AUTHOR=Kim Jinhee , Kang Eunjoo
TITLE=Internet Game Overuse Is Associated With an Alteration of Fronto-Striatal Functional Connectivity During Reward Feedback Processing
JOURNAL=Frontiers in Psychiatry
VOLUME=9
YEAR=2018
URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2018.00371
DOI=10.3389/fpsyt.2018.00371
ISSN=1664-0640
ABSTRACT=
Internet gaming disorder is associated with abnormal reward processing in the reward circuit, which is known to interact with other brain regions during feedback learning. Kim et al. (1) observed that individuals with internet game overuse (IGO) exhibit altered behavior and neural activity for non-monetary reward, but not for monetary reward. Here, we extend our analysis of IGO to the functional connectivity of the reward network. Functional MRI data were obtained during a stimulus-response association learning task from 18 young males with IGO and 20 age-matched controls, where either monetary or non-monetary rewards were given as positive feedback for a correct response. Group differences in task-dependent functional connectivity were examined for the ventromedial prefrontal cortex (vmPFC) and ventral striatum (VS), which are known for reward evaluation and hedonic response processing, respectively, using a generalized form of the psychophysiological interaction approach. For non-monetary reward processing, no differences in functional connectivity were found. In contrast, for monetary reward, connectivity of the vmPFC with the left caudate nucleus was weaker for the IGO group relative to controls, while vmPFC connectivity with the right nucleus accumbens (NAcc) was elevated. The strength of vmPFC-NAcc functional connectivity appeared to be behaviorally relevant, because individuals with stronger vmPFC-NAcc connectivity showed lower learning rates for monetary reward. In addition, the IGO group showed weaker ventral striatum functional connectivity with various brain regions, including the right ventrolateral prefrontal cortex, dorsal anterior cingulate regions, and left pallidum. Thus, for monetary reward, the IGO group exhibited stronger functional connectivity within the brain regions involved in motivational salience, whereas they showed reduced functional connectivity the widely distributed brain areas involved in learning or attention. These differences in functional connectivity of reward networks, along with related behavioral impairments of reward learning, suggest that internet gaming disorder is associated with the increased incentive salience or “wanting” of addiction disorders, and may serve as the neurobiological mechanisms underlying the impaired goal-directed behavior.