AUTHOR=de Cates Angharad N. , Broome Matthew R. TITLE=Can We Use Neurocognition to Predict Repetition of Self-Harm, and Why Might This Be Clinically Useful? A Perspective JOURNAL=Frontiers in Psychiatry VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2016.00007 DOI=10.3389/fpsyt.2016.00007 ISSN=1664-0640 ABSTRACT=

Over 800,000 people die by suicide each year globally, with non-fatal self-harm 20 times more common. With each episode of self-harm, the risks of future self-harm and suicide increase, as well as personal and healthcare costs. Therefore, early delineation of those at high risk of future self-harm is important. Historically, research has focused on clinical and demographic factors, but risk assessments based on these have low sensitivity to predict repetition. Various neurocognitive factors have been associated with self-harming behavior, but it is less certain if we can use these factors clinically (i) as risk markers to predict future self-harm and (ii) to become therapeutic targets for interventions. Recent systematic reviews and meta-analyses of behavioral tasks and fMRI studies point to an emerging hypothesis for neurocognition in self-harm: an underactive pre-frontal cortex is unable to respond appropriately to non-emotional stimuli, or inhibit a hyperactive emotionally-/threat-driven limbic system. However, there is almost no imaging data examining repetition of self-harm. Extrapolating from the non-repetition data, there may be several potential neurocognitive targets for interventions to prevent repeat self-harm: cognitive training; pharmacological regimes to promote non-emotional neurocognition; or other techniques, such as repetitive transcranial magnetic stimulation. Hence, there is an urgent need for imaging studies examining repetition and to test specific hypotheses. Until we investigate the functional neurocognitive basis underlying repetition of self-harm in a systematic manner using second-generational imaging techniques, we will be unable to inform third-generational imaging and potential future clinical applications.