ± .1 n.s.

Elastic net
(a=1, l1 = 1)

−.1 −.02 ± .1 n.s. −.4 −.03 ± .1 n.s. −.3 −.03 ± .1 n.s.

Elastic net
(a=1, l1=.5)

−.1 −.03 ± .1 n.s. −.4 −.03 ± .1 n.s. −.4 −.02 ± .1 n.s.

Neural network .4 .42 ± .1 .01 .5 .36 ± .1 .03 .4 .22 ± .1 n.s.
Random forest .4 .35 ± .1 <.001 .2 .32 ± .1 .02 .1 .26 ± .1 n.s.
AdaBoost .4 .37 ± .1 <.001 .2 .44 ± .1 <.01 .1 .23 ± .1 n.s.
A
ugust 2020 |
 Volume 11 | Article
p-values are reported for bolded text under the right-hand "p" column. (n.s., not significant).
A B
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FIGURE 2 | The association between full-scale IQ and spatial presence/
engagement in two subgroups of participants: panels A and C depict a linear
association for participants without anxiety (SCARED>25) and panels B and
D depict a quadratic function for participants with anxiety (SCARED>25).
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models for predicting user-reported ratings of sense of presence
(spatial presence, naturalness, engagement) and safety
(cybersickness, anxiety). These included elastic nets, random
forests, AdaBoost, and neural networks. The neural network,
random forest, and AdaBoost performed provided the best
predictions of experience outcomes, suggesting a non-linear
association between predictors and sense of presence outcomes.

The most accurately predicted target across all models was
spatial presence, followed by engagement. Both of these variables
are important dimensions of VR experiences that have been
associated with response to VR interventions (63). Sense of
presence is a “psychological state in which virtual objects are
experienced as actual objects in either sensory or nonsensory ways”
(64). This key aspect of VR experience has shown to predict
responses to VR interventions by facilitating knowledge
acquisition and transferability to real environments (65).
Engagement reflects attention to the virtual stimuli and has been
associated with enhanced intervention effectiveness (66). IQ (full-
scale, verbal, performance) and anxiety traits (measured by the
SCARED) were identified as key predictors of spatial presence and
engagement across different estimators. One estimator (random
forest) also identified attention (as measured by the CBCL) as a
predictor of spatial presence. Only one other study has considered
the role of IQ in VR, suggesting that IQ is not a predictor of
willingness to use HMDs (46). The results of our study highlight
the role of IQ as an important consideration in VR use. Future
studies are needed to replicate and further examine this issue.

The association of anxiety with spatial presence was not
surprising as previous studies in other populations have
reported an increased sense of presence with heightened state
anxiety (67). One explanation for this association may be
increased vigilance during states of anxiety. Interestingly, our
data-driven approach suggested that anxiety may modify the
association between IQ and sense of presence. In particular, we
identified two types of associations between spatial presence/
engagement and IQ, depending on whether or not a participant
had clinically significant anxiety based on the SCARED. For the
group of participants without anxiety, spatial presence/
engagement were negatively associated with IQ in a linear
fashion. This negative linear association may be related to the
enhanced ability of participants with higher IQ scores to
differentiate between the real and virtual worlds. Our results
suggest that anxiety may change the association between
presence/engagement and IQ from a linear to a quadratic
function, suggesting that the presence of anxiety in participants
with lower IQs may decrease the sense of presence. In the high-
anxiety group, those with IQ scores in the average range (85–115)
reported the highest experience of spatial presence/engagement.

None of the methods used in this study were able to successfully
predict cybersickness or anxiety experienced during the VR
emersion. User experiences of VR are thought to be impacted by
both user characteristics as well as factors extrinsic to the user such
as system characteristics, task characteristics, and media content
(67). As this study only considered the user characteristics, it may
be possible that these negative effects can be better predicted by
Frontiers in Psychiatry | www.frontiersin.org 6
external factors such the degree and type of motion in the VR
experience or the duration of exposure (68, 69). Future studies are
needed to further investigate the role of these factors.

Another unexpected finding in this study was that, in contrast to
other studies of the general population, ourmethods did not identify
age and sex as significant predictors of cybersickness. This may be
related to our narrow age range (70–72) or sex differences in ASD.

The findings of this pilot study must be interpreted in the
context of several limitations. First, our modest sample size may
have resulted in overfitting of our complex machine learning
models. Second, given our recruitment strategy, individuals with
previous negative VR experiences may not have self-identified to
partake in the study. This may have resulted in sampling bias and
overly optimistic outcomes. Third, we were unable to obtain
outcome measures for participants who did not complete the
study and our conclusions are limited to the completer sample.
Future studies with an intent-to-treat design are needed to further
examine the safety and tolerability in non-completers. Fourth, our
study only included participants without intellectual disability.
Future studies are needed to examine VR safety and tolerability in
a more diverse sample. Fifth, this study only considered a limited
set of user characteristics. Future studies are needed to examine the
impact of other characteristics, such as sensory differences, on VR
experiences. Lastly, the VR content tested in the study was limited
to only one, short scenario. Long-term exposure to different types
of VR content (e.g., high motion) may be associated with other
predictors of safety and sense of presence. Consequently, the
interaction of user characteristics and VR content features was
not considered; future studies with multiple scenarios may be able
to elucidate these effects. In the context of long-term exposure,
other measures of safety, such as dependency, decrease in physical
activity, and sleep difficulties should be considered.

Implications
To our knowledge, this pilot, hypothesis-generating study is the first
to examine predictors of VR safety and sense of presence in children
with ASD. Through a data-driven approach, we identified IQ and
anxiety to important variables for consideration in future studies of
VR usability in this population.
CONCLUSION

We examined the effect of user characteristics on sense of
presence and safety of VR for children with ASD. Given the
heterogeneity in ASD, we employed a data-driven approach
based on machine learning. Our results suggest that IQ and
anxiety may affect VR usability in this sample.
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