
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Pei Wang,
Southwest University, China

REVIEWED BY

Enze Duan,
Jiangsu Academy of Agricultural Sciences
(JAAS), China
Eduardo Morales-Vargas,
Monterrey Institute of Technology and Higher
Education (ITESM), Mexico
Guoxiang Zhang,
Anhui Agricultural University, China

*CORRESPONDENCE

Yifan Cheng

cyf9405@hust.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 21 January 2025

ACCEPTED 20 February 2025
PUBLISHED 12 March 2025

CITATION

Cheng Z, Cheng Y, Miao B, Fang T and
Gong S (2025) Multi-objective RGB-D
fusion network for non-destructive
strawberry trait assessment.
Front. Plant Sci. 16:1564301.
doi: 10.3389/fpls.2025.1564301

COPYRIGHT

© 2025 Cheng, Cheng, Miao, Fang and Gong.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 12 March 2025

DOI 10.3389/fpls.2025.1564301
Multi-objective RGB-D fusion
network for non-destructive
strawberry trait assessment
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Tingting Fang1 and Shoufu Gong1

1Department of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, China,
2Department of Optical and Electronic Information, Huazhong University of Science and Technology,
Wuhan, China
Growing consumer demand for high-quality strawberries has highlighted the

need for accurate, efficient, and non-destructive methods to assess key

postharvest quality traits, such as weight, size uniformity, and quantity. This

study proposes a multi-objective learning algorithm that leverages RGB-D

multimodal information to estimate these quality metrics. The algorithm

develops a fusion expert network architecture that maximizes the use of

multimodal features while preserving the distinct details of each modality.

Additionally, a novel Heritable Loss function is implemented to reduce

redundancy and enhance model performance. Experimental results show that

the coefficient of determination (R²) values for weight, size uniformity and

number are 0.94, 0.90 and 0.95 respectively. Ablation studies demonstrate the

advantage of the architecture in multimodal, multi-task prediction accuracy.

Compared to single-modality models, non-fusion branch networks, and

attention-enhanced fusion models, our approach achieves enhanced

performance across multi-task learning scenarios, providing more precise data

for trait assessment and precision strawberry applications.
KEYWORDS

strawberry quality, fruit traits estimation, computer vision, deep learning, RGB-D
modality fusion
1 Introduction

Strawberries are highly valued for their delightful flavor, taste, and nutritional benefits

(Hernández-Martıńez et al., 2023; Liu et al., 2023; Gudowska et al., 2024). Over the past

decade, global strawberry production has surged by 28%, exceeding 8.8 million tons (2011-

2020, FAOSTAT). To remain competitive, producers must meet consumer demands for

strawberries with uniform size and appealing weight—attributes closely associated with

better flavor and nutritional value (Hopf et al., 2022; James et al., 2022; Miranda et al., 2023;

Simkova et al., 2023). Accurate strawberry counting is also essential, especially in post-

harvest evaluation, where precise assessments influence yield prediction and packaging

strategies (Behera et al., 2020; Birania et al., 2022). However, current evaluation methods
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still rely on traditional techniques such as visual inspection, manual

measurement, and weighing, which are not only destructive but also

less accurate, labor-intensive, and time-consuming (Abebe et al.,

2023; Jócsák et al., 2023; Azam et al., 2019). This underscores the

pressing need for a rapid and non-destructive method to estimate

strawberry weight, size uniformity, and quantity, enhancing both

efficiency and accuracy.

The rise of computer vision technology has brought about

revolutionary changes in the field of agricultural non-destructive

testing (Mahanti et al., 2022; Sivaranjani et al., 2022; Ferrer-Ferrer

et al., 2023). The adoption of numerous image processing

algorithms has made it possible to rapidly and reliably assess crop

traits. For instance, these methods have demonstrated significant

effectiveness in evaluating citrus (Srivastava et al., 2020; Srivastava

and Sadistap, 2022), mango (Pise and Upadhye, 2018; Mon and

ZarAung, 2020), Grape (Underhill et al., 2020; Al-Saif et al., 2022;

Zha et al., 2023), and apple (Sofu et al., 2016; Grabska et al., 2023)

For strawberries, significant research has been conducted,

particularly focused on evaluating external traits, such as fruit

dimensions (Ishikawa et al., 2018; Nagamatsu et al., 2021;

Zingaretti et al., 2021) and morphological traits (Feldmann et al.,

2020), which are commonly used for grading or genetic pattern

identification through machine learning algorithms (Oo and Aung,

2018; Rey-Serra et al., 2021). Basak et al. (2022) and Oliveira et al.

(2023) employed linear regression, nonlinear regression, and

support vector machine algorithms to construct a correlation

model between image pixel count and strawberry weight,

achieving a prediction accuracy of over 85%. Despite these

promising results, the absence of 3D depth information in RGB

images remains a concern. Because images capture only two

dimensions while the real world exists in three-dimensional

space, relying solely on 2D-pixel data can introduce inaccuracies

in the size-weight relationship.

To address these limitations, expanding information dimensions

has proven effective. With advances in image acquisition technologies,

non-destructive testing (NDT) methods that integrate multimodal data

(such as depth images, infrared images, and multispectral images) have

become increasingly widespread (Xiang and Wang, 2023). Depth

images, in particular, provide unique advantages by providing not

only two-dimensional data but also depth information for each pixel.

This additional spatial dimension is crucial for characterizing fruit

physical properties, such as size (Lopes et al., 2022). Since the

introduction of the low-cost Microsoft Kinect sensor in 2010, the

prevalence of RGB-D sensors in computer vision has increased

significantly (Fu et al., 2020).

With depth images as supplementary information, various

multimodal information extraction and fusion architectures have

been developed to optimize the use of RGB-D data. Building on this,

the key challenge has become how to effectively utilize these

multimodal data. Current RGB-D architectures generally fall into

two categories. The first type, as demonstrated by Rong et al. (2023),

employs a data-layer fusion strategy that treats multimodal data as

indistinguishable multichannel inputs. This approach risks modal

interference, potentially introducing noise or losing critical

information when combining features, which can degrade model
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performance. The second approach, commonly referred to as a

multi-branch architecture, utilizes at least two independent

branches to separately learn features from each modality. For

instance, Lin et al. (2022) developed a branched architecture

regression network using RGB-D, allowing for the extraction of

RGB, depth, and geometric features. Similarly, Zhang et al. (2022)

developed a multi-stage branched self-correcting network for

lettuce trait estimation, which uses RGB images for LW, DW, D,

and LA estimation, and pseudocolor images derived from depth

data for H estimation. While the multi-branch architecture

mitigates the issue of modal interference by independently

learning features from each modality, it introduces its challenges.

A primary drawback is that, although it reduces the risk of

information loss, it can lead to redundancy by duplicating similar

features across branches. This redundancy may increase the model’s

complexity and computational cost without proportionately

improving performance. Furthermore, because the features are

learned separately, this architecture often struggles to generate

new insights or representations that are independent of the

original modalities. In contrast to fusion-based methods, multi-

branch architectures can struggle to fully exploit the

complementary nature of multimodal data. A key reason why

traditional methods fail to effectively handle modality interference

is their inability to properly disentangle useful modality-specific

information from cross-modal redundancy and noise. Early fusion

methods, which directly concatenate RGB and depth features at the

input level, often mix modality-specific characteristics, leading to

feature entanglement and degraded discrimination power. keeping

modalities separate until the decision stage inherently limits the

model’s ability to capture rich inter-modal dependencies. As a

result, these traditional approaches often face difficulties in fully

leveraging the complementary nature of multimodal information

while minimizing unwanted interference, which is crucial for

effective RGB-D data fusion.

To overcome challenges such as modal interference and

feature redundancy, this study designs a novel multimodal

multi-task learning network. The core of the network leverages

expert networks to independently extract features from each

modality, preventing interference between modalities and

allowing each expert network to focus on in-depth feature

extraction specific to its modality. Additionally, to enhance the

model’s representation capability, particularly in handling fused

RGB and depth features, this paper introduces a new heritable loss

function. This loss function adjusts the similarity between RGB

features, depth features, and fused features, reducing linear

correlations while improving model expressiveness and accuracy.

Unlike traditional orthogonal loss, heritable loss retains intrinsic

modality correlations, allowing the fused features to inherit both

RGB and depth advantages while generating new, distinct

representations. This approach effectively avoids the information

loss caused by excessive decorrelation in traditional methods,

improving adaptability in multimodal data fusion tasks.

Extensive experiments on an RGB-D strawberry dataset

demonstrate that this method surpasses existing approaches in

accuracy, efficiency, and scalability.
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2 Materials and methods

2.1 Dataset and preprocessing

2.1.1 Sample collection of strawberries
The strawberry samples were collected from the Strawberry

Demonstration Garden located in Shisanliqiao Township, Xinyang

City (Figure 1A). The garden employs a planting configuration

where strawberry seedlings are spaced 15 cm apart, with a 35 cm

pathway between rows, and extends 24 meters in length. The farm

cultivates high-quality red strawberry varieties favored by local

consumers. During the harvest season, from November to

March, strawberries ripen in batches. Ripe strawberries awaiting

packaging were specifically selected for the study. Each strawberry

was carefully picked to maintain its integrity. The collected

strawberries were then randomly divided into batches, each

varying in number, shape, and size (Figure 1B). In addition to the

randomly collected strawberries, a set of premium strawberries were

purchased (Figure 1C). These strawberries, characterized by their

uniform size and shape, were packaged into boxes, ensuring

consistency in appearance and size, and representing the high-

end market variety preferred by consumers. A total of 3740

strawberry samples were collected. The dataset was randomly

divided into a training set (80%) and a test set (20%). To enhance

model robustness, conventional data augmentation was applied to

the training set, including random horizontal flipping and

brightness adjustment.

The data collection process takes place at the Intelligent Equipment

Laboratory of Xinyang Agriculture and Forestry College. The D455

sensor was used to photograph various batches of strawberries

(Figure 1D). The Intel RealSense D455 is a depth camera introduced

by Microsoft based on stereoscopic infrared sensing. Unlike traditional

RGB cameras, the D455 captures detailed depth information, with a

measurement range of 0.4 m to 6 m. The depth accuracy varies with

distance, with an error of approximately ±2 mm at 1 m and ±6 mm at

4 m, making it suitable for long-distance applications in industrial

settings. Using the D455 sensor, both RGB (Figure 1E) and depth (D)

modal images (Figure 1F) were captured. The RGB modal image

provides standard color-based visual data, while the depthmodal image

offers precise distance measurements from the sensor to each

strawberry. In this study, the sensor was positioned at a height of 0.6

meters of 0°to accommodate the small size of the strawberry fruits.

Since the D455 captures RGB images at a resolution of 1280×720 and

depth images at 640×480, bilinear interpolation was applied to

upsample depth images to match the resolution of RGB images

before feature extraction. Additionally, Gaussian filtering was

employed to reduce potential noise introduced by interpolation,

further improving the quality of depth data integration. Detailed

specifications and additional information about the D455 can be

found on the manufacturer’s website: https://www.intelrealsense.com/

depth-camera-d455/.

2.1.2 Measurement of strawberry traits
Simultaneously with image capture, the number of strawberries

in each batch, their respective fresh weights, and their size
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uniformity were recorded. Each batch was collected by trained

personnel under consistent environmental conditions, including

controlled light, temperature, and humidity. The number of

strawberries was manually counted, and their fresh weights were

measured using a digital balance (model: LQC-50001,

manufacturer: Jiangsu LENQI Company, China). Before each

measurement, the balance was calibrated to zero, and then each

strawberry was individually placed on the weighing plate. The fresh

weight of each strawberry was recorded in grams, following the

operating instructions and precautions outlined in the balance’s

manual. Each strawberry was weighed multiple times, and the

average was used as the final fresh weight.

Size uniformity was assessed by calculating the coefficient of

variation of the strawberry aspect ratio. The aspect ratio, which

describes the shape of a strawberry, reflects its oval form. By

calculating the coefficient of variation of the strawberries’ length-

to-width ratios, we quantified the degree of size variation within

each batch. The coefficient of variation is the standard deviation

divided by the mean, expressed as a percentage. This metric

accounts for both the range of size variation and the absolute size

values, providing a more comprehensive assessment of size

uniformity than other metrics like standard deviation or

percentage error. The coefficient of variation (CV) is calculated

using Equation 1:

CV =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − �x2)
n

q
�x= � 100% (1)

Where n is the number of strawberries in the batch; xi
represents the size of the i th strawberry; �x represents the mean

size of the strawberries in the batch.
2.2 Proposed method

This paper presents a model, called the Fusion Expert Network,

designed to estimate the strawberries’ traits. As shown in Figure 2,

the network first extracts shallow features from RGB and depth

images using deep separable convolutional layers. Once feature

extraction is complete, these features are combined and an attention

fusion module generates masks to highlight areas of interest in the

image, such as regions containing strawberries. The features are

then separated into masked RGB features, masked RGB-D fusion

features, and masked depth features. These three feature sets are

assigned to independent branches, each processed by a dedicated

expert network, reducing interference between modalities. In the

final stage, a “heritable loss” function is introduced to adjust the

similarity between RGB, depth, and fused features to reduce linear

correlations and improve the model’s expressiveness and accuracy.

2.2.1 Single-modal feature extraction module
The single-modal feature extraction module is the first stage of

our proposed framework, designed to independently extract

informative features from RGB and depth images. This module

utilizes two identical depthwise separable convolutional layers to

process the RGB and depth images separately, ensuring that there
frontiersin.org
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are no shared parameters between the modalities. This approach

allows for the extraction of low-level features that capture essential

visual cues specific to each modality. Depthwise separable

convolutions are employed to simplify computations at this stage,

as the focus is on extracting shallow features rather than deeper

ones. A 3x3 kernel is used to emphasize local feature extraction,

while a stride of 1 preserves the spatial resolution of the input

images, ensuring the fidelity of the extracted features.

After extracting shallow features, the RGB and depth image

features are concatenated to form the combined feature FRGB-D, as

shown in Figure 3. It can be represented as Equation 2:

FRGB−D = ½FRGB, FD� (2)

The resulting feature FRGB-D is then input into the attention

fusion module, where a spatial attention mechanism is employed to

enhance the model’s focus on target areas. Specifically, FRGB-D
undergoes max pooling (W MAX) and average pooling (W AVG)

along the channel dimension. These pooled feature maps are
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concatenated, followed by a dimensionality reduction step using a

7×7 convolutional layer to reduce the number of channels to one.

The Sigmoid activation function is then applied to generate spatial

weight coefficients, calculated as Equation 3:

WS = sf 7�7½AvgPool(FRGB−D);MaxPool(FRGB−D)�

= sf 7�7½WAVG;WMAX � (3)

where s denotes the sigmoid function and f 7×7 represents the

convolution layer with a kernel size of 7 × 7.

These coefficients are then used in an element-wise

multiplication with the input feature map, resulting in the final

attention-weighted feature, denoted as F’RGB-D. F’RGB-D is

subsequently split along the channels to extract branch-specific

features corresponding to different modalities. The split features are

classified into three categories: masked RGB features, masked

RGB-D fusion features, and masked Depth features. This

separation allows the attention mechanism to guide the model’s
FIGURE 2

Overview of the proposed network.
FIGURE 1

Strawberry cultivation, samples, and multimodal imaging. (A) strawberry demonstration garden greenhouse with rows of strawberry plants;
(B) assorted strawberries of varying sizes collected in bulk; (C) uniform-sized premium strawberries neatly packaged in a box; (D) front view of the
Intel RealSense D455 sensor; (E) RGB modal image of strawberries; (F) depth modal image of strawberries.
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focus toward relevant regions within each modality, enabling the

subsequent specialized expert networks to process these features

more efficiently.

2.2.2 Three expert networks
Since different strawberry traits (weight, size uniformity, and

number) may rely on distinct image features, we have designed a

network comprising three experts: ExpertRGB, ExpertRGB-D, and

ExpertD. Each expert is dedicated to processing a specific

modality of information. The expert networks are based on the

ResNet18 architecture, a widely used and powerful convolutional

neural network known for its effectiveness in image processing tasks

(He et al., 2015). Compared to deeper architectures, ResNet-18

provides sufficient representational power while maintaining lower

computational cost, making it well-suited for our multimodal

framework. Additionally, its residual connections help mitigate

gradient vanishing issues, ensuring stable training even with

limited dataset size. These characteristics make ResNet-18 an

effective choice for extracting modality-specific features in our

expert network design. The detailed structure is outlined in Table 1.
Frontiers in Plant Science 05
As illustrated in Figure 4, two different methods of feature fusion

are compared to emphasize the necessity of our approach. The first

method, shown on the left, represents a simple fusion of features from

RGB and depth images processed through a ‘general network’. This

basic method struggles to capture complex interactions between

modalities, limiting its ability to generate meaningful new

information. In contrast, the expert network approach on the right

assigns features from different modalities to specialized networks. By

processing these features independently, our method reduces

information interference between modalities and better preserves the

original data. This allows the expert networks to use complementary

information more effectively, producing novel features.

2.2.3 Heritable loss
To fully leverage the advantages of multimodal data fusion, it is

crucial to extract new and unique fused features that differ from the

original RGB and depth image features. Traditional multi-source

fusion models often use orthogonal loss (Ranasinghe et al., 2021) to

minimize correlations between feature sets, thereby enforcing

feature independence (as shown in Figure 5). While this approach
FIGURE 3

The structure of the single-modal feature extraction module.
TABLE 1 The single-expert networks architecture.

Layer Kernel Size Stride Padding Output Size Output Channels

Conv1 7x7 2 3 112x112 64

Max Pooling 3x3 2 1 56x56 64

Conv2 3x3 1 1 56x56 64

Conv3 3x3 2 1 28x28 128

Conv4 3x3 2 1 14x14 256

Conv5 3x3 2 1 7x7 512
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helps generate novel fused information and reduces linear

correlations to avoid redundancy, it imposes a strong “hard

constraint” on the newly generated features. This excessive

restriction can hinder the final model’s convergence, as the newly

generated features and the original modality features may not

always adhere to strict orthogonality.

To address this issue, we propose a new loss function, termed

“heritable loss.” This function introduces an adjustable threshold

(t) rather than simply minimizing the loss. This design is motivated

by three key factors: (1) preventing overfitting by avoiding

unnecessary optimization of low-impact features, thereby

improving the model’s generalization; (2) enhancing feature

selection by ensuring that only the most informative fused

features contribute to the final prediction; and (3) improving

computational efficiency by reducing redundant gradient updates.

These advantages collectively ensure that the heritable loss flexible

control over the similarity between RGB features, depth features,

and fused features. This “flexible constraint” not only applies

orthogonal constraints but also provides enough freedom for

feature generation, thereby avoiding the negative effects of overly

strict constraints.

The term “Heritable Loss” is used to convey the idea that certain

characteristics of the fused features (the “child”) are inherently
Frontiers in Plant Science 06
inherited from both the RGB (the “father”) and Depth (the

“mother”) features. The child features operate with some degree

of freedom within the constrained space created by the

orthogonalization of the parent features. Within this space, the

child features naturally find an optimal balance, compensating for

any excessive orthogonalization while maintaining their

uniqueness. Figure 5 illustrates the comparison between the

heritable loss and the traditional orthogonal loss. The left panel

depicts the traditional orthogonalization mechanism, where the

relationship between the “father,” “mother,” and “child” features is

constrained into a triangular arrangement, enforcing independence

and orthogonality among the features. In contrast, the right panel

shows the relationship under our proposed heritable loss. In this

case, the “child” feature is positioned on two arcs, oriented towards

the “father” (RGB) and “mother” (Depth) features. The relationship

between them is controlled by the following mechanisms:

The heritable loss function is composed of two primary

components: Lparentto measure the similarity between the RGB

and Depth features, and Lchild to regulate the disparity between

the fused features (RGB + Depth) and both the RGB and Depth

features. It can be formulated as Equation 4:

Lheritable = Lparent + Lchilad (4)
FIGURE 5

Learning with heritable loss.
FIGURE 4

Illustration of multimodal information processing.
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Where:

Lparent: This is a cosine similarity-based loss that quantifies the

similarity between the RGB features (father) and Depth features

(mother). It can be formulated as Equation 5:

Lparent = Cos_sim(father,mother) (5)

Lchild: This component introduces a threshold t to control the

disparity between the fused features and the RGB and Depth
Frontiers in Plant Science 07
features. It can be formulated as Equations 6–8:

Lchild = ReLU( Lfatherchild − Lmotherchild

�� �� − t ) (6)

Lfather_child = Cos_sim(father, child) (7)

Lmother_child = Cos_sim(mother, child) (8)
FIGURE 6

Estimation results of strawberry traits: weight, size uniformity, and number.
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Here, ReLU is applied to ensure that the loss remains non-

negative, preventing negative penalties during training. Lfather-child
represents the cosine similarity between the fused features (child)

and the RGB features (father), and Lmother-child represents the cosine

similarity between the fused features and the Depth features

(mother). t is a hyperparameter that controls the threshold for

similarity differences, allowing for flexibility in determining how

much similarity between features is acceptable.

When ∣Lfather-child−Lmother-child∣>t, Lchild equals this difference

minus the threshold, resulting in a positive loss value. This positive

loss encourages the model to reduce the difference in similarity

between the fused features and the RGB and Depth features.

Conversely, when ∣Lfather-child−Lmother-child∣≤t, the value of Lchild
becomes zero, meaning the model is not penalized and the

constraint does not affect the training process in this case.

By incorporating the concept of the heritable loss term, the

total loss function can be designed to effectively guide the training

process. The heritable loss (Lheritable)is combined with the task-

specific loss (Ltask) to create the total loss function (Ltotal). This is

achieved by introducing a weight l to balance the influence of

each component. The total loss function is computed as Equations

9, 10:

Ltotal = Ltask + lLheritable (9)

Ltask =
1
No

N
i=1((yAi − ŷ Ai)

2 + (yBi − ŷ Bi) + (yCi − ŷ Ci)
2) (10)

Where l is a weight hyperparameter used to adjust the

importance between heritable loss and task loss. N is the total

number of samples in your dataset; yA, yB, yC are the ground truth

values for sample s for sample i for TaskA, TaskB, and TaskC,

respectively;. ŷ A., ŷ B, ŷ C are the predicted values for sample i for

TaskA, TaskB, and TaskC, respectively.
3 Experiments and results

3.1 Experimental setup

The experiment was conducted on a Linux workstation running

Ubuntu 16.04 LTS/Linux system, equipped with an NVIDIA

RTX3060Ti running with CUDA 12.4 acceleration. The software

environment included Python 3.7 and PyTorch 1.8.0, coupled with

CUDNN 8.0. The Adam optimizer was used with a 0.001 learning

rate, 0.0001 weight decay, 0.9 momentum, batch size of 2, and

200 epochs.

We evaluated the model’s performance across multiple

dimensions, focusing particularly on its predictive accuracy in

estimating strawberry weight, size uniformity, and number.

Additionally, ablation experiments were conducted to isolate and

assess the contribution of each component to the model’s overall

effectiveness. To quantify these evaluations, several regression

metrics were employed, including the Normalized Root Mean

Square Error (NRMSE), Normalized Root Mean Square Error of

Prediction (NRMSEP), and the coefficient of determination (R²).
Frontiers in Plant Science 08
These metrics were calculated using Equations 11–15:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(y
(train)
i − ŷ (train)

i )2
n=

r
(11)

NRMSE =
RMSE

�y(train)
(12)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

i=1(y
(test)
i − ŷ (test)

i )2
m=

r
(13)

NRMSE =
RMSE

�y(test)
(14)

R2 = 1 −o
m
i=1(y

(test)
i − ŷ (test)

i )2

om
i=1(y

(test)
i − �y(test)i )2

(15)

where n is the number of samples in the training set, yi
(train) and

ŷ (train)
i denote the actual and predicted values for each sample from

the training set. m is the number of samples in the test set, yi
(test)

and ŷ (test)
i ) denote actual and predicted values from the test set.

�y(train)i and. �y(test)i is the mean of actual values in the training test and

test set respectively.
3.2 Estimation of strawberry traits

To evaluate the performance of the proposed model, a

validation set of 50 images was used to test the trained model.

Figure 6 illustrates the relationship between measured and

estimated values, where the horizontal axis represents the

measured values and the vertical axis represents the model

estimates. The magenta curve represents the relationship derived

from least squares fitting. The lower right corner of each plot shows

the evaluation metrics (R² and NRMSE) and the equation for the

fitted curve. The R² value (ranging from 0 to 1) measures model

quality, with higher values indicating a stronger linear correlation

between estimated and measured values, reflecting better model

performance. Conversely, a lower NRMSE value indicates smaller

prediction errors relative to the data range, indicating higher

prediction accuracy. The closeness of the fitted curve to the 45-

degree dashed line provides an intuitive measure of how well the

predictions match the actual measurements. The closer the curve,

the better the agreement between predictions and actuals.

As shown in Figure 6, the R² values for weight, size uniformity,

and number of strawberries are 0.94, 0.90, and 0.95, respectively.

These high R² values demonstrate the model’s robust predictive

capabilities across all three traits. Correspondingly, the NRMSE

values are 0.14 for weight, 0.33 for size uniformity, and 0.19 for

number. The lower NRMSE values for weight and number,

compared to size uniformity, suggest that the model provides

more precise predictions for these traits. In summary, the results

quantitatively demonstrate that the proposed model achieves high

prediction accuracy, particularly in estimating weight and number,

with lower relative prediction errors.
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3.3 Ablation experiment

The ablation strategy study of this experiment includes two

parts: single component ablation and combination ablation

experiments. The single component ablation focuses on removing

key components of the model individually, such as the attention

mechanism, expert network, and loss function, to evaluate the

independent contribution of each component to the model

performance. The combination ablation further examines the

complementarity and overall impact on the model when two or

more components are removed together. In particular, since the

heritable loss relies on the presence of multiple experts, the

evaluation of its effectiveness in the ablation experiments must

account for the integrity of the expert network. The detailed

experimental design and the obtained results are shown in

Table 2, where A represents the attention mechanism, E

represents the expert network, and Lh represents the heritable

loss function.

The A mechanism (attention mechanism) performs particularly

well on counting tasks. Compared with the model with the E

mechanism (expert network) added alone, the NRMSE, NRMSEP,

and R² indicators of the model added with the A mechanism on the

counting task have been significantly improved. Additionally, the

performance of the model with the A mechanism and the model

with both A and E mechanisms has been significantly improved

compared with the baseline network. Furthermore, the model with

the A and E mechanisms performs better than the model with the E

and Lh mechanisms. The E mechanism has a significant

improvement on all tasks. Compared with the baseline network,

after adding the E mechanism, the NRMSE and NRMSEP of each

task decreased, and the R² increased. For example, in the size

uniformity task, the NRMSE decreased from 0.42 to 0.38, the

NRMSEP decreased from 0.46 to 0.42, and the R² increased from

0.78 to 0.83. The Lh mechanism (heritable loss function) further

optimizes the effect of the E mechanism and improves the feature

extraction ability and redundancy removal of the model. Especially

in the weight task, the NRMSE and NRMSEP are significantly

reduced, and the R² is increased to 0.94.

The A+E+Lh combination demonstrates the best performance

across all tasks. In weight estimation, this combination reduces

NRMSE to 0.14, NRMSEP to 0.15, and increases R² to 0.94
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outperforming other models significantly. These findings indicate

that the combination of the A mechanism, E mechanism, and Lh
mechanism more effectively extracts and fuses multimodal key

features, thereby improving prediction accuracy. Although the

improvement in size uniformity evaluation is modest, the precise

feature separation achieved by this combination enhances model

performance in more complex tasks. In the number detection task,

the A+E+ Lh combination achieves an NRMSE of 0.19, an NRMSEP

of 0.21, and an R² of 0.95. This demonstrates the synergistic effect of

the Amechanism and Lh mechanism in guiding the E mechanism to

manage multi-object scenes, enhancing both the robustness and

accuracy of the predictions.

In conclusion, the A+E+ Lh combination highlights the

high potential of the model in multi-task learning. Among

the components, the expert network plays a critical role in

enhancing performance across all tasks, leveraging deep learning

to extract multi-level features. The attention mechanism primarily

improves the model’s focus on local features, especially in

weight and number estimation tasks. Finally, heritable loss

effectively reduces feature redundancy and enhances the model’s

generalization capacity.
3.4 Expert contribution and feature
learning analysis

To further investigate and validate the effectiveness of expert

networks in assessing the traits of strawberries, this paper compares

and analyzes the weight contributions of three expert networks

across different tasks, as illustrated in Figure 7. The results reveal

distinct differences in the contributions of each expert network to

various outputs. Specifically, in strawberry weight estimation, the

ExpertD network shows the greatest contribution, with a weight of

0.0144. In contrast, the ExpertRGB-D network demonstrates the

highest contribution to size uniformity estimation, with a weight

of 0.0137. For number estimation, the ExpertRGB network

contributes most significantly, with a weight of 0.0136. The

differences in their contributions suggest that the distinct modal

features captured by each Expert have varying levels of

expressiveness. For instance, in the weight estimation task, the

superior performance of the ExpertD network can be attributed to
TABLE 2 Model ablation experiment.

A E Lh
Weight/g Size uniformity Number

NRMSE NRMSEP R2 NRMSE NRMSEP R2 NRMSE NRMSEP R2

0.24 0.3 0.84 0.42 0.46 0.78 0.28 0.3 0.86

√ 0.24 0.29 0.85 0.4 0.45 0.8 0.24 0.27 0.91

√ 0.2 0.22 0.89 0.38 0.42 0.83 0.26 0.32 0.88

√ √ 0.18 0.22 0.88 0.37 0.4 0.85 0.21 0.24 0.92

√ √ 0.16 0.2 0.91 0.34 0.37 0.88 0.24 0.29 0.88

√ √ √ 0.14 0.15 0.94 0.33 0.36 0.9 0.19 0.21 0.95
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the fact that weight is closely related to the volume and shape of the

strawberry, while depth image modality can effectively capture these

geometric and 3D structural properties. In contrast, in number

estimation, the higher contribution of the ExpertRGB network may

stem from its exploitation of color and texture features, which are

most prominent in RGB images and are crucial for counting and

distinguishing individual strawberries. For size uniformity

estimation, which requires an integrated assessment of both color

and geometric features, the ExpertRGB-D network provides an

effective fusion of RGB and depth information.

To assess the effectiveness of the heritable loss term, we

applied principal component analysis (PCA) to reduce feature

dimensionality, subsequently visualizing the outcomes in a PCA

feature clustering diagram, as depicted in Figure 8. In this diagram,

the features derived from RGB images, RGB-D images, and depth

images are represented by purple, orange, and red dots, respectively,

and are denoted as FRGB-D, FRGB, and FD. The figure clearly illustrates

that features corresponding to the same modality exhibit a pronounced

clustering in the feature space. This clustering indicates high internal

consistency and stability in the model’s feature extraction process,

demonstrating the effectiveness of the feature extraction network.
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Notably, the clear separation of features from different modalities in

the feature space indicates that the heritable loss has significantly

reduced their linear correlations. This reduction enhances feature

orthogonality and independence in high-dimensional space,
FIGURE 8

Clustered scatter plot of heritable loss impact on features.
FIGURE 7

Histogram of expert contribution weights.
TABLE 3 Comparison results in terms of R².

Model Type
R2

Weight/g Size uniformity Number

Single-modal
RGB 0.75 0.72 0.83

depth 0.80 0.74 0.76

non-fusion branch network 0.80 0.76 0.85

Attention-enhanced fusion model 0.84 0.82 0.89

Mixture of Experts (MoE) Model 0.86 0.80 0.88

Proposed method 0.94 0.90 0.95
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effectively minimizing information overlap and redundancy, and

improving the model’s ability to leverage multimodal information.
3.5 Comparative experiment

Given that our proposed method targets multimodal data

fusion and multi-task learning scenarios, we conducted a

comprehensive comparison with several alternative models.

These comparison models were task-adapted to predict

strawberry weight, size uniformity, and number. The models

included in this comparison are: Single-Modal Models (He

et al., 2015): This method utilizes only one type of input, either

RGB images or depth images, without integrating data from

multiple modalities. Branch Network Models Without Feature

Fusion (Lin et al., 2022): This approach employs a multi-branch

structure to handle different modalities independently. However,

instead of sophisticated feature fusion, it simply concatenates the

outputs of each branch. Attention-enhanced fusion model (Sun

et al., 2022): Instead of processing the native RGB and depth (D)

information directly, this method applies an attention mechanism

to the RGB data before fusing it with the depth information.

Mixture of Experts (MoE) Model (Ma et al., 2018): this model

utilizes multiple expert networks, each specialized for a specific

task or data pattern. The expert weights are dynamically adjusted

by a gating network.

As shown in Table 3, The RGB model performs poorly in

predicting size uniformity prediction due to its inability to capture

the three-dimensional structural information of strawberries.

Although the depth model performs well in other areas, it

performs relatively poorly in number prediction because it lacks

the necessary texture information. While the branch network can

handle each modality independently, it doesn’t do as well in

multimodal collaborative tasks because of the lack of interaction

between features, resulting in less accurate predictions compared

to the fusion model. The fusion model, which integrates features

through an attention mechanism, outperforms the branch network

in task prediction, particularly in tasks where multimodal

collaboration is crucial, such as size uniformity and weight. The

Mixture of Experts (MoE) model excels at handling the interaction

and fusion of multimodal information. However, due to the

dynamic selection instability of the gating mechanism, its

performance in simple regression tasks slightly degrades, resulting

in slightly lower accuracy in size uniformity and number prediction

compared to the multimodal fusion model. In the early design

stages of the proposed model, we observed that the gating

mechanism is better suited for complex scenarios involving both

regression and classification tasks than for single regression tasks. In

contrast, our proposed method outperforms other models in all

tasks, achieving higher R² values in strawberry weight, size

uniformity, and number prediction.
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4 Conclusion

The goal of this study was to efficiently and accurately estimate

weight, size uniformity, and number of strawberries. We proposed a

multimodal multitask learning fusion expert network model. This

method was able to utilize information from different modalities

while preserving the unique information of each original modality

through a multi-branch and single-path fusion strategy. Specifically,

the model first extracts shallow features from RGB and depth

images using depthwise separable convolutional layers.

These features are processed separately by three specialized expert

networks after attention-based weighting. Additionally, an

innovative “ heritable loss” function was incorporated to optimize

feature similarity, reduce linear correlation, and enhance the

model’s multi-task learning capability.

The experimental results demonstrate that the model achieves

R² values of 0.94, 0.90, and 0.95 for weight, size uniformity, and

quantity predictions, respectively, with NRMSE values of 0.14, 0.33,

and 0.19, and NRMSEP values of 0.15, 0.36, and 0.21. Ablation

studies reveal that the combination of attention mechanisms, expert

networks, and regularization loss significantly enhances prediction

accuracy, particularly for weight and quantity estimation. Analysis

of the expert networks indicates their different contributions to

capturing modality-specific features, with ExpertD excelling

in weight estimation and ExpertRGB-D standing out in size

uniformity prediction. Compared to other models, the proposed

model excels across all metrics, highlighting its potential

for non-destructive quality assessment of strawberries. Future

work will focus on optimizing the model architecture and

applying it to larger datasets to improve its applicability in real

production environments.
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