Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.

Sec. Plant Metabolism and Chemodiversity

Volume 16 - 2025 | doi: 10.3389/fpls.2025.1570758

This article is part of the Research Topic In-Depth Interpretation of Critical Genomic Information Related to the Biosynthesis of Key Specialized (Secondary) Metabolism in Medicinal Plants View all 7 articles

Comprehensive characterization of the WRKY gene family and their potential roles in regulation phenylphenalenone biosynthesis in Musella lasiocarpa

Provisionally accepted
Long Huang Long Huang Pirui Li Pirui Li Mei Tian Mei Tian Xu Feng Xu Feng Yu Chen Yu Chen Boya Feng Boya Feng Wanli Zhao Wanli Zhao *
  • Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China

The final, formatted version of the article will be published soon.

    Phenylphenalenone is an important phytoalexin for banana plant protection, yet the mechanisms governing its biosynthesis and regulation remain unclear in plant. WRKY transcription factors play essential roles in modulating plant growth, development, and the biosynthesis of secondary metabolites. In this study, we identified 158 WRKY genes (MlWRKYs) from a phenylphenalenonerich plant species Musella lasiocarpa. Phylogenetic analysis classified the MlWRKY genes into three distinct subfamilies: type I, type II, and type III. Chromosomal distribution revealed that the MlWRKY genes are clustered on nine respective chromosomes. Additionally, synteny analysis between M. lasiocarpa and Musa balbisiana uncovered highly conserved collinear regions. MIWRKY15, MIWRKY111, MIWRKY122 were identified as candidate genes for regulating PhPNs biosynthesis by integration of multi-omics approaches. We further investigated the expression pattern of MIWRKY15, MIWRKY111, MIWRKY122 genes, as well as their putative target genes MlOMT22 and MlOMT27, the known phenylphenalenone biosynthesis genes in various tissues, including leaves, stems, roots, and seeds. MlWRKY15 and MlOMT22 showed similar expression patterns across tissues. MlWRKY122 and MlOMT27 also displayed consistent expression patterns, suggesting MlWRKY122 may regulate MlOMT27. Additionally, MlWRKY111's expression was inversely correlated with MlOMT27, indicating a potential negative regulation of MlOMT27 by MlWRKY111. This study provides valuable insights into the WRKY family in M. lasiocarpa and will serve as a useful genetic resource for elucidating the regulatory mechanisms of phenylphenalenone biosynthesis.

    Keywords: WRKY, Musella lasiocarpa, regulation, Phenylphenalenone biosynthesis, O-methyl transferase

    Received: 04 Feb 2025; Accepted: 25 Feb 2025.

    Copyright: © 2025 Huang, Li, Tian, Feng, Chen, Feng and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Wanli Zhao, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more