AUTHOR=Weng Yifei , Qi Rongfeng , Chen Feng , Ke Jun , Xu Qiang , Zhong Yuan , Chen Lida , Li Jianjun , Zhang Zhiqiang , Zhang Li , Lu Guangming TITLE=The Temporal Propagation of Intrinsic Brain Activity Associate With the Occurrence of PTSD JOURNAL=Frontiers in Psychiatry VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2018.00218 DOI=10.3389/fpsyt.2018.00218 ISSN=1664-0640 ABSTRACT=

The abnormal brain activity is a pivotal condition for the occurrence of posttraumatic stress disorder. However, the dynamic time features of intrinsic brain activities still remain unclearly in PTSD patients. Our study aims to perform the resting-state lag analysis (RS-LA) method to explore potential propagated patterns of intrinsic brain activities in PTSD patients. We recruited 27 drug-naive patients with PTSD, 33 trauma-exposed controls (TEC), and 30 demographically matched healthy controls (HC) in the final data statistics. Both RS-LA and conventional voxel-wise functional connectivity strength (FCS) methods were employed on the same dataset. Then, Spearman correlation analysis was conducted on time latency values of those abnormal brain regions with the clinical assessments. Compared with HC group, the time latency patterns of PTSD patients significantly shifted toward later in posterior cingulate cortex/precuneus, middle prefrontal cortex, right angular, and left pre- and post-central cortex. The TEC group tended to have similar time latency in right angular. Additionally, significant time latency in right STG was found in PTSD group relative to TEC group. Spearman correlation analysis revealed that the time latency value of mPFC negatively correlated to the PTSD checklist-civilian version scores (PCL_C) in PTSD group (r = −0.578, P < 0.05). Furthermore, group differences map of FCS exhibited parts of overlapping areas with that of RS-LA, however, less specificity in detecting PTSD patients. In conclusion, apparent alterations of time latency were observed in DMN and primary sensorimotor areas of PTSD patients. These findings provide us with new evidence to explain the neural pathophysiology contributing to PTSD.