AUTHOR=Cogiamanian Filippo , Ardolino Gianluca , Vergari Maurizio , Ferrucci Roberta , Ciocca Matteo , Scelzo Emma , Barbieri Sergio , Priori Alberto TITLE=Transcutaneous Spinal Direct Current Stimulation JOURNAL=Frontiers in Psychiatry VOLUME=3 YEAR=2012 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2012.00063 DOI=10.3389/fpsyt.2012.00063 ISSN=1664-0640 ABSTRACT=

In the past 10 years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (“brain polarization” or transcranial direct current stimulation, tDCS). Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation. Aiming at developing a new, non-invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS) on somatosensory potentials (SEPs) evoked in healthy subjects by posterior tibial nerve (PTN) stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30) without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials (LEPs), tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic, and segmental motor systems. Here we review currently available experimental evidence that non-invasive spinal cord stimulation (SCS) influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive SCS in managing various pathologic conditions, including pain.