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Verbena officinalis is an important medicinal plant widely used in traditional

Chinese medicine for the treatment of rheumatism, insomnia, and liver and

gallbladder diseases. Its resources primarily rely on wild populations, which are

insufficient to meet the increasing market demand. Furthermore, climate change

exacerbates the uncertainty of its distribution range. This study employs an

optimized MaxEnt model to predict the potential distribution of V. officinalis

under current and future climate scenarios in China. Based on 445 effective

occurrence records and 90 environmental variables (covering climatic, soil, and

topographic factors), the study selected key variables influencing the distribution

through correlation analysis and variable contribution rates, and optimized

model parameters to improve prediction accuracy (AUC = 0.934). Results

showed that, under current climate conditions, the total suitable habitat area

of V. officinalis is 2.06 × 106 km2, accounting for 21.39% of China’s land area,

mainly distributed in central, eastern, and southern China. The minimum

temperature of the coldest month (bio_6, contribution rate 72.8%) was

identified as the key factor influencing distribution, while November

precipitation (prec_11) and annual temperature range (bio_7) also played

important roles. Under future climate change scenarios (SSP1-2.6 and SSP5-

8.5), the total suitable habitat area shows an overall increasing trend, reaching a

maximum in the 2070s under the high-emission scenario (an increase of 3.6 ×

105 km2 compared to the current distribution). Expansion was primarily observed

in northern high-latitude regions. The geometric centroid of suitable areas

demonstrated a significant northward shift, reflecting the adaptive expansion

potential of V. officinalis in response to warming climates. This study highlights

the significant impact of temperature and precipitation on the distribution of V.

officinalis and provides scientific evidence for its conservation, cultivation

planning, and sustainable development in the context of climate change.
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1 Introduction

Global climate change has emerged as one of the most pressing

environmental challenges of the 21st century, profoundly altering

plant growth patterns, reproductive success, and biogeographic

distributions (Parmesan and Yohe, 2003). Rising temperatures,

shifting precipitation regimes, and increased frequency of extreme

weather events, as highlighted in the latest IPCC report, are driving

rapid ecological niche modifications and threatening biodiversity.

To address these challenges, numerous ecological niche models

(ENMs), such as DO-MAIN, GARP, GAM, GLM, ENFA, Bioclim,

and MaxEnt, have become indispensable tools for predicting

species’ potential distributions by correlating occurrence data

with environmental variables (Warren et al., 2013Hernandez-

Lemus et al., 2014). Among ENMs, the Maximum Entropy Model

(MaxEnt) has demonstrated superior accuracy in medicinal plant

studies, particularly with limited sample sizes (Yi et al., 2018).

Through comparative analysis, the MaxEnt model demonstrated

superior predictive accuracy in independent regions, achieving

higher mean sensitivity (0.84) and AUC values (e.g., 0.957 for

Asparagus asparagoides), while effectively reducing overfitting

through regularization (Shabani et al., 2016). It is capable of

handling presence-only data and nonlinear relationships through

feature regularization (Phillips et al., 2006). For instance, MaxEnt

has been widely applied to studies on the growth zoning and

responses to climate change of medicinal plants such as Forsythia

suspensa (Wang et al., 2024), Angelica dahurica (Zhang et al., 2024),

Cirsium lineare (Fang et al., 2024), and Rubus idaeus (Gao et al.,

2024). This makes it highly suitable for modeling species like

Verbena officinalis, which often exhibit fragmented occurrence

records. However, existing research on medicinal plants largely

focuses on a single climate scenario or default model parameters,

neglecting parameter optimization and the integration of multiple

factors. This study innovatively combines parameter adjustment

using the Kuenm package with high-resolution soil, topography,

and climate variables to predict the distribution of Verbena

officinalis, addressing a critical gap in the utilization of temperate

herbal resources under climate change.

Verbena officinalis L., a perennial herbaceous plant of the

Verbenaceae family, is widely distributed in temperate regions.

Revered as a “sacred herb” in European folk medicine since

antiquity, it featured prominently in Druidic rituals and medieval

Christian healing practices (De Natale and Pollio, 2007). In China,

its medicinal use dates to the Han Dynasty (206 BCE–220 CE),

documented in the Shennong Bencao Jing for treating inflammatory

disorders and liver ailments. Modern pharmacological studies

validate its therapeutic potential, identifying over 100 bioactive

compounds, including iridoid glycosides with anti-tumor properties

and phenylethanoid glycosides exhibiting neuroprotective effects

(Dai et al., 2023). Since its official inclusion in the Pharmacopoeia of

China in 1995, its medicinal value has received increasing attention.

However, China’s reliance on wild populations—which constitute

60% of global V. officinalis resources—has created a critical

sustainability challenge: domestic cultivation meets ≤15% of

market demand, while climate-driven habitat fragmentation
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threatens traditional harvesting regions in Guizhou and Henan

provinces (Kubica et al., 2020). Therefore, using the MaxEnt model

to investigate the key environmental factors influencing the optimal

growth of V. officinalis and their impact on its suitable habitat

distribution is of great significance for the conservation of this plant

resource, its cultivation, and its sustainable development in

the future.

This study focuses on China as the research area, collecting and

organizing distribution data based on field investigations and

historical specimen records. Combined with environmental

factors such as climate, topography, and soil, the MaxEnt model’s

optimal parameters were set using the Kuenm package to simulate

and predict the suitable habitat distribution of V. officinalis under

current and future climate change scenarios. ArcGIS was utilized to

analyze and visualize the changes in the size and core distribution

patterns of suitable habitats, aiming to provide theoretical guidance

for the sustainable development and artificial cultivation of V.

officinalis resources.
2 Materials and methods

2.1 Collection and processing of
distribution data for V. officinalis

The distribution data of V. officinalis were sourced from the

National Specimen Information Infrastructure of China (NSII,

http://www.nsii.org.cn/) and the China Virtual Herbarium (CVH,

http://www.cvh.org.cn/). The study only collected distribution

points of V. officinalis after 1980, and cross-checked these with

Google Maps to supplement missing geographic coordinates. A

total of 465 distribution points for V. officinalis were collected. To

reduce spatial autocorrelation, each grid (5 km × 5 km) was used as

a standard, and ENMTools was employed to prune redundant data

points, ensuringthat each grid cell contains only one distribution

point (Fu et al., 2024). Finally, 445 valid distribution points were

obtained, and the specific distribution locations are shown

in Figure 1.
2.2 Sources and processing of
environmental data

The environmental data utilized in this study, encompassing

both contemporary and future climate data, were sourced from the

WorldClim database (https://worldclim.org/). This dataset includes

19 bioclimatic variables (Bio1–Bio19), as well as monthly

precipitation, maximum and minimum temperatures, and mean

temperatures for each of the 12 months. Three topographic factors

—elevation, slope, and aspect—were extracted from Digital

Elevation Model (DEM) data. Soil texture type data were

obtained from the Harmonized World Soil Database (HWSD).

Future climate projections are derived from the Coupled Model

Intercomparison Project Phase 6 (CMIP6), specifically employing

the Beijing Climate Center Climate System Model (BCC-CSM 2-
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MR) (Gao et al., 2023).In this study, we examined shared

socioeconomic pathways (SSP) emission scenarios for the 2030s

(average values from 2021 to 2040), 2050s (2041 to 2060), 2070s

(2061 to 2080), and 2090s (2081 to 2100) under two extreme

scenarios: SSP1-2.6 and SSP5-8.5. To ensure consistency, the

spatial resolution of the 90 environmental variables was

standardized to 2.5 arc minutes based on the bioclimatic data.

Detailed information regarding the 90 environmental variables is

presented in Table 1. Among them, prec 1-12, tavg 1-12, tmax 1-12,

and tmin 1-12 each contain 12 variables, corresponding to the data

for the 12 months.

Due to the potential high correlation among environmental

variables, key environmental variables for MaxEnt modeling were

selected from the initial set of 90 variables through the following

steps: (1) All 90 environmental variables were combined with 445

distribution points and run in MaxEnt to determine the

contribution rate of each variable to the model; (2) The 90

environmental variables were imported into ENMTools software

to calculate the Pearson correlation coefficients |r| between every

pair of variables; (3) Variables with |r| < 0.8 were selected, and those

with a contribution rate greater than or equal to 0.4 in the initial

model were retained. Based on these criteria, a total of 13

environmental variables were ultimately retained for subsequent

model development, optimization, and evaluation, namely bio_6,

bio_7, zbyl, prec_09, slope, prec_11, alt, tmax_04, eq, bsat,

alum_sat, aspect, and gypsum.
2.3 Establishment, optimization, and
evaluation of the MaxEnt model

The processed V. officinalis distribution data was saved in CSV

format and imported into MaxEnt along with the filtered
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environmental factors. The model parameters were set as follows:

25% of the distribution data was used as the test set (random test

percentage), and 75% as the training set. The Bootstrap method was

applied, with the default maximum background points set to

10,000, and the random seed was enabled to ensure

reproducibility. The number of replicates was set to 10, and the

output format was set to logistic values.

Additionally, considering that the predictive performance of the

MaxEnt model is influenced by the regularization multiplier (RM),

feature combination (FC), and Max number of background points,

the parameters for the MaxEnt model were optimized using the

Kuenm package in R 4.4.1 (Cobos et al., 2019). The model consists

of five feature types: linear (L), quadratic (Q), hinge (H), product

(P), and threshold (T) (Wan et al., 2020). When these features were

combined, 31 feature combinations were generated, with the default

setting being FC = LQPH. The regularization multiplier was set

within the range of 0.1 to 4, with an interval of 0.5, resulting in a

total of 8 different regularization multiplier values. Using the

Kuenm package, a total of 248 parameter combinations (31

feature combinations × 8 regularization multipliers) were tested,

with 75% of the data utilized as the training set. Model performance

was compared based on the receiver operating characteristic (ROC)

curve, omission rate, and AICc (Akaike Information Criterion

corrected) values to identify the optimal model. The parameters

obtained from this optimal model were then applied to MaxEnt to

establish the final model.

AUC (Area Under the Curve) refers to the area under the ROC

curve and is commonly used to assess model accuracy (Parodi et al.,

2022). It is not influenced by the proportion of subjects in the

analysis sample. AUC values range from 0 to 1, with higher values

indicating better model fit, higher accuracy, and greater reliability.

AUC values between 0.5 and 0.6 suggest model failure, between 0.6

and 0.7 indicate poor performance, between 0.7 and 0.8 represent
FIGURE 1

Spatial distribution of V. officinalis occurrence points in China.
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fair performance, between 0.8 and 0.9 suggest good performance,

and values between 0.9 and 1 indicate excellent performance. In this

study, AUC values were used to assess the predictive effectiveness of

the models. Larger AUC values indicate a stronger correlation

between the modeled geographic distribution of V. officinalis and

environmental factors, suggesting that the model’s predictive

performance is better (Ma et al., 2021).
2.4 Data processing for the execution of
the MaxEnt model

To further investigate the changes in the suitable habitat area of

V. officinalis under current and various future scenarios, ArcGIS

10.8.1 software was used to delineate and visualize the species’

suitable habitat. The Maximum Test Sensitivity Plus Specificity

(MTSPS) threshold was chosen for habitat delineation, as it

combines the sensitivity and specificity of the model to classify
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suitable areas (Liu et al., 2005). The values derived directly from the

MaxEnt model were used for this classification. The average result

of the MaxEnt model in ASC format was imported into ArcGIS, and

the Reclassification tool was employed to categorize the suitable

areas into non-suitable areas (0–MTSPS), low-suitability areas

(MTSPS–0.5), medium-suitability areas (0.5–0.7), and high-

suitability areas (0.7–1). The distribution area of the suitable

habitats was then calculated by determining the number of grids

in each suitability class.

In ArcGIS, the current and future suitable habitats of V.

officinalis were classified into two categories: unsuitable habitats

(0 to MTSPS) and suitable habitats (MTSPS to 1). The “Intersect”

function in ArcGIS was then used to overlay the current suitable

habitat with the future suitable habitat distribution. Based on this

analysis, the future suitable habitat distribution of V. officinalis

was defined as expansion areas, contraction areas, and retention

areas. The geometric centroid of the suitable habitat was defined

as the central point of the habitat’s distribution. The location of
TABLE 1 Detailed information on the 90 environmental variables.

Variable code Environmental factor Variable code Environmental factor

prec 1-12 January to December precipitation alt Altitude

tavg 1-12
January to December
average temperature

slope Slope

tmax 1-12
January to December
maximum temperature

aspect Aspect

tmin 1-12
January to December
minimum temperature

zbyl Vegetation Classification

bio1 Annual Mean Temperature coarse Coarse fragments

bio2 Mean Diurnal Range sand Sand

bio3 Isothermality slit Slit

bio4 Temperature Seasonality clay Clay

bio5 Max Temperature of Warmest Month bulk Bulk Density

bio6 Min Temperature of Coldest Month ref_bulk Reference Bulk Density

bio7 Temperature Annual Range org_cbn Organic Carbon Content

bio8 Mean Temperature of Wettest Quarter ph pH in water

bio9 Mean Temperature of Driest Quarter n Total nitrogen content

bio10 Mean Temperature of Warmest Quarter cn Carbon/Nitrogen ratio (C/N)

bio11 Mean Temperature of Coldest Quarter cec_soil CEC soil

bio12 Annual Precipitation cec_clay CEC clay

bio13 Precipitation of Wettest Month teb TEB

bio14 Precipitation of Driest Month bsat Base Saturation

bio15 Precipitation Seasonality alum_sat Aluminium saturation

bio16 Precipitation of Wettest Quarter esp Exchangeable Sodium Percentage

bio17 Precipitation of Driest Quarter eq Calcium Carbonate

bio18 Precipitation of Warmest Quarter gypsum Gypsum content

bio19 Precipitation of Coldest Quarter elec_con Electric Conductivity
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this centroid represents the overall spatial position of the suitable

habitat. Under the assumption that V. officinalis has migration

capabilities and ignoring interspecific interactions and other

natural factors, the geometric centroid for each scenario was

calculated using ArcGIS’s zonal geometry statistics tool (Lenoir

et al., 2008). This allowed for the creation of a vector file

representing the direction and magnitude of centroid movement

between adjacent periods, illustrating the trend and distance of

centroid migration (Li et al., 2019).
3 Results

3.1 Model optimization and
accuracy evaluation

In the MaxEnt model, the Mean AUC Ratio represents the

model’s predictive ability relative to random prediction. A higher

value indicates better predictive performance of the model. When

the default parameters FC = LQPH and RM = 1 are used, the Mean

AUC Ratio is 1.6281. After optimizing the model using the Kuenm

package and selecting the parameters FC = LQPT and RM = 1, the

Mean AUC Ratio increases to 1.6348. This value is significantly

higher than the result obtained with the default parameters.

Additionally, the optimized model has a lower AICc value. A

lower AICc indicates better model fit and lower complexity,

suggesting that the optimized model offers better interpretability.

Therefore, in this study, FC = LQPT and RM = 1 were chosen as the

parameter settings for the final model of V. officinalis distribution

(Figure 2). After running both the initial and final models, it was
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found that under the optimized parameters, the AUC value of the

MaxEnt model increased from 0.920 in the initial model to 0.934,

indicating a more accurate model prediction (Table 2).
3.2 The influence of key environmental
variables on the distribution of V. officinalis

We analyzed the influence of 13 key environmental variables on

the distribution of V. officinalis using the MaxEnt model. Based on

their contribution rates, bio_6 (Min Temperature of Coldest

Month) and bio_7 (Temperature Annual Range) were identified

as the major factors for model construction, with a cumulative

contribution rate of 81.6%. Among these, bio_6 contributed 72.8%.

The environmental variables with relatively smaller contributions

included zbyl (5.1%), prec_09 (4.6%), slope (4.3%), prec_11 (3%),

alt (2.5%), tmax_04 (2.3%), eq (1.4%), bsat (0.9%), alum_sat (5.1%),

aspect (5.1%), and gypsum (5.1%), which together accounted for

18.4% (Table 3). Additionally, we assessed the importance of the

environmental variables using the Jackknife method based on the

generated results. The Jackknife test indicated that when running

the model with individual environmental variables, the highest

regularized training gain values were achieved by bio_6, bio_7,

and prec_11 (Figure 3). Therefore, Min Temperature of Coldest

Month, November precipitation, and Temperature Annual Range

are considered the primary environmental variables influencing the

suitable distribution of V. officinalis.

To visualize the response curves for the key environmental

variables, we selected the variables for which the logistic output

value exceeds 0.5, indicating that the corresponding environmental
FIGURE 2

MaxEnt model parameter optimization results.
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factor values are conducive to plant growth. The most favorable

conditions for V. officinalis survival were observed when Min

Temperature of Coldest Month ranged from -0.66°C to 10.20°C,

Temperature Annual Range ranged from 20.20°C to 29.54°C, and

November precipitation ranged from 36.94 mm to 84.36 mm or

from 159.48 mm to 224.2 mm (Figure 4).
3.3 The suitable distribution of V. officinalis
under current climatic conditions

Based on the results of the MaxEnt model, the potential

suitable habitats for V. officinalis have been classified into four

categories: unsuitable areas (0–0.2037), low suitability areas

(0.2037–0.5), medium suitability areas (0.5–0.7), and high

suitability areas (0.7–1) (Figure 5). Under current climatic

conditions, the total suitable habitat area for V. officinalis in

China is estimated to be 2.06 × 106 km2, accounting for 21.39%

of the country’s total land area, primarily distributed in Central

China, East China, and South China. The high suitability areas are

mainly concentrated in the eastern and southeastern regions,

including economically developed areas such as the Yangtze

River Delta and the Pearl River Delta, covering an area of 2.49 ×

104 km2, which represents 0.23% of the total land area of China.

The medium suitability areas are more widely distributed,

particularly in the central region, with significant coverage in

provinces such as Henan, Hubei, and Hunan in Central China.
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Additionally, there are distributions in certain provinces in North

and Southwest China, such as Sichuan and Chongqing, covering

an area of 5.44 × 105 km2, which accounts for 5.61% of the total

land area of China. The low suitability areas are primarily found in

the central and eastern parts of China, including the middle and

lower reaches of the Yangtze River plain and parts of the

southeastern coastal regions. These areas encompass several

provinces, including Jiangsu, Zhejiang, Anhui, Jiangxi, and

Fujian, covering an area of 1.49 × 106 km2, which accounts for

15.51% of the total area of China.
3.4 The suitable distribution of V. officinalis
under future climate conditions

Based on the predictions made by MaxEnt for two emission

models across four future periods—2020 to 2040, 2041 to 2060,

2061 to 2080, and 2081 to 2100—the distribution of future suitable

areas for V. officinalis in China and the areas classified into different

suitability growth grades using the MTSPS method were

determined (Table 4; Figure 6).

Under the SSP1-2.6 scenario, the total suitable area for V.

officinalis is projected to show an increasing trend compared to

current climate conditions. By the 2090s, the total suitable area is

expected to increase by 1.53 × 105 km2, with high-suitability areas

expanding by 5.84 × 104 km2 and medium-suitability areas

increasing by 2.73 × 105 km2. However, by the 2090s, the area of
TABLE 3 The contribution rate of environmental variables.

Variable code Environmental factor Unit Percent contribution/% Permutation importance/%

bio_6 Min Temperature of Coldest Month °C 72.8 47.3

bio_7 Temperature Annual Range °C 8.8 10.5

zbyl Vegetation Classification 3.2 7.1

prec_09 Precipitation in September mm 2.9 5.8

slope Slope ° 2.7 4.4

prec_11 Precipitation in November mm 2 4

alt Altitude m 1.6 2.2

tmax_04 Maximum Temperature in April °C 1.5 6.3

eq Calcium Carbonate % 1.1 5.6

bsat Base Saturation % 1.1 2.4

alum_sat Aluminium saturation % 1 1.8

aspect Aspect rad 0.8 1.4

gypsum Gypsum content % 0.3 1.2
TABLE 2 Performance evaluation of MaxEnt model under initial and optimized parameters.

Model evaluation Feature combination Regularization multiplier Mean AUC Ratio AUC value

Default LQPH 1 1.6281 0.920

Optimized LQPT 1 1.6348 0.934
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FIGURE 4

Response curves of key environmental variables (bio_6, bio_7, prec_11) influencing the suitable distribution of V. officinalis.
FIGURE 3

Results of jackknife test for the importance of the variables for MaxEnt.
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low suitability is expected to continue declining, with a reduction of

1.79 × 105 km2.

Under the SSP5-8.5 scenario, the total suitable area for V.

officinalis also shows an increasing trend. By the 2070s, the total

suitable area is expected to reach its maximum value of 2.42 × 106

km2, representing an increase of 3.6 × 105 km2 compared to the

current climate. The area of high suitability shows the most

significant increase, with an expansion of 5.96 × 104 km2. The

area of medium suitability is projected to increase in all future

decades, although the rate of increase is expected to gradually

decrease over time. The area of low suitability, similar to the

SSP1-2.6 scenario, is expected to show an overall decreasing trend.
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3.5 Spatial pattern changes in the future
potential distribution of V. officinalis

Under eight future climate scenarios, the potential distribution

of V. officinalis suitable habitats was compared with its current

distribution (Figures 7, 8). Results indicate that under the SSP1-2.6

scenario, the potential suitable habitat of V. officinalis changes

relatively gradually, with expansion areas primarily concentrated

around the periphery of existing habitats, especially in northern and

higher-altitude regions. The expanded area increases from 2.04 ×

105 km2 in the 2030s to 2.1 × 105 km2 in the 2090s, with overall

minor variation. The stable areas, where no changes occur, remain
TABLE 4 Area of suitable habitats for V. officinalis under current and future climate scenarios by suitability levels.

Decade
scenarios

Predicted area (× 104 km2)

Low
habitat suitability

Medium
habitat suitability

High
habitat suitability

Unsuitable
habitat

Total suitable
area

Current 149.25 54.44 2.19 756.47 205.88

2030s-SSP1-2.6 146.45 67.12 5.24 743.55 218.81

2050s-SSP1-2.6 140.59 71.61 5.40 744.74 217.61

2070s-SSP1-2.6 141.71 72.74 4.29 743.62 218.74

2090s-SSP1-2.6 131.40 81.74 8.03 741.18 221.17

2030s-SSP5-8.5 139.26 86.45 5.68 730.96 231.39

2050s-SSP5-8.5 133.88 81.65 7.69 739.13 223.22

2070s-SSP5-8.5 151.54 82.19 8.15 720.47 241.89

2090s-SSP5-8.5 146.85 73.48 3.54 738.48 223.87
FIGURE 5

Potential suitable distribution of V. officinalis under current climatic conditions.
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dominant, ranging between 1.98 × 106 and 2.02 × 106 km2. In

contrast, areas of habitat reduction show slight fluctuations,

decreasing from 7.44 × 104 km2 in the 2030s to 4.59 × 104 km2 in

the 2050s, with a minor rebound in the 2070s and 2090s. The

reduction areas are mainly located in eastern Sichuan, Hubei, and

southeastern Tibet. Overall, the expansion of suitable habitats

predominantly occurs around existing distributions, with the

centroid shifting slightly northward and the spatial pattern

remaining relatively stable.

In contrast, under the SSP5-8.5 scenario, V. officinalis

experiences a substantial expansion in its potential suitable

habitats, with new areas extending significantly toward northern

high-latitude regions. The expanded area increases rapidly from
Frontiers in Plant Science 09
2.82 × 105 km2 in the 2030s to a peak of 3.82 × 105 km2 in the

2070s. Stable areas (unchanged suitable habitats) remain relatively

consistent, ranging from 2.01 × 106 to 2.03 × 106 km2, with only

minor fluctuations. Meanwhile, the reduced habitat area occupies

a smaller proportion overall and shows a declining trend,

decreasing from 2.75 × 104 km2 in the 2030s to 2.26 × 104 km2

in the 2070s, followed by a slight rebound to 5.45 × 104 km2 in the

2090s. The reduction areas are primarily concentrated in Sichuan,

Shaanxi, and Henan provinces. Spatially, the distribution of

suitable habitats under this scenario exhibits a pronounced

northward shift, with significant expansion, particularly in high-

latitude regions, reflecting a strong adaptive expansion pattern in

these areas.
FIGURE 6

Suitable habitat distribution of V. officinalis under different future climate scenarios (SSP1-2.6 and SSP5-8.5).
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3.6 Centroid migration of suitable habitats
in future periods

Using the MTSPS value (MTSPS = 0.2037) as the threshold, the

suitable and unsuitable areas for V. officinalis were classified. The

migration of the centroid of the suitable area over time under two

emission scenarios, SSP1-2.6 and SSP5-8.5, was analyzed using ArcGIS,

and the centroid migration trajectory was plotted (Figure 9).

Under the current climate, the centroid of the suitable area for V.

officinalis is located in Shupu County, Huaihua City, Hunan Province.

Under the SSP1-2.6 emission scenario, from 2021 to 2040, the centroid

migrates 136.98 km northwest to Fenghuang County, Xiangxi Tujia

and Miao Autonomous Prefecture, Hunan Province; from 2041 to

2060, it moves 111.66 km southeast to Chenxi County, Huaihua City,
Frontiers in Plant Science 10
Hunan Province; from 2061 to 2080, the centroid shifts 69.84 km

northeast to Yuanling County, Huaihua City, Hunan Province; and

from 2081 to 2100, the centroid continues to migrate 55.60 km

southwest within Yuanling County, Huaihua City, Hunan Province.

Under the SSP5-8.5 emission scenario, from 2021 to 2040, the

centroid migrates 128.42 km northwest to Baojing County, Xiangxi

Tujia and Miao Autonomous Prefecture, Hunan Province; from

2041 to 2060, it shifts 111.61 km northeast to Yuanling County,

Huaihua City, Hunan Province; from 2061 to 2080, the centroid

moves 121.58 km southwest to Huayuan County, Xiangxi Tujia and

Miao Autonomous Prefecture, Hunan Province; and from 2081 to

2100, the centroid migrates 35.06 km northwest back to Baojing

County, Xiangxi Tujia and Miao Autonomous Prefecture,

Hunan Province.
FIGURE 7

Spatial pattern changes in the potential suitable habitats of V. officinalis under different future climate scenarios.
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4 Discussion

Ecological niche models predict the potential distribution of

species based on certain algorithms that estimate their ecological

requirements. Therefore, improving the accuracy of model

predictions is crucial for the construction of ecological niche

models (Seo et al., 2021). To accurately predict the suitable

habitat of V. officinalis, this study optimized the MaxEnt model

from several aspects, including species distribution points, selection

of environmental variables, and model parameter settings, to

enhance the prediction accuracy. First, the distribution data of V.

officinalis were screened using the ENMTools software to exclude

data with high spatial autocorrelation, thereby reducing sampling

bias. Second, this study collected 90 environmental factors,

including climate, soil, and topography, to provide a more

comprehensive prediction of the suitable habitat for V. officinalis.

A correlation analysis was performed, and environmental variables
Frontiers in Plant Science 11
with an absolute correlation greater than 0.8 were removed to avoid

multicollinearity, which could lead to model overfitting. Finally, the

Kuenm package was used to optimize the feature combinations and

tuning of the MaxEnt model, which not only mitigated overfitting

but also improved the model’s prediction accuracy and reliability.

The optimized model achieved an AUC value of 0.934, indicating

that the model’s predictions are highly reliable.

Research has shown that the growth and distribution of V.

officinalis are significantly influenced by climatic factors, with

temperature being particularly crucial. The plant can survive

completely when winter temperatures are above -4°C, but it dies

entirely when temperatures fall below -17°C. Flowering requires

temperatures above 16°C, and seed germination necessitates a daily

average temperature exceeding 14°C, with daytime temperatures

needing to be above 19°C (Woodward, 1997). Suitable temperatures

are also important for the synthesis of secondary metabolites in V.

officinalis, as both extreme high and low temperatures can inhibit
FIGURE 8

Stacked chart of spatial pattern changes in the potential suitable habitats of V. officinalis under different future climate scenarios.
FIGURE 9

Migration trajectory of the geometric centroid of suitable areas for V. officinalis under future climate scenarios.
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the accumulation of its chemical components (Pant et al., 2021).

The results of the MaxEnt model in this study also corroborate these

findings. When the lowest temperature of the coldest month is in

the range of -0.66 to 10.20°C, annual temperature range is between

20.20 and 29.54°C, and November precipitation falls within the

range of 36.94–84.36 mm or 159.48–224.2 mm, the conditions are

most suitable for V. officinalis survival. Notably, the lowest

temperature of the coldest month contributed 72.8% to the

model’s prediction of suitable habitats. These findings highlight

that warm summer conditions are favorable for the reproductive

success of V. officinalis, while extreme cold winters may lead to

substantial mortality. Although snow cover can provide insulation

under severe cold conditions, low temperatures remain a key

limiting factor for its distribution. Based on the above research

results, the artificial cultivation of V. officinalis should take into

account the suitability of temperature and precipitation, particularly

avoiding winter temperatures below -4°C and extreme high

temperatures. To ensure stable growth and high-quality

secondary metabolite synthesis, greenhouse cultivation or the

selection of regions with moderate climate and adequate

precipitation is recommended. Additionally, proper irrigation and

temperature control will help promote healthy growth and effective

distribution of V. officinalis.

Currently, V. officinalis is found in provinces south of the

Qinling Mountains and in Xinjiang, with the main production

areas located in Hunan, Guizhou, and other regions. It is also found

in Anhui, Zhejiang, Henan, Jiangxi, Fujian, Hebei, Sichuan, and

other provinces. The results of this study also confirm that, under

the current climatic scenario, V. officinalis is primarily distributed in

the Central, Eastern, and Southern regions of China. The total

suitable habitat area in China is 2.06×106 km2, accounting for

21.39% of the country’s total land area. Therefore, the model’s

predicted potential suitable habitats align well with the actual

distribution. Furthermore, the MTSPS method used in this study

for delineating the suitable habitat of V. officinalis combines both

the model’s sensitivity and specificity. In contrast, the commonly

used natural distribution breakpoint method relies solely on

computational results, lacking integration with real-world

variability (Liu et al., 2005). The MTSPS approach is widely

adopted in many studies to delineate species distributions (Zhang

et al., 2018; Mahatara et al., 2021).

Under future climate conditions, the suitable habitat area for V.

officinalis is projected to generally increase, with the centroid of the

suitable habitat shifting toward higher latitudes. As the impact of

future climate change progresses, the spatial shifts in the suitable

habitat of V. officinalis are largely consistent with the movement of

the centroid, reflecting a trend of northward expansion. This result

is in line with findings from related studies. For example, under

climate change, the future suitable habitats of plants such as

Astragalus membranaceus and Panax notoginseng in China are

gradually migrating toward higher latitudes (Zhan et al., 2022;

Wen et al., 2024). Studies have shown that global warming will

drive species migration to higher latitudes or elevations (Changjun

et al., 2021). In the context of global climate warming, the annual

increase in precipitation and temperature will further enhance the
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suitability of habitats for V. officinalis (Solomon et al., 2007).

Additionally, under future climate scenarios, northern China,

influenced by geographical factors, temperature changes, and

greenhouse gas emissions, is expected to experience significant

variations in precipitation and annual average temperature. These

increases will be much more pronounced than in southern China,

leading to a trend of V. officinalis migrating toward higher latitudes

(Yang et al., 2021).

Despite the overall trend of expansion towards higher latitudes,

the geometric center of the suitable habitat for V. officinalis does not

continuously migrate northward under future climate scenarios.

Instead, it exhibits periodic fluctuations within Hunan Province.

For example, under the SSP1-2.6 scenario, the migration trajectory

of the center is “northwest→ southeast→ northeast→ southwest,”

while under the SSP5-8.5 scenario, it follows the path “northwest→

northeast → southwest → northwest.” The reasons for this

fluctuation may involve the synergistic effects of multiple factors:

(1) Non-climatic factors, such as topography and vegetation types,

regulate the local expansion direction through microhabitat

heterogeneity. For instance, increased precipitation in the future

Wuling Mountains in western Hunan could create moist valley

habitats that promote westward migration; (2) Phase changes in

climatic factors under different emission scenarios, such as the

SSP1-2.6 scenario, where the warming in winter temperatures in

the middle and lower reaches of the Yangtze River slows, thus

inhibiting northern range expansion; (3) Boundary effects due to

the model’s response to extreme climate thresholds, which may lead

to uncertainty in high-latitude predictions. This finding suggests

that species distribution under climate change is a result of the

nonlinear coupling of climate, topography, and vegetation.

Therefore, during the development of V. officinalis resources,

special attention should be given to the ecological connectivity of

transition zone habitats (such as the Wuling Mountains) to

mitigate the fragmentation risk of distribution caused by

climate fluctuations.

However, it is important to note that while the MaxEnt model

used in this study to predict the suitable habitat of V. officinalis in

China yielded highly accurate results (AUC value of 0.934), these

predictions remain theoretical estimates, and the actual suitable

habitats may be influenced by more complex factors. First, although

we selected 90 environmental variables to construct the model,

these variables cannot comprehensively replace all potential factors

that may affect species distribution. For example, factors such as

economic development, land-use changes, government policies, and

human disturbances could also significantly impact the actual

distribution of V. officinalis. Therefore, future research should

consider a broader range of environmental data and socio-

economic factors to enhance the applicability and accuracy of

model predictions. Secondly, the uncertainty in predicting species

distribution under climate change is also a concern, particularly in

long-term climate scenarios, where actual changes may deviate

from model assumptions. To further optimize prediction results

and improve the model’s reliability, future studies should collect

more detailed and diverse data, and continually update models to

account for the evolving environmental conditions.
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5 Conclusion

This study systematically predicted and analyzed the potential

distribution of V. officinalis in China under current and future

climate conditions using an optimized MaxEnt model. The results

indicate that the growth of V. officinalis is significantly influenced by

temperature and precipitation, with the minimum temperature of

the coldest month (bio_6) being the most critical factor,

contributing 72.8% to the distribution of suitable habitats.

Under current climate conditions, the suitable habitats for V.

officinalis are primarily concentrated in Central China, East China,

and South China, covering a total area of 2.06 × 106 km2, which

accounts for 21.39% of China’s land area. Under future climate

scenarios (SSP1-2.6 and SSP5-8.5), the total area of suitable habitats

shows an overall increasing trend, with the most significant

expansion projected to occur by the 2070s under the high-

emission scenario (SSP5-8.5). Furthermore, future climate change

is expected to shift the centroid of suitable habitats progressively

northward, with high-latitude and high-altitude regions

demonstrating considerable potential for expansion.

By optimizing the model parameters, the prediction accuracy

was significantly improved, achieving an AUC value of 0.934. This

study provides a robust scientific basis for the conservation of V.

officinalis resources, cultivation planning, and the development of

sustainable strategies to address climate change. Additionally, the

northward expansion of suitable habitats offers critical insights for

future introduction and cultivation in northern regions.
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