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Neuropsychiatric disorders and type 2 diabetes (T2D) are major public health concerns

proposed to be intimately connected. T2D is associated with increased risk of dementia,

neuropsychiatric and mood disorders. Evidences of the involvement of insulin signaling

on brain mechanisms related to depression indicate that insulin resistance, a hallmark

of type 2 diabetes, could develop in the brains of depressive patients. In this article, we

briefly review possible molecular mechanisms associating defective brain insulin signaling

with reward system, neurogenesis, synaptic plasticity and hypothalamic-pituitary-adrenal

(HPA) stress axis in depression. We further discuss the involvement of tumor necrosis

factor α (TNFα) promoting defective insulin signaling and depressive-like behavior in

rodent models. Finally, due to the high resistant rate of anti-depressants, novel insights

into the link between insulin resistance and depression may advance the development

of alternative treatments for this disease.

Keywords: depression, type 2 diabetes, insulin resistance, inflammation, synaptic plasticity, hippocampus, HPA

axis, dopamine

INTRODUCTION

Depressive disorders, type 2 diabetes (T2D) and obesity are among the top causes of years lived with
disability, a widely accepted measure of disease burden on society (1). Major Depressive Disorder
represents the highest burden among mental disorders, with a significant impact on individuals,
their families and the community at large. The World Health Organization estimates that more
than 300 million people suffer from depressive disorders (2). In parallel, T2D has been estimated
to afflict >400 million adults worldwide (2). T2D is characterized by peripheral insulin resistance
that culminates in hyperglycemia (3). While T2D has precise diagnostic parameters, that includes
fasting serum glucose levels and glycated hemoglobin blood levels; depression diagnoses is based on
the persistence of some of the following symptoms for >2 weeks: sad/anxious mood, hopelessness,
helplessness, decreased energy, appetite/weight changes, headaches, sleep changes, feelings of guilt,
loss of interest, decreased concentration, psychomotor retardation and suicide attempts (4).

T2D is a risk factor not only for the development of cardiovascular diseases, but also to
neurological and psychiatric disorders, including Alzheimer’s disease (AD) (5, 6). Some clinical
reports and meta-analyses indicate a correlation between T2D and depression with a bi-directional
increased risk between both conditions (6–9). Albeit evidences correlating T2D and depression,
confounders implicated in epidemiological studies hamper the temporal order assessment of those
co-morbid cases. As a result, the association between both diseases is still unclear (8, 10, 11).
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Insulin signaling play a role in neuronal dysfunction and
cognitive decline in AD (12, 13) and it emerged as a possible
mechanism underlying alterations in the brain and in behavior
in mood disorders (14). In children, the severity of depressive
symptoms predicted the development of insulin resistance (15)
and a recent report demonstrated that worst insulin resistance
correlated with more pronounced depressive symptoms and
dysfunction of the anterior cingulate cortex-hippocampal
motivational network in a cohort of obese depressed
youths (16).

In this minireview, we highlight a possible role of
decreased insulin signaling in the brain, as a result of
metabolic dyshomeostasis, in mechanisms involved with
depressive behavior.

MOLECULAR LINKS BETWEEN
DEPRESSION AND DIABETES

Brain Insulin Resistance
Insulin has been implicated with diverse central roles, like
modulating feeding behavior and energy maintenance by the
hypothalamus, as well as memory-related processes by the
hippocampus (13, 17–19). Insulin receptors are expressed
throughout the brain, including regions classically involved with
mood regulation, such as the nucleus accumbens (NAc), the
ventral tegmental area (VTA), the amygdala, and the raphe
nuclei (20, 21). The knockdown of insulin receptors in the
hypothalamus of rats triggered depressive and anxiety-like
behaviors in mice (22). Anxiety and depressive-like behaviors
were further reported in mice with neuronal-specific knockout
of insulin receptors (NIRKO). NIRKO mice also exhibited
mitochondrial dysfunction, oxidative stress and increased
monoamine oxidase expression and dopamine turnover in the
mesolimbic system (23). Interestingly, altered behavior was
detected in 17-month-old NIRKO mice, but not in younger
animals (23). It is important to note that by this age, these
animals display increased white adipose tissue and plasma
leptin concentration (17), raising the possibility of the behavior
response being a secondary effect to the absence of insulin
signaling in neurons.

A recent study demonstrated that the knockdown of insulin
receptors in astrocytes also generates anxiety and depressive-
like behavior in mice, via decreased purinergic signaling and
altered dopamine release (24). A recent post-mortem analysis in
the brain of patients diagnosed with mental illness has observed
a correlation between gene expression of proteins involved with
both the dopaminergic system and the insulin signaling (25),
supporting the idea that insulin could regulate the dopaminergic
response. Oppositely, another report observed that deleting
insulin receptors from dopaminergic neurons had no impact on
anxiety or depressive-like behavior in young adult mice (26). The
absence of altered behavior in this model counteracts the idea of
insulin regulating the dopaminergic system. Other possibilities
to explain this phenotype are the development of compensatory
mechanisms, or that, similar to what is observed in the NIRKO
mice, altered behavior would be detected in older animals.

Defective brain insulin signaling in T2D patients has been
associated with impaired transport of the hormone across the
blood-brain barrier (27). Markers of impaired insulin signaling
are present in the brain of db/db mice, a transgenic model
for T2D that lacks the long isoform of the leptin receptor
(28). These mice also exhibit increased immobility time in
the forced swim test as early as 5 weeks of age, coinciding
with an initial metabolic dysregulation, including hyperglycemia,
increased food and water intake and body weight (29–31).
This animal model also presents with progressive anxious and
psychosis-like behavior that progress with age (30). Interestingly,
since most metabolic parameters are also aggravated with aging
in the db/db mice, it hinders an accurate determination of
the major player influencing the behavior. High-fat diet (HFD)
promotes T2D symptoms, as well as anxiety and depressive-
like behavior in wild-type mice associated with impaired brain
insulin signaling (32). Parallelly, HFD disrupts brain reward
system of mice, by altering dopamine-related proteins in the
VTA, NAc and dorsolateral striatum (32). Overall, further
studies designed to investigate a direct correlation between brain
insulin dysfunction and depressive-like behavior are needed in
the field.

Neurogenesis and Synaptic Plasticity
Hippocampal neurogenesis, a process in which neural
progenitors from the subgranular zone differentiate into
new neurons at the dentate gyrus, is proposed to be involved
with depression and to be impaired in diabetes (33, 34).
HFD impairs cell proliferation, insulin signaling and the
Akt/glycogen synthase kinase 3β (GSK3β) activation promoted
by serotonin in the dentate gyrus of the hippocampus.
Interestingly, replacing HFD by chow diet recovered depressive
symptoms and Akt/GSK3β response to insulin, even without
a complete recovery of body weight. Neurogenesis was
partially recovered by a chow diet replacement, suggesting
that it was not the only mechanism implicated with the
beneficial effect promoted by the regular diet (35). Other
hormones like Insulin-like growth factor I (IGF-I) and leptin
activate Akt and GSK3β pathway and mediate hippocampal
neurogenesis (36–39). Interestingly, downregulation of those
hormones are observed in the hippocampus of rodent
models of T2D, being other possible targets to the link
between T2D and depression (40, 41). Neurogenesis is also
proposed to be impaired in T2D due to mitochondrial
dysfunction (42). Peroxisome proliferator-activated receptor
gamma (PPARγ) agonists increase central insulin sensitivity,
mitochondrial biogenesis and prevent depressive-like behavior
in rats through facilitation of hippocampal neurogenesis
(43, 44).

Defective synaptic plasticity may lead to impairment of stress
adaptation, prompting the onset of depression (45). In the food
reward circuitry, insulin actions modulate synaptic plasticity in
a concentration, time and brain region -dependent manner [for
a review see (46)]. For instance, insulin promotes long-term
depression of glutamatergic afferent connections into the VTA
(47), but increases the activity of striatal cholinergic interneurons,
elevating dopamine release into the NAc (48). Downregulation
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of insulin receptors in the hippocampus of rats impaired proper
long-term potentiation response mediated by high frequency
stimulation and decreased glutamate receptors levels (19). This
approach also worsened learning behavior in a similar fashion to
what is observed in T2D rodent models (19). Altogether, data
indicate that brain insulin resistance can impair physiological
mechanisms of reward and learning that would ultimately elicit
depressive symptoms.

Hypothalamic-Pituitary-Adrenal (HPA) Axis
Chronic psychological stress is associated with neuropsychiatric
diseases, including depression and also with T2D (49–51). A
well-supported theory of depression and T2D pathophysiology
involves allostatic load on the hypothalamic-pituitary-adrenal
(HPA) axis, a key mediator of the stress response regulating
the secretion of glucocorticoids by the adrenal gland (52, 53).
In an allostatic model, constant input throughout the life
course of an individual will generate learning and adaptive
responses, but it may promote ablation of the HPA axis
and the emergence of diseases (14). Supporting this idea,
variation of cortisol level is observed in the blood of
depressive and patients with T2D compared to healthy control
participants (54, 55).

Physiologically, insulin elevates adrenocorticotropin and
corticosterone hormone levels, promoting HPA axis activation
in rats (56). Also, insulin receptor knockdown at the arcuate
nucleus of the hypothalamus led to reduced vasopressin response
to restraint stress, suggesting that brain insulin resistance could
cause disturbances in the HPA axis (14, 56). The hippocampus
is proposed to exert negative feedback regulation on the HPA
axis (57). Chronic unpredictable stress modulates glucocorticoid
and serotonin receptors in the hippocampus of rats, similar to
what was observed in the hippocampus of suicidal victims with
medical history of depression (58). Interestingly, diabetic rats
show decreased expression of hippocampal glucose-dependent
type 1 glucocorticoid receptor (59) and lowerHPA axis regulation
by insulin with decreased response of corticosteroid receptor
expression by the hippocampus (60). Collectively, results suggest
that brain insulin signaling dysfunction could impair the
HPA axis normal response to stress, possibly facilitating the
development of depression.

Tumor Necrosis Factor α (TNFα)
T2D patients have elevated circulating levels of pro-inflammatory
markers, in particular of the cytokine tumor necrosis factor α

(TNFα) (61). Clinical studies indicate that blood concentrations
of the pro-inflammatory cytokine tumor necrosis factor α

(TNFα) correlates with depression and impaired performance
on memory tests (62, 63). In a Bavarian cohort with history of
depression elevated blood levels of TNFα, two isoforms of the
soluble TNFα receptor and diabetes were commonly observed
(64). In mice, intracerebroventricular administration of TNFα
induced depressive-like behavior in the forced swim and tail
suspension tests, effects that were counteracted by the ablation of
the TNFα receptor 1 (TNFR1) (65). On the other hand, a recent
study demonstrated that TNFR1 was involved with anxiety-like
behavior analyzed by the open-field test, but not with more
related depression tests like the forced swim test (66).

TNFα was shown to contribute to depressive states by
modifying the serotonin system. For instance, this cytokine can
activate the enzyme indoleamine 2,3-dioxygenase degrading the
precursor molecule tryptophan and indirectly decreasing brain
serotonin levels (67, 68). This cytokine also promotes blood-brain
barrier (BBB) disruption in patients with T2D and in a mouse
model of depression (69, 70), which could ultimately lead to loss
of the BBB transport regulation of other inflammatory signals,
and exacerbate allostatic load to the HPA axis, leading to its
dysregulation (71–74).

TNFα promotes insulin resistance by the phosphorylation
of insulin receptor substrate 1 (IRS1) on serine residues, via
the activation of cellular stress-response kinases, including IκB
kinase β (IKKβ), c-Jun N-terminal kinase (JNK), and protein
kinase RNA-activated (PKR) (12, 75–78). Increased levels of
IRS1 phosphorylated at serine residues are observed in the
hippocampus and in the hypothalamus of AD mouse models.
In the AD context, activation of stress-response kinases was
shown to regulate brain insulin signaling impairment and
memory behavior tests (12, 13, 75, 78). TNFα further activates
the nuclear factor κ B (NFκB), a transcriptional factor that
regulates neuronal survival and the transcription rate of other
cytokines, that will convey on insulin signaling impairment (79,
80). The NAc of HFD mice have reduced insulin signaling and
increased expression of TNFα. Interestingly, both measures plus
depressive-like behavior were counteracted by the administration
of probiotics (81).

Depressive-like behavior was also reported in these models
and it was dependent of TNFα signaling and activation of
microglial Toll-like receptor 4 (TLR4) (82). Interestingly, TLR4
expression correlates with depression in humans (83, 84) and
followed anxiety and depressive-like behavior in mice fed a high-
cholesterol diet (85). Since this receptor can be activated by
saturated fatty acids (86),which are associated with higher risk
of developing T2D (87), a pathway involving TLR4, TNFα, and
insulin resistance could be a mechanistic link between T2D and
depression yet to be explored (Figure 1).

ANTIDEPRESSANT ASPECTS OF
ANTIDIABETIC DRUGS

Due to the heterogeneity of depression and the lack of
specific biomarkers, the management of this condition in the
primary care setting remains challenging (88, 89) and treatment
frequently involves trial and error experimentation. Different
types of antidepressants are applied in clinical practices, usually
directed to neurotransmitters reuptake and monoamine oxidase
inhibition. However, response rates to treatments remain low,
with more than 30% of patients with depressive disorders
failing to respond to four different antidepressant therapies
(90). It is not uncommon to observe cases of treatment-
resistant depression despite adequate dosing and duration of
antidepressants (91). More effective treatments are required, and
some overlapping mechanisms between T2D and depression,
suggested above, opens up new avenues for the identification
of novel pharmacological targets for the treatment of those
comorbid disorders. Regarding this topic, anti-depressant effects
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FIGURE 1 | Proposed mechanism of insulin resistance in the brain of diabetic patients prompting the onset of depression. Increased production of tumor necrosis

factor α (TNFα) would activate several stress kinases in the brain, including IκB kinase β (IKKβ), c-Jun N-terminal kinase (JNK), and protein kinase RNA-activated

(PKR). Activation of those stress pathways leads to the phosphorylation of insulin receptor substrate 1 (IRS1) at serine residues, impacting proper insulin signaling

response. Lack of proper central insulin signaling would affect hippocampal neurogenesis, synaptic plasticity, hypothalamic-pituitary-adrenal (HPA) axis response, and

the reward system.

of anti-diabetic and anti-inflammatory medications are currently
being explored in the field.

Insulin based medications can be considered first-line
treatments in T2D in cases of severe basal hyperglycemia
or elevated serum glycated hemoglobin. Clinical studies
administering intranasal insulin in healthy human subjects
have reported improvements in mood and memory (92),
as well as better HPA axis response to a social stress test,
assessed by decreased saliva and plasma cortisol levels (93).
But when evaluated in a cohort of depressive patients,
intranasal insulin had no improvements on the depressive
scores and neurocognition indexes applied compared
to the placebo group (94). Lack of effective response to
insulin amongst patients could be related to an intracellular
insulin resistance (Figure 1), suggesting that approaches that
bypass the first steps of the insulin signaling might show
better results.

Liraglutide, another anti-diabetic medication, is an incretin
analog that binds to the Glucagon-like peptide 1 receptor
and ameliorates insulin signaling. This injectable anti-diabetic
medication is capable of crossing the blood-brain barrier (95)
and shows positive effects on brain insulin signaling andmemory
performance on animal models of AD (78, 96, 97). When tested
in animal models of depression, liraglutide also had beneficial
effects (98, 99). Clinical trials using this drug as a treatment
for neurodegenerative diseases, like Alzheimer’s disease

are ongoing (ClinicalTrials.gov Identifiers: NCT01843075;
NCT01469351; NCT02140983). A 4-week pilot study adding
liraglutide as a treatment for patients with mood disorders
observed better scores on measures of cognitive function
compared to baseline (100). But more robust trials involving
liraglutide and a placebo group in depressive patients are
still warranted.

Metformin is a commonly used treatment for T2D with
mechanisms of action not fully understood, but it involves key
regulators of cellular energy status, including mitochondrial
proteins and the AMP kinase (AMPK) (101, 102). In a
cohort of patients with comorbid depression and T2D,
metformin was reported to ameliorate depressive behavior
when compared to baseline (103). Nonetheless, in a study
involving overweight participants with impaired glucose
tolerance, metformin had no effect on the Beck Depression
Inventory score when compared to the placebo group (104).
The effects of metformin in the antidepressant response
to sertraline in a group of obese people is currently being
evaluated in a phase 4 clinical trial (ClinicalTrials.gov
Identifier: NCT00834652).

PPARγ receptor agonists such as thiazolidinediones enhances
insulin sensitivity and are used as anti-diabetic drugs (105).
Rosiglitazone administration provides antidepressant-like effects
in mouse models of depression and T2D (31, 106). Pioglitazone
has been evaluated in several clinical trials involving depressed
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patients and analysis indicated that the drug was more effective
in patients with insulin resistance (107–110). Interestingly,
pioglitazone effectiveness was age-dependent, being more
efficacious in younger subjects (107).

Recent studies have also shown that immunosuppressive
agents can improve outcomes in depression. Etanercept and
infliximab neutralize TNFα and are currently being used in
the treatment of auto-immune disorders (111). In regard to
brain diseases, pilot studies administering TNFα inhibitors
via intrathecal and perispinal routes had beneficial effects
on cognitive measures in AD patients (112–114). But, when
delivery subcuteously, etanercept had no beneficial effects on
cognition (115), possibly due to restricted transport across
the blood-brain barrier (116). A randomized double-blind
placebo-controlled trial using an indwelling catheter to
deliver infliximab in depressed patients showed no significant
changes in Hamilton-Depression (HAM-D) score when
compared with the placebo group. However, in patients with
a higher inflammatory state, indicated by serum C-Reactive
protein (CRP) concentration higher than 5 mg/L, infliximab
improved HAM-D scores compared to placebo (117). Since
the treatment decreased circulating CRP levels within the
responder vs. the non-responder group, and the limitation of
infliximab to reach the brain, the beneficial effect of the drug
might have been driven by an overall decrease of peripheral
inflammatory markers.

Finally, changes in the gut microbiota are associated with
stress disorders (118). Probiotics can modulate the HPA axis
(119), neurotransmitters (120), inflammatory markers and, as
previously mentioned, insulin signaling in the brain (81).
Probiotics are emerging as promising treatments for depression,
showing positive results in different clinical studies [for a
systematic review see (121)].

CONCLUSION

The association between depression and diabetes is supported
by several evidences, but the mechanistic links between both
diseases are still emerging. The development of brain insulin
resistance is a possible candidate connecting both diseases, but
further studies focusing on this issue are warranted in the
field. Unraveling this connection is a matter of a great value
in order to pursue alternative treatments or to optimize anti-
depressants response.
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