
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Huajian Liu,
University of Adelaide, Australia

REVIEWED BY

Yu Fenghua,
Shenyang Agricultural University, China
Aditi Sabharwal,
Indira Gandhi Delhi Technical University for
Women, India
Li Chen,
Anhui Agricultural University, China

*CORRESPONDENCE

Suiyan Tan

tansuiyan@scau.edu.cn

RECEIVED 16 January 2025

ACCEPTED 11 March 2025
PUBLISHED 16 April 2025

CITATION

Zheng H, Liu C, Zhong L, Wang J, Huang J,
Lin F, Ma X and Tan S (2025) An android-
smartphone application for rice panicle
detection and rice growth stage recognition
using a lightweight YOLO network.
Front. Plant Sci. 16:1561632.
doi: 10.3389/fpls.2025.1561632

COPYRIGHT

© 2025 Zheng, Liu, Zhong, Wang, Huang, Lin,
Ma and Tan. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 April 2025

DOI 10.3389/fpls.2025.1561632
An android-smartphone
application for rice panicle
detection and rice growth
stage recognition using a
lightweight YOLO network
Huiwen Zheng1, Changjiang Liu1, Lei Zhong1, Jie Wang1,
Junming Huang1, Fang Lin1, Xu Ma2,3 and Suiyan Tan1*

1College of Electronic Engineering, South China Agricultural University, Guangzhou,
Guangdong, China, 2College of Mechanical and Electrical Engineering, Xinjiang Agricultural University,
Urumqi, China, 3College of Engineering, South China Agricultural University, Guangzhou,
Guangdong, China
Introduction: Detection of rice panicles and recognition of rice growth stages

can significantly improve precision field management, which is crucial for

maximizing grain yield. This study explores the use of deep learning on mobile

phones as a platform for rice phenotype applications.

Methods: An improved YOLOv8 model, named YOLO_Efficient Computation

Optimization (YOLO_ECO), was proposed to detect rice panicles at the booting,

heading, and filling stages, and to recognize growth stages. YOLO_ECO

introduced key improvements, including the C2f-FasterBlock-Effective Multi-

scale Attention (C2f-Faster-EMA) replacing the original C2f module in the

backbone, adoption of Slim Neck to reduce neck complexity, and the use of a

Lightweight Shared Convolutional Detection (LSCD) head to enhance efficiency.

An Android application, YOLO-RPD, was developed to facilitate rice phenotype

detection in complex field environments.

Results and discussion: The performance impact of YOLO-RPD using models

with different backbone networks, quantitative models, and input image sizes was

analyzed. Experimental results demonstrated that YOLO_ECO outperformed

traditional deep learning models, achieving average precision values of 96.4%,

93.2%, and 81.5% at the booting, heading, and filling stages, respectively.

Furthermore, YOLO_ECO exhibited advantages in detecting occlusion and small

panicles, while significantly optimizing parameter count, computational demand,

and model size. The YOLO_ECO FP32-1280 achieved a mean average precision

(mAP) of 90.4%, with 1.8 million parameters and 4.1 billion floating-point

operations (FLOPs). The YOLO-RPD application demonstrates the feasibility of

deploying deep learning models on mobile devices for precision agriculture,

providing rice growers with a practical, lightweight tool for real-time monitoring.
KEYWORDS

rice panicle, growth stages, YOLOv8, lightweight YOLOv8, android application
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1561632/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1561632/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1561632/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1561632/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1561632/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1561632&domain=pdf&date_stamp=2025-04-16
mailto:tansuiyan@scau.edu.cn
https://doi.org/10.3389/fpls.2025.1561632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science

Zheng et al. 10.3389/fpls.2025.1561632
1 Introduction

Rice is one of the most important food crops in the world. With

the continuous growth of the world’s population, food production

has become particularly important, so it is urgent to cultivate high-

yield rice to alleviate the problem of food shortages. As the most

important phenotype of rice, rice panicles are not only closely

related to crop yield but also play an important role in disease

detection (Deng et al., 2019), crop organ detection (Zhang et al.,

2022), and reproductive stage identification (Ikasari et al., 2017).

Identifying the growth stages of rice helps the implementation of

appropriate irrigation, fertilization, and pesticide applications

during the suitable growth stages, achieving precise field

management and ensuring the maximum yield (Gagic et al.,

2021). However, at present, the detection of rice panicles and the

identification of rice growth stages are mainly based on manual

work, which has low efficiency and strong subjectivity. As deep

learning has become a prevalent way of target detection and easy-

carry smartphones are becoming more powerful tools, employing

deep learning models for online detection tasks in an easy-to-use

smartphone application tool for rice panicle detection is of great

significance and has had promising results.

With the rapid development of image processing technology

and the emergence of deep learning methods, many studies have

used this technology for crop organ detection. For example, a corn

panicle detection algorithm was developed by Brichet et al. (2017)

based on the random forest algorithm and Visual Geometry Group

16-layer network (VGG16). They processed 12 whole-plant side-

view images obtained from a camera and determined the position of

the panicle based on changes in stem width. Hong et al. (2022)

proposed an improved Mask R-CNN combined with Otsu

preprocessing for rice panicle detection and segmentation. This

method achieves good detection and segmentation accuracy for rice

grains and performs well in large-scale field environments, making

it suitable for rice growth detection and yield estimation. Zhao et al.

(2022) proposed a wheat-oriented spike detection method called

OSWSDet based on deep learning. They processed images of wheat

fields collected by drones and used a circular smooth integration

method, CSL, and a micro-scale detection layer combined with the

YOLO framework to detect wheat spikes. The results showed that

the OSWSDet method was superior to traditional wheat spike

detection methods, with an average accuracy of 90.5%.

Dandrifosse et al. (2022) used an unsupervised learning method

based on YOLOv5 and the DeepMAC segmentation method to

count and segment wheat RGB images from the heading stage to

maturity. Only a small amount of labeling work is required to start

training. The average F1 score for wheat spike detection was 0.93,

and the average F1 score for segmentation was 0.86.

In addition, deep learning is widely used to recognise the crop

growth stage. Yang et al. (2020) used mono-temporal unmanned

aerial vehicle (UAV) imagery to estimate crop phenology after

network training and used convolutional neural networks (CNNs)

that combined with Spatial Pyramid Pools (SPPs) to identify key

phenological periods of rice, which proved the effectiveness of CNN

technology for near-real-time phenology detection of rice and
Frontiers in Plant Science 02
harvest time estimation. Bai et al. (2018) transformed the

observation of the rice heading stage into the detection of the rice

spike and proposed a new method to automatically observe the rice

heading stage using SVM with color features and a gradient

histogram as the input and a CNN. The results showed that the

time difference between this method and manual observation was

within 2 days, and it could replace manual observation. Zhang et al.

(2022) used an improved convolutional neural network to detect

rice panicles. Inception ResNet-v2 was used to replace VGG16 as

the feature extraction network, a feature pyramid network (FPN)

was used to integrate with a region proposal network (RPN), and

non-maximum suppression (NMS) adopted the DIoU standard.

The average accuracy of rice panicle detection was 92.47%. The

growth stage of rice was determined by rice panicle density, and the

deviation between the result and manual observation was within 2

days, which could meet the needs of agricultural activities.

Conventionally, the rice growth stage is determined by the

number of panicles or panicle density. However, there are

significant changes in the external morphological structure of rice

panicles in several key growth stages, such as shape, color, size,

texture, and posture. This allows us to explore and observe rice

panicles, detect them, and then recognize different key growth

stages in rice.

In terms of support equipment, target detection based on deep

learning models is mostly performed on computer devices, which

are very inconvenient for small-scale farms. However, with

advantages in terms of computing power, low price, ease of use,

and portability, smartphones have become a prevalent tool for

target detection and have achieved promising results. Numerous

smartphone applications have been reported in agricultural

automation, such as fruit detection, disease detection (Anbarasi

et al., 2019), and weed identification. In addition to these studies,

there have also been reports on crop phenotyping automation using

smartphone applications. Komyshev et al. (2017) adopted a method

for the automated assessment of wheat phenotypic parameters

using an Android mobile device, and the experimental results

showed that the method was able to efficiently and accurately

assess the phenotypic characteristics in wheat grains. The

evaluation of the application under six different illumination

conditions and on three mobile devices showed that the

illumination conditions had a significant effect on the accuracy.

Zeng et al. (2023) presented a lightweight YOLOv5-based algorithm

for real-time tomato detection. It incorporates techniques such as

replacing the focus layer with a downsampling convolutional layer,

using the MobileNetV3 bneck module, and applying channel

pruning. The model achieved a 78% reduction in parameters and

model quantization for mobile devices increased the frame rate by

268%, while maintaining a 93% true detection rate. Tao et al. (2020)

developed a smartphone app based on a standard leaf color chart

(LCC) to detect the color levels of rice leaves using color threshold

segmentation. A CIELAB histogram was used to extract the color

features of each region, and the CIEDE2000 formula was used to

distinguish the color grade of the rice leaves. The accuracy of the

app in determining the color levels of rice leaves was 92% higher

than manual inspections. When using the Xiaomi Mi5 smartphone,
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
the average running time for processing leaf images under field

conditions was 248 milliseconds.

To date, mobile applications for the detection of rice panicles in

different growth stages and the recognition of rice growth stages are

still poorly explored. This study selected YOLOv8, the newly

developed YOLO series (Varghese and Sambanth, 2024), as the

base network and investigated lightweight methods. An Android

application named YOLO-RPD (YOLOv8-Rice Panicle Detection)

was developed to detect rice panicles at three growth stages,

including the booting stage, heading stage, and filling stage, and

recognize rice growth stages. YOLOv8 and the lightweight YOLOv8

were trained and converted into Neural Network Computing

Nibrary (NCNN) models. These models were employed for rice

panicle detection on Android smartphones and evaluated using

comprehensive evaluation metrics. Our research fills the literature

gap related to the usage of deep learning on mobile phones as a

platform for rice phenotype applications and provides an easy-to-

use application tool for rice growers. Through the easy use of an

application for the detection of rice panicles and recognition of rice

growth stages, rice growers can facilitate timely precision field

management and pursue maximum grain yield.
2 Materials and methods

2.1 Image acquisition and dataset
construction

2.1.1 Image acquisition
The rice images were acquired from two comprehensive field

experiments of double cropping rice, namely Exp. 1 and Exp. 2,

located in Shapu Research Center, Zhaoging City, Guangdong

Province, at 23.16° North latitude and 112.66° East longitude.

There were 90 planting plots in Exp. 1 and Exp. 2, respectively.

Each plot was 10.8 m × 3.5 m. The experimental plots were designed

with different strategies for plant growing practices to ensure

diverse rice panicle phenotypes. Different growing strategies,

including three cultivars, five levels of N fertilizers (N0-N4), and

two planting densities, were applied in each plot, and the

experimental plot was designed with three replications. Detailed

information of the growing practice in each plot is shown in Table 1.
Frontiers in Plant Science 03
Rice panicle images were collected using a smartphone, XiaoMi

11, with a 20 million-pixel rear lens, and the images were stored in

JPG format with an image resolution of 5792 × 4344 pixels.

Figure 1A shows the field plot planting experiment, and images

were collected from three to five different regions in each planting

plot. The researcher held a shooting rod with the smartphone fixed

on it. The smartphone was kept at a distance of 1.6 meters above the

ground with its rear camera facing down to capture the canopy of

rice panicles, as illustrated in Figure 1B. To obtain diverse rice

panicle phenotypes, first, different shooting angles, including a top

view and a side view, were employed in the experiment. In addition,

images were collected at booting, heading, and filling stages in both

Exp. 1 and Exp. 2. Furthermore, the image acquisition was

conducted during natural lighting conditions in the morning

(between 8:00 am and 11:00 am) or in the afternoon (between

2:00 pm and 5:00 pm) to enhance the diversity of data. Finally, rice

panicle images were captured under different weather conditions,

including sunny, cloudy, and rainy days.

2.1.2 Dataset construction
To make the collected rice images suitable for deep learning

model training, data preprocessing is an essential step. Typically,

data preprocessing consists of three main steps: image cropping,

manual annotation, and data augmentation.

First, to improve model training efficiency, the original collected

RGB rice images were cropped into five sub-images with small sizes.

First, the original image was divided into four sub-images along the

horizontal and vertical center lines. Each original image had a size of

5792×4344 pixels, while the cropped sub-images had a size of

2896×2172 pixels. An additional sub-image was cropped around

the center point of the images with a size of 2896 × 2172 pixels.

Therefore, the number of images in each growth stage after cropping

was expanded five times compared to that of the original images.

Second, labelImg, an open-source image annotation software,

was used to label the ground truth of the rice panicles with a

minimum external rectangle. The manual annotation data are

stored in an annotation format.txt file, which contains the

coordinate and category information of the annotation box in

each image. Each annotation box was recorded with the

coordinates of the center point (xmin, ymax) of the bounding box

and the width and height (w,h) of the bounding box to determine
TABLE 1 Different strategies for plant growing practices and the dates of image collection.

Strategies for plant growing practices Date of image collection

Cultivar Planting densities/cm2 N fertilizers/kg/ha Booting stage Heading stage Filling stage

Exp. 1
Huahang No.51;
Huahang No.57;
Guang8you2156

30×14;
30×21;

N0:0;
N1:45;
N2:90;
N3:180;
N4:270;

17 June 2021 28 June 2021 11 July 2021

Exp. 2
Y liangyou3089;
Huahang No.57;
Guang8you2156

30×14;
30×21;

N0:0;
N1:90;
N2:180;
N3:270;
N4:360;

11 October 2021 18 October 2021 26 October 2021
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
the relative position of the rice panicle targets in the image. Since

rice panicles in different growth stages differ in appearance, different

color boxes were used to label the different growth stages of rice

panicles. For example, the red box, black box, and blue box were

used to label the rice panicle of the booting stage, heading stage, and

filling stage, respectively.

Third, to improve the generalization ability of the deep learning

model, online data augmentation was used in the experiment with

the application of various transformations to the images during the

training process, increasing the diversity of the image samples. Five

methods were used for data augmentation, including horizontal

flipping, vertical flipping, blurring, random changes to hue and

saturation, and random changes to brightness and contrast.

Finally, rice panicle images collected at three growth stages in

Exp. 2 formed the training and validation sets, while the rice panicle

images collected at three growth stages in the Exp. 1 formed the test

sets. Specifically, 433, 328, and 323 original images were collected at

the booting, heading, and filling stages in Exp.2, respectively, resulting

in a total of 1,084 images. The image cropping process resulted in

each original image being cropped into five sub-images, with 2,165,

1,640, and 1,615 sub-images obtained for each growth stage,

respectively, resulting in a total of 5,420 sub-images. The cropped

images were divided into training and validation sets according to an

8:2 ratio, with 4,336 and 1,084 sub-images for training and validation,

respectively. Independent test sets were collected from three growth

stages in Exp. 1, with 40 original images collected at each growth

stage, resulting in a total of 120 original images. After image cropping,

the test set contained a total of 600 sub-images.
2.2 Construction of rice panicle detection
model based on lightweight YOLOv8

YOLOv8 is a regression-based one-stage target detection

algorithm that integrates various optimization strategies to

balance speed and accuracy. YOLOv8 is divided into s, x, l, m,
Frontiers in Plant Science 04
and n versions. They have similar network structures with

different depths and widths. YOLOv8n has the smallest structure

and the shallowest depth and thus has the fastest running

speed. In this study, YOLOv8n was selected as the base network

to achieve fast and accurate detection of rice panicles in a

complex field environment. This study further investigated the

improvement method of introducing a lightweight network to

make it more suitable for deployment on mobile devices with low

computing power.

2.2.1 YOLOv8n
The YOLOv8n network structure consists of four parts: input,

backbone, neck, and prediction, as shown in Figure 2. The input uses

mosaic data enhancement, Mixup, Random Perspective, and HSV

(Hue, Saturation, Value) Augment to process the dataset. The

CSPDarknet53 was adopted as the backbone for feature extraction

and aggregation. The neck includes a feature pyramid network (FPN)

and a pyramid attention network (PAN) to fuse the shallow features

extracted from the backbone with the original depth features to

improve feature extraction and pass the image features to the final

detection prediction layer. The prediction achieves target detection

and category prediction using the GIOU Loss function.

The backbone component primarily focuses on feature

extraction from images and utilizes the CSPDarknet-53 network

architecture, which comprises CBS, C2f, and SPPF (Spatial Pyramid

Pooling-Fast) modules.

The backbone of the CSPDarknet53 network in YOLOv8 consists

of several key components, including the CBL, C2f, and SPPF

modules, as illustrated in Figure 2. The CBL module is

fundamental to the YOLOv8 architecture, integrating convolutional

layers, batch normalization, and the SiLU activation function to

facilitate effective feature extraction and dimensionality reduction.

It incorporates more skip connections and additional split operations,

enabling superior feature information transmission. This module

adopts design principles from both Bottleneck and ELAN, allowing

for effective feature transformation and fusion while addressing
FIGURE 1

Field experiments. (A) Field plot experiments, (B) image acquisition.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
convergence issues associated with deeper networks. The SPPF

module is strategically positioned between the feature extraction

and feature fusion layers. It begins by halving the number of input

channels through standard convolution and subsequently divides the

output into four branches. Max pooling is applied to generate feature

maps at different scales, followed by a concatenation operation that

doubles the input channel count. By utilizing three 5 × 5 convolution

kernels, SPPF significantly reduces computational load while

enhancing detection efficiency, achieving speeds that are

approximately twice as fast as the previous SPP module used in

previous-generation algorithms.

2.2.2 YOLO_ECO construction
2.2.2.1 The improvement of backbone

In this study, the lightweight module C2f-Faster Block-Effective

Multi-scale Attention (C2f-Faster-EMA) was used to replace C2f of

the original YOLOv8n backbone network. The structures of C2f and

C2F-Faster-EMA are illustrated in Figure 3. The C2F-Faster-EMA

structure was inspired by the Partial Convolution (PConv) concept

from FasterNet. This modification aimed to reduce computational

load. In the C2F-Faster-EMA module, convolution was applied to

only 1/4 of the input channels, while the remaining 3/4 remain

unchanged. The convolved channels were then concatenated with

the unprocessed channels, ensuring that the output retains the

original number of channels and feature map dimensions. This

design minimized redundant computations while preserving
Frontiers in Plant Science 05
essential channel information. Although 3/4 of the channels were

not convolved, subsequent CBS operations and 1 × 1 convolutions

effectively extract useful information, enhanced by the Effective

Multi-scale Attention (EMA) module (Ouyang et al., 2023).

The structure of EMA is illustrated in Figure 4. The EMAmodule

is designed to preserve channel-specific information while reducing

computational overhead. It reshapes some channels into the batch

dimension and divides the channel dimension into multiple sub-

features, ensuring that spatial semantic features are evenly distributed

within each feature group. Additionally, by encoding global

information to recalibrate channel weights in each parallel branch,

the outputs from the two parallel branches are further aggregated

through cross-dimensional interactions to capture pixel-level paired

relationships. The EMA module employs two parallel sub-networks:

a 1 × 1 branch and a 3 × 3 branch. The 1 × 1 branch is used to extract

global information from channel features, while the 3 × 3 branch

captures dependencies between local features. By performing cross-

space learning on the outputs of these two branches, EMA effectively

aggregated global and local features and models long-range

dependencies across different scales.

In YOLOv8’s C2f module, the Bottleneck was replaced by C2F-

Faster-EMA. The first CBS module outputs 2 × c channels, which are

split into two parts of c channels each and stored in a list. Each

C2FFaster-EMA module processes the last element of this list, storing

its output back into y for the next module. After passing through n

C2F-Faster-EMA modules, the elements in the list were concatenated
FIGURE 2

Structure of YOLOv8n (You only look once).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
along the channel dimension, resulting in a (2 + n) × c feature map,

which was then compressed to c 2 channels via the second

CBS module.

While YOLOv8 initially utilized multiple Bottleneck modules to

fuse multi-scale features, which improved feature expressiveness

and detection accuracy, each addition increased computational

overhead. By replacing Bottlenecks with C2F-Faster-EMA, we

significantly reduced computational complexity, as each Faster

Block only convolves 1/4 of the channels, thereby lowering the

cost of subsequent 1 × 1 convolutions. This approach, validated by

experimental results, demonstrated a substantial improvement in

inference speed in YOLOv8.

2.2.2.2 The improvement of the neck structure

The neck structure of YOLOv8 employs standard convolution

and the C2f module, effectively integrating low-level detailed features

with high-level abstract features. However, this mechanism increases
Frontiers in Plant Science 06
the model’s parameter count and computational burden. Therefore,

this paper introduces an innovative network architecture, SlimNeck,

to alleviate the complexity of the model while maintaining accuracy

(Li et al., 2024).

SlimNeck comprised the GSConv module and the cross-stage

partial network module VoV-GSCSP. The design of the GSConv

module first reduces the channel count by half through standard

convolution, followed by further processing with Depthwise

Separable Convolution (DSConv), and subsequently combines the

outputs using a Concat module. The structure of GSConv is shown

in Figure 5. Finally, a shuffle module is applied to distribute local

feature data evenly among different channels, thereby restoring the

initial channel count. This approach minimizes computational

overhead while preserving rich channel information, with the

computational cost of GSConv being approximately 60%−70%

that of standard convolution, resulting in a savings of 30%−40%

in computational resources.
FIGURE 4

Structure of Effective Multi-scale Attention (EMA).
FIGURE 3

Structure of Cross-Stage Partial Network (C2f) and C2F-Faster- Effective Multi-scale Attention (C2F-Faster-EMA) Modules: (A) Bottleneck structure,
(B) C2f module, (C) Faster Block- Effective Multiscale Attention (Faster Block-EMA) structure, (D) C2F-Faster-EMA module.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
The VoV-GSCSP module further reduces computational and

architectural complexity while preserving model accuracy. By

replacing traditional CSP (standard convolution) with VoV-

GSCSP, the average floating-point operations (FLOPs) are

reduced by 15.72%, significantly enhancing computational

efficiency. As shown in Figure 6A, this structure divides the input

feature information into two streams: one stream is processed

through 1×1 convolution, while the other stream undergoes

processing via the GS Bottleneck. The outputs from these two

streams are then concatenated and subjected to further convolution

to modify the output channels. This design enhances the mixing

and cross-flow of gradients from different locations, thereby

improving the learning capability of the network.

By adopting the lightweight convolution GSConv to replace

standard convolution, we used a one-shot aggregation method to

design the VoV-GSCSP module, as shown in Figure 6B. The Concat
Frontiers in Plant Science 07
module is employed to connect features from different stages,

facilitating the fusion of features across layers. Compared to standard

convolution, GSConv captures richer feature representations with

fewer parameters. By expanding the receptive field and increasing

network depth, the VoV-GSCSP structure generates deeper feature

maps, enhancing feature extraction capability.

In summary, the design of SlimNeck not only enables efficient

feature extraction and fusion but also ensures a significant reduction in

computational complexity while maintaining high detection accuracy.

This allows the YOLO-RPD model to achieve commendable

lightweight performance while preserving excellent detection precision.

2.2.2.3 The improvement of the detection head

We present a lightweight detection head called the Lightweight

Shared Convolutional Detection (LSCD), with its network

architecture illustrated in Figure 7. A, effectively leverages the
FIGURE 6

(A) Group Shuffle (GS) Bottleneck module, (B) VoV-Group Shuffle Cross Stage Partial (VoVGSCSP) module.
FIGURE 5

Structure of Group Shuffle Convolution (GSConv).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
advantages of Group Normalization (GroupNorm) and shared

convolution to minimize computational load and complexity

while maintaining efficient feature integration.

GroupNorm divides the input image, sized N, C, H, andW, into

several groups, computes the variance and mean for each group,

and normalizes all data within that group. Since GroupNorm’s

calculations depend on the number of channels C rather than the

batch size N, it is particularly useful in scenarios where memory is

constrained or when the sample size is small.

Shared convolution is a core concept in CNNs that allows the

same convolution kernel to apply identical weight parameters across

different spatial locations. This mechanism significantly reduces the

number of parameters that need to be trained, enhances

computational efficiency, and lowers the risk of overfitting. Shared

convolution effectively extracts local features while preserving spatial

structural information, thereby improving the model’s generalization

ability. By efficiently extracting local features while preserving spatial

structure, shared convolution enhances the model’s generalization

ability. The Conv GN 1 × 1 module represents the combination of

Group Normalization and convolution, with a kernel size of 1×1.

Two yellow Group Normalization convolution modules (Conv GN

3×3) share weights, while three blue prediction box convolution

modules (Conv Box) and three red classification convolution

modules (Conv Cls) also share weights. Each Conv Box module is

followed by a Scale module, which is used to match the detection of

targets at different scales. The structure diagram of the improved

YOLO_ECO is shown in Figure 8.
2.3 Design of the Android platform

2.3.1 NCNN
NCNN, an open-source high-performance neural network

forward computing framework developed by Tencent Youtu Lab,

is optimized for mobile devices. This framework has achieved

exceptional computational speeds on mobile CPUs, supports

multiple platforms, including Android and iOS, and is devoid of

third-party dependencies, facilitating integration. NCNN supports a
Frontiers in Plant Science 08
variety of mainstream convolutional neural network architectures,

including VGG, ResNet, and YOLOv8, and is characterized by low

memory usage and a compact library size, with the entire library

being less than 500 K in size. It also supports 8-bit quantization and

custom layer extensions, offering a user-friendly model conversion

tool that simplifies the application of deep learning models in

practical scenarios. Due to its efficiency and flexibility, NCNN has

been extensively applied in the domains of image classification and

object detection. First, the parameters of the YOLOv8 algorithm

structure are adjusted to meet the requirements of mobile software

development. Subsequently, the export.py tool provided by the

YOLO algorithm is utilized to generate a torchscript format file,

facilitating the transfer and storage of the trained model across

different frameworks. Following this, parameter files (.param) and

compiled binary files (.bin) are generated through PyTorch Neural

Network exchange (PNNX), with certain parameters undergoing

correction. Finally, the corrected parameters are integrated into the

NCNN framework within Android Studio, connecting to a Xiaomi

smartphone running a customized MIUI system based on the

Android operating system.

2.3.2 YOLO-RPD software development
This paper developed an Android application called YOLO-RPD

for real-time detection of rice panicles and recognition of rice growth

stages. The application integrates a lightweight deep learning model,

the YOLO_ECO, and different models for rice panicle detection,

which can efficiently run offline or online on Android devices. The

software design of YOLO-RPD consists of four functional modules:

image selection, rice panicle detection, result display, and real-time

detection. The application interface is shown in Figure 9.

In the image selection module, rice panicle images were first

selected on the mobile phone through the photo album and were

displayed in the middle of the main interface. To adapt to different

usage scenarios, different detection deep learningmodels can be quickly

switched using the radio buttons. First, YOLOv8 and lightweight

YOLOv8 (YOLO_ECO) can be chosen, and then input image sizes

can be adjusted to the fixed resolution size of 1280 × 1280 pixels or 640

× 640 pixels. Moreover, different quantization models, namely FP32,
FIGURE 7

Illustrates the structure of LSCD (Lightweight and Scalable Convolutional Detector).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
FP16, and INT8, can be selected. The results display module displays

predicted bounding boxes of rice panicles in the image, and the output

log of the results is also shown. The output log includes the number of

detected rice panicles, the number of detected rice panicles in different

growth stages, the rice growth stage, and the running time. In

particular, the color of the predicted bounding boxes represents the

growth stages of the rice panicles. In our study, the predicted boxes

with the most colors indicate the growth stages in the rice images. The

user can click on the save result button to save the predicted image to

their phone’s photo album and zoom in to check the model’s

performance. The users can also click on the hidden probability

button to hide the growth stage label and click show initial image to

see the original picture. In the real-time detectionmodule, users can use

the camera of the Android phone to acquire the rice panicle images and

perform real-time detection of the rice panicles in the field. The

predicted bounding boxes of rice panicles in the image and the

output log of the results are displayed on the screen. The confidence

threshold and IoU threshold can be modified to observe the different

effects on the performance of rice panicle detection.
2.4 Experimental platform

In this study, YOLOv8n, one of the YOLOv8 series, and the

lightweight YOLOv8n (YOLO_ECO) were used as the base models,

and a transfer learning approach was employed to train a lightweight
Frontiers in Plant Science 09
model suitable for real-time detection of rice panicles. In this experiment,

a computer with a Intel i7-13700K CPU @ 4.85 GHz processor,

NVIDIA GeForce RTX 4090Ti GPU (11GB video memory), 64 GB

memory, and 2 TB mechanical hard disk was used. The operating

system was Windows 10 64-bit. The programming framework was

Python 3.8, and the deep learning framework was PyTorch1.8.1.

In order to evaluate the influence of different image sizes on

model acceleration, two different image sizes (1280 pixels and 640

pixels) were used in this study. During training, the optimizer uses

Stochastic Gradient Descent (SGD) and cosine learning rate

attenuation strategies. The network training parameter settings

include an initial learning rate of 0.01, a momentum of 0.937, a

weight attenuation of 0.00005, a batch size of 16, a step size of 150,

and a learning rate of 0.1.
2.5 Evaluation metrics

In deep learning, evaluation metrics are the standards used to

evaluate the performance of models. Among them, precision and

recall are two commonly used evaluation metrics, and their

calculation formulas are shown in Equations 1 and 2, respectively.

The average precision (AP) and mean average precision (mAP) are

also used to assess the performance of the models. The AP value

represents the area under the precision-recall (P − R) curve, ranging

from 0 to 1. The higher the AP value, the better the accuracy and
FIGURE 8

Structure of YOLO-Efficient Computation Optimization (YOLO_ECO), the lightweight YOLOv8.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
performance of the model, and the calculation formula is shown in

Equation 3. The mAP is the average of the AP values for the three

growing stages and is used as the final performance indicator, with a

calculation formula shown in Equation 4. FLOPs is an important

metric for evaluating the performance of processors or neural

network models. It represents the total number of floating point

operations required for a single forward pass of the model. Lower

FLOPs typically mean faster inference, making the model more

suitable for deployment on resource-constrained devices such as

mobile or embedded systems.

PS = Precision (S) =
TP

TP + FP
(1)

RS = Recall (S) =
TP

TP + FN
(2)

APS =
Z 1

0
P(RS) dRS (3)

mAP =
1
3o

3
1APS (4)

where S represents the three growth stages of rice: booting stage,

heading stage, or filling stage. TP stands for true positive; FP stands

for false positive, and FN stands for false negative.
3 Results and discussion

3.1 Data augmentation for enhanced
model performance

To enhance our model’s detection performance in complex

environments and improve its generalization capability, we

introduced various data augmentation techniques. These

techniques—mosaic, brightness increase, grayscale conversion,

and flipping—were designed to simulate diverse real-world

scenarios and bolster the model’s robustness. We set up five

experimental groups, each incrementally incorporating different

augmentation methods. The results are shown in Table 2. The

optimal detection performance was achieved in Group E, where the

mAP reached 87.2%. Specifically, as augmentation techniques

accumulated, detection accuracies for the booting, heading, and

filling stages of rice panicles increased from 89.2%, 85.2%, and
Frontiers in Plant Science 10
69.3% in Group A to 94.0%, 90.3%, and 77.3% in Group E,

respectively. The results demonstrate that a well-considered

combination of augmentation strategies can significantly enhance

the model’s performance under challenging conditions such as low

light and occlusion. This approach provides an effective means to

improve the model’s generalization ability.
3.2 Ablation studies

To assess the efficacy of the proposed improvements in this

study, four sets of ablation experiments were conducted in the rice

panicle dataset. The original YOLOv8n network served as the

baseline, with experimental conditions and training parameters

kept consistent throughout the evaluation. The validation criteria

encompass mAP, the number of parameters, FLOPs, and the model

size. The experimental results are presented in Table 3, where a ‘√’

denotes the implementation of the corresponding method. To

control the variables, the number of epochs for all models was set

to 150.

YOLOv8n, as the baseline model, has 168 network layers, 3 M

parameters, a mAP@ 0.5 of 85.2%, FLOPs of 8.1 G, and a model size

of 6.2 MB. Strategy 1 introduces the C2f-Faster-EMA module,

which increases the mAP@0.5 to 85.4%, a 0.2 percentage point

improvement over YOLOv8n. Furthermore, FLOPs decreases to 6.3

G, the parameter count is reduced to 1.6 M, and the model size is

significantly reduced to 3.6 MB, a 41.9% reduction compared to

YOLOv8n. Strategy 2 introduces the SlimNeck module, achieving

an mAP of 86.1%, a 0.9 percentage point improvement over

YOLOv8n. FLOPs decrease to 7.4 G, while the parameter count is

2.8 M, marking a 6.5% reduction compared to YOLOv8n. Strategy 3

integrates the LSCD module, reaching an mAP of 85.6%, a 0.4

percentage point improvement over the baseline. This strategy

maintains efficiency with FLOPs at 6.6 G and a model size of 5.4

MB, which is a 12.9% reduction compared to YOLOv8n, alongside

having 2.4 M parameters. Strategy 4 combines C2f-FasterEMA and

SlimNeck, with the model having 2.4 M parameters and an mAP of

85.6%, a 0.4 percentage point improvement over YOLOv8n. FLOPs

is 6.2 G, and the model size is further reduced to 3.5 MB, a 43.8%

reduction compared to YOLOv8n. Strategy 5 integrates C2f-Faster-

EMA, SlimNeck, and LSCD, reducing the parameter count to 1.8 M,

FLOPs to 1.8 G, and achieving an mAP of 87.2%, which is a 2

percentage point improvement over YOLOv8n. FLOPs is reduced
TABLE 2 Test results of YOLO_ECO trained on different datasets.

Experimental group Combination of training sets AP(%)

Booting Heading Filling

A Original images + mosaic 89.2 85.2 69.3

B A + Increase brightness 90.3 86.8 71.7

C B + Grayscale 91.7 87.6 75.8

D C + Flipping 92.5 88.2 76.2

E All augmentations combined 94.0 90.3 77.3
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
by 77.8%, and the model size is further reduced to 3.1 MB, a 50%

reduction compared to YOLOv8n. In summary, Strategy 3, the

proposed model YOLO_ECO, performs best across all dimensions.

Despite an increase in the number of layers, the mAP improves by 2

percentage points to 87.2%, the highest among all strategies. At the

same time, FLOPs are significantly reduced by 77.8%, and the

model size is reduced by 50%, ensuring efficient inference speed and

smaller storage requirements.
3.3 Evaluation of different rice panicle
detection models

Deep learning-based object detection models are typically

divided into two categories: one-stage and two-stage networks.

Two-stage networks, such as Faster RCNN (Faster Region-based

Convolutional Neural Network) (Ren et al., 2017) and Cascade (Cai

and Vasconcelos, 2018), first generate candidate boxes through an

RPN and then predict the location and class of objects. One-stage

networks, as RTMDet (Real-Time Multi-Scale Detection) (Zhang

et al., 2023) and the YOLO series (Redmon et al., 2016), perform

object detection directly. To compare the effectiveness of different

deep learning models for detecting rice panicles in field

environments, this study selected Cascade, Faster RCNN,

RTMDet, and YOLO series models for the performance

evaluation. All the models were trained and evaluated over 150

epochs, and the mAP@50 curve is shown in Figure 10.

Table 4 presents the performance of these eight models. The

results indicate that the Cascade network achieved the highest mAP

value of 86.6% among the two-stage networks; however, it has a

parameter count of 69.18 M, FLOPs of 205G, and a model size of

56.1 MB, making it quite large. Among the one-stage networks,

YOLOv8n achieved a high mAP of 85.2% with a parameter count of

3.05 M, FLOPs of 8.1 G, and a model size of 6.2 MB, and thus, it

remains relatively resource-intensive.

In contrast, the model proposed in this study demonstrates

outstanding performance among all the networks. The proposed

model, YOLO_ECO, achieves the highest mAP of 87.2%, 2% and

0.6% higher than YOLOv8n and Cascade, respectively. In addition,

YOLO_ECO demonstrated significantly optimized parameter

count, computational demand, and model size. Compared to

YOLOv5s, our model’s size is reduced by 82.9% (from 18.1 MB
Frontiers in Plant Science 11
to 3.1 MB), parameter count is reduced by 98.0% (from 91.12 M to

1.81 M), and FLOPs is reduced by 82.8% (from 23.8 G to 4.1G).

While YOLOv11 improves mAP by 1% over YOLO_ECO, our

model significantly enhances efficiency. It reduces parameters by

0.77M (30%), FLOPs by 2.2G (35%), and model size by 40%,

highlighting its optimized performance without compromising

accuracy. Thus, the proposed model maintains high detection

accuracy while substantially lowering computational resource

requirements, making it particularly suitable for practical

applications in field environments.
3.4 Evaluation of rice panicle detection
using YOLO-RPD

In this study, an Android smartphone application called YOLO-

RPD was developed for rice panicle detection and rice growth stage

detection. YOLOv8n and YOLO_ECO were trained and converted

to NCNN models, which were then further deployed using different

strategies, including input image size and quantization method. The

model size and detection performance of different models deployed

in YOLO-RPD were comprehensively analyzed. Simultaneously, to

distinguish between different deep learning models easily, the

models were named after the feature network, quantization

method, and rescale size. For example, YOLOv8n_INT8_640

represented a model that used the YOLOv8n network, INT8

quantization method, and a rescale image size of 640.

3.4.1 Comparison of YOLO-ECO and YOLOv8n
As shown in Table 5, the most important factor that affects the

average precision (AP) was the feature extraction network.

YOLO_ECO performed better than YOLOv8n, especially in

detecting rice panicles in the filling stage, where images had more

complicated rice phenotypes with rice overlapping and adhered

scenes. With the same deployment strategy, including an input

image size of 1280 and FP32 quantitative model, the proposed

model achieved an average precision of 96.4%, 93.2%, and 81.5% in

detecting rice panicles in the three growth stages, respectively,

which was 2.7%, 3.9%, and 3.4% higher than the YOLOv8n. This

resulted in an overall mAP increase of 3.3%.

Figure 11 shows the comparison detection results between the

two architectures. During booting stage observations, YOLOv8n
TABLE 3 Performance evaluation of four deep learning models for rice panicle detection.

Model
C2f-Faster

EMA
Slim
Neck

LSCD
Network
Layers

Parameters
(M)

mAP@0.5
(%)

FLOPs (G)
Model size

(M)

YOLOv8n – – – 168 3 85.2% 8.1 6.2

Strategy 1 ✓ 317 1.6 85.4% 6.3 3.6

Strategy 2 ✓ 244 2.8 86.1% 7.4 5.8

Strategy 3 ✓ 202 2.4 85.6% 6.6 5.4

Strategy 4 ✓ ✓ 300 2.4 86.7% 6.2 3.5

Strategy 5 ✓ ✓ ✓ 484 1.8 87.2% 4.1 3.1
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
produced two missed and two duplicate detections versus a single

missed detection by our model. In particular, YOLO_ECO can

accurately detect two occluded panicles and small rice panicles

occluded by leaves (the white rectangle and circle in Figure 11A).

In the heading stage, the YOLOv8n model incorrectly recognized two

heading-stage rice panicles as the filling stage and failed to detect one

rice panicle. The proposed model correctly detected all the heading

stage rice panicles and only one small rice panicle was undetected by

it (Figure 11D). In the filling stage, as the rice grows, the phenotype of

rice becomes complicated, causing serious occlusion scenarios.

YOLOv8n cannot accurately detect panicles partially occluded by

leaves, causing duplicate detection (the white rectangle in

Figure 11E). Two leaves were also falsely detected as panicles by

YOLOv8n (the white hexagons in Figure 11E). In addition, one

panicle was not detected by YOLOv8n. However, our model falsely
Frontiers in Plant Science 12
detected one leaf as a rice panicle and had two missed detections.

Experimental results confirm YOLO_ECO’s superior detection

accuracy and compact architecture on mobile devices, particularly

for overlapping and small panicles. The enhanced performance stems

from improved feature extraction.

3.4.2 Comparison of different quantization
models and input image sizes

As shown in Table 5, the quantization model had a more

significant impact on model size than the precision. When

YOLOv8n used an input image size of 1280, the model sizes of

INT8, FP16, and FP32 were 3.0 MB, 6.1 MB, and 12.2 MB,

respectively. Compared with FP32, the model size of FP16 and

INT8 were compressed by 50% and 75.4%, respectively. Compared

with FP32, the mAP values of FP16 and INT8 were slightly
FIGURE 9

Interface of the YOLO-Rice Panicle Detection (YOLO-RPD).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
decreased by 2.0% and 2.9%, respectively. Similarly, when only

quantized models were considered in the comparison between

YOLOv8n and YOLO_ECO, a similar variation trend can be

observed as that in Table 3.

YOLO_ECO_FP32_1280 achieved AP values of 96.4%, 93.2%,

and 81.5% for the booting stage, heading stage, and filling stage,

respectively, with an overall mAP of 90.4%. In comparison,

YOLOv8n_FP32_1280 achieved AP values of 93.7%, 89.3%, with

an overall mAP of 88.1%. This indicates that YOLO_ECO

outperformed YOLOv8n in all growth stages, particularly in the

booting stage. Additionally, YOLO_ECO_FP32_1280 showed a

3.5% increase in mAP compared to YOLO_ECO_FP32_640

despite having a similar model size. This demonstrates that using

higher-resolution input images can significantly improve detection

accuracy when computational resources allow.

However, for an input image size of 640, INT8 quantization

reduced the mAP of YOLOv8n by only 0.7% compared to FP16
Frontiers in Plant Science 13
quantization while reducing the model size by 52.2%. For

YOLO_ECO, INT8 quantization reduced the mAP by 1.8%

compared to FP16, with a model size reduction of 52.7%. This

suggests that YOLOv8n is less sensitive to INT8 quantization in

terms of accuracy, whereas YOLO_ECO experiences a slightly

greater accuracy drop after quantization. This may be attributed

to the newly added convolutional operations in YOLO_ECO, which

may not be fully compatible with existing quantization tools,

requiring further optimization.

3.4.3 Performance evaluation on mainstream
Android devices

The performance evaluation of different lightweight models on

mainstream Android devices is summarized in Table 6. In the

experiment, “peak/valley” denotes the highest and lowest FPS

observed during a 30-minute run, while “Average Detection Speed”

refers to the average time required to detect 100 images. The

experimental results demonstrate that both the YOLOv8n and

YOLO_ECO models exhibit satisfactory real-time detection

capabilities on mobile platforms. On the Xiaomi 11 device, which

is equipped with a Snapdragon 888 processor, the YOLOv8n model

achieves a peak frame rate of 19.68 FPS, with an average detection

time of 71 ms per image. In comparison, the optimized YOLO_ECO

model improves efficiency, slightly increasing the peak frame rate to

20.87 FPS while reducing the average detection time to 64 ms.

Hardware upgrades further enhance computational performance;

on the Xiaomi 14, which is powered by an advanced Snapdragon 8

Gen 3 processor, YOLOv8n reaches a peak frame rate of 22.37 FPS,

with an average latency of 59 ms. The YOLO_ECO model achieves a

peak frame rate of 23.76 FPS and an average processing time of 53 ms

on the same device. The observed valley frame rates (ranging

from 6.82 to 9.21 FPS) indicate occasional performance

fluctuations during complex scene parsing, which suggests a

potential area for future optimization. These quantitative

comparisons validate the proposed YOLO_ECO architecture,
TABLE 5 Performance evaluation of YOLO-RPD.

Models Quantitative
model

Input image
size

AP (/%) mAP (/%) Model size
(/)MB

Booting stage Heading stage Filling stage

YOLOv8n

FP32 1280 93.7 89.3 78.1 88.1 12.2

FP16 1280 92.6 88.0 77.8 86.1 6.1

INT8 1280 91.4 86.9 77.4 85.2 3.0

FP32 640 91.9 88.7 74.7 85.1 11.8

FP16 640 91.3 87.5 73.1 83.9 5.9

INT8 640 90.5 86.8 72.4 83.2 2.8

YOLO_ECO

FP32 1280 96.4 93.2 81.5 90.4 7.5

FP16 1280 94.7 91.3 80.9 88.9 4.1

INT8 1280 93.2 90.4 78.3 87.3 1.9

FP32 640 94.0 90.3 76.4 86.9 7.1

FP16 640 93.5 89.4 74.2 85.7 3.6

INT8 640 92.3 87.2 73.1 83.9 1.7
TABLE 4 Performance evaluation of four deep learning models for rice
panicle detection.

Model
mAP
(/%)

Parameters
(M)

FLOPs
(G)

Model
size (/MB)

Faster
RCNN

85.1% 413 178 108

RTMDet 84.1% 48.76 8.033 40.2

Cascade 86.6% 69.18 205 56.1

YOLOv3s 57.4% 61.54 77.46 62.2

YOLOv5s 83.4% 91.12 23.8 18.1

YOLOX_tiny 78.9% 5.03 7.552 71.3

YOLOv8n 85.2% 3.05 8.1 6.2

YOLOv11n 87.3% 2.58 6.3 5.3

YOLO_ECO 87.2% 1.81 4.1 3.1
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
which maintains superior computational efficiency while preserving

detection accuracy, making it particularly suitable for resource-

constrained agricultural mobile applications that require

continuous field monitoring.
3.5 Recognition of rice growth stage using
YOLO-RPD

In addition to rice panicle detection, the YOLO-RPD identifies

the growth stage of rice based on the colors of the detection box.

Practically, there are significant changes in the external

morphological structure of rice panicles in key growth stages, such

as shape, color, size, texture, and posture. During the process of image

labeling, different colors of annotation boxes were used to identify the

growth stages of the rice. Thus, the color of the predicted boxes after

model prediction indicated the rice growth stage. As shown in

Figure 12, after the model prediction, the number of rice panicles
Frontiers in Plant Science 14
in the predicted images was counted according to the color of the

detection boxes. The results of rice growth stages were displayed at

the bottom of the interface, including the number of different

detection boxes, growth stage, and the inference time. Figure 13A

shows that there were 28 rice panicles detected in the image, all of

which were labeled with red boxes indicating the booting stage.

Therefore, the rice in the image was recognized as being in the

booting stage. Figure 13B shows that there was a total of 23 rice

panicles detected in the image, among which two were labeled with

blue boxes indicating the heading stage. Thus, the rice in the image

was identified as being in the heading stage. Figure 13C shows that

there was a total of 31 rice panicles in the image, all of which were

labeled with black boxes indicating the filling stage, therefore, the rice

in the image was identified as being in the filling stage.

Figure 13 shows the confusion matrix results of rice growth

stage recognition of different models using YOLO-RPD.

Independent test sets were collected in the three growth stages in

Exp.1, with 200 images for each growth stage. In Figure 13, the first
FIGURE 10

Performance evaluation of eight deep learning models for rice panicle detection.
TABLE 6 Performance comparison of YOLOv8n and YOLO_ECO models on different devices.

Handset model Processor Model
FPS Average detection speed

(ms/images)Peak Valley

Xiaomi 11 Qualcomm Snapdragon 888
YOLOv8n 19.68 6.82 71

YOLO_ECO 20.87 7.34 64

Xiaomi 14 Qualcomm Snapdragon 8 Gen 3
YOLOv8n 22.37 7.93 59

YOLO_ECO 23.76 9.21 53
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
and third columns are the results of the YOLO_ECO models, while

the second and fourth columns are the results of the YOLOv8n

models. The first and the second columns are results with an input

image size of 1,280, while the third and fourth columns are the
Frontiers in Plant Science 15
results with an input image size of 640. The first, second, and third

rows are different quantization models of INT8, FP16, and FP32,

respectively. YOLO-RPD achieved the best average precision of

99.7% using YOLO_ECO_INT8_1280. Specifically, YOLO_ECO
FIGURE 11

Comparison of the detection results of YOLOv8n (the first column) and YOLO_ECO (the second column). Rice panicles are in the booting stage (A,
B), heading stage (C, D), and filling stage (E, F). The red, black, and blue rectangles refer to rice panicle detected as booting, heading, and filling
stage, respectively. White circles, hexagons, and rectangles have been manually marked, indicating the missed, false, and duplicate detected rice
panicles, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
models slightly outperformed the YOLOv8n models. Models with a

1,280 input image size slightly outperformed those with a 640 input

image size. The variation of the performance of the models in rice

growth stage recognition was similar to that of the rice panicle

detection. However, the quantization models showed little impact

on the precision of rice growth stage recognition. According to

comprehensive analysis, the YOLO-RPD application showed

satisfactory performance in the detection of rice panicle and

identification of rice growth stages.
3.6 Performance in dense and occluded
conditions evaluated using heatmaps

We employed the HiResCAM method to generate interpretive

heatmaps to evaluate model performance in dense rice panicle

growth conditions and severe occlusion scenarios (Draelos and

Carin, 2020). As a class-specific explanation method, HiResCAM

ensures exclusive highlighting of the regions actually utilized by the

model for its predictions, thereby guaranteeing accurate

representation of the model’s attention patterns while avoiding

the inherent limitations of traditional methods such as Grad-CAM.

The color distribution in these heatmaps visually demonstrates the

model’s attention allocation, where red denotes high-attention

regions and blue corresponds to low-interest areas. For visual

clarity, only heatmaps within the bounding boxes are displayed.

Figure 14 presents a comparative analysis of the heatmaps produced

by YOLOv8 and YOLO_ECO, with the first column containing

original images, the second column displaying YOLOv8 heatmaps,

and the third column presenting YOLO_ECO visualizations. In
Frontiers in Plant Science 16
these visualizations, white circles identify missed detections, while

white diamonds indicate false positives. In particular, Figures 14A,

D demonstrate challenging cases of overlapping rice panicles

in high-density arrangements, where distinct identification

becomes difficult. Notably, Figure 14B reveals both one missed

detection and one false positive in YOLOv8n’s output, whereas

Figure 14E shows an additional missed detection. A comparative

analysis of the heatmaps clearly indicates that YOLO_ECO exhibits

substantially deeper attention to rice panicles compared

with YOLOv8n, suggesting an enhanced feature network focus

on critical regions. The fainter areas in YOLOv8n’s heatmaps

reflect its diminished recognition capability under occlusion

conditions, whereas YOLO_ECO demonstrates superior feature

extraction performance.
3.7 Comparative analysis in the relevant
studies of rice panicle detection

Based on the existing literature, our proposed YOLO-ECOmodel

demonstrates a balanced trade-off between detection accuracy, model

complexity, and real-world deployment feasibility. A comparison of

different models for rice panicle detection and growth stage

recognition is shown in Table 7. Compared to Cai et al. (2024),

who utilized a MobileNetV3-enhanced YOLOv8 model for rice

growth stage recognition, our model achieves a similar level of

accuracy (87.2% vs. 84%) while significantly reducing the number

of model parameters (1.81M vs. 6.6M), enhancing computational

efficiency and deployment feasibility. Additionally, unlike Song et al.

(2024), who optimized YOLOv8 for lightweight rice panicle detection
FIGURE 12

Identification results of rice growth stages using YOLO-RPD: (A) booting stage; (B) heading stage; (C) filling stage.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
with a parameter count of 0.98M but lacked growth stage recognition

capability, our model balances both detection tasks while maintaining

a compact architecture.

Compared to YOLOv5-based approaches, Sun et al. (2024) and

Wang et al. (2022) achieved high accuracy but focused solely on

panicle detection without growth stage classification. Tan et al. (2023)

and Qiu et al. (2024) integrated growth stage recognition, yet their

models either lack parameter efficiency or deployment considerations.

Notably, our YOLO-ECO model, similar to Cai et al. (2024) and Sun

et al. (2024), supports Android application deployment, enabling real-

time monitoring for practical agricultural applications.

In summary, YOLO-ECO outperforms existingmethods in terms

of lightweight design, deployment flexibility, and balanced detection

capabilities. It offers an effective solution for real-world rice panicle
Frontiers in Plant Science 17
monitoring while ensuring computational efficiency and accuracy in

both panicle detection and growth stage recognition.
3.8 Discussion, limitations, and future
works on real-time rice yield estimation

This study is the first of its kind to provide a smartphone Android

application (YOLO-RPD) that can detect rice panicles and identify the

rice growth stage in rice images offline or in those acquired online.

Moreover, YOLO-RPD offers a range of models that users can choose

according to the application requirements. In addition, the study

presented an in-depth analysis of the impact of different backbone

networks, quantitative models, and input image sizes on the rice
FIGURE 13

Confusion matrix of the growth stage recognition of different models using YOLO-RPD software: (A) YOLO_ECO_INT8_1280; (B) YOLOv8n_INT8_1280;
(C) YOLO_ECO_INT8_640; (D) YOLOv8n_INT8_640; (E) YOLO_ECO_FP16_1280; (F) YOLOv8n_FP16_1280; (G) YOLO_ECO_FP16_640; (H)
YOLOv8n_FP16_640; (I) YOLO_ECO_FP32_1280; (J) YOLOv8n_FP32_1280; (K) YOLO_ECO_FP32_640; (L) YOLOv8n_FP32_640.
TABLE 7 Comparison of different models for rice panicle detection and growth stage recognition.

Previous studies mAP (%) Params (M) Recognition of growth stage Deep learning models Android application

Wang et al. (2022) 92.77 – No YOLOv5 No

Tan et al. (2023) 93.7 – Yes YOLOv5 No

Qiu et al. (2024) 90.3 7.1 Yes YOLOv5 No

Song et al. (2024) 95.9 0.98 No YOLOv8 No

Sun et al. (2024) 86.9 – No YOLOv5 Yes

Cai et al. (2024) 84.0 6.6 Yes YOLOv8 Yes

Ours 87.2 1.81 Yes YOLOv8 Yes
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
panicle detection and growth stage recognition performance. Deep

learning models tend to have larger and higher arithmetic power

requirements. The experiment results demonstrate that smaller models

often have better utility for mobile platforms with limited performance.

For future works, we plan to collect rice images from more

diverse scenes, perspectives, and time periods, and integrate multi-

source data to enhance the model’s robustness in rice panicle

detection. This will make the tool a more viable option for rice

phenotype applications. Specifically, we will explore more advanced

deep learning algorithms, particularly focusing on advanced

backbone networks, to optimize the balance between detection

accuracy and time efficiency. We also aim to develop additional

functionalities, such as rice yield estimation based on panicle count.

Moreover, we plan to implement a real-time video processing

function for automated yield estimation, which will be a significant

area for future research. As smartphone performance continues to

increase, we anticipate that deploying these models on devices with

better hardware will further improve detection speed and overall

performance, thus enabling more efficient real-time applications.
4 Conclusion

Rice panicle detection and growth stage recognition are

critical for rice cultivation, and developing deep learning models
Frontiers in Plant Science 18
for mobile phones to address these challenges holds great

significance. This study introduces YOLO-RPD, an Android

application designed for rice phenotype detection, leveraging an

improved YOLOv8 model, YOLO_ECO. The key innovations in

YOLO_ECO include replacing the original C2f module with C2f-

Faster-EMA in the backbone, simplifying neck complexity with

SlimNeck, and enhancing efficiency through the LSCD head. The

experimental results demonstrate that YOLO_ECO outperforms

traditional models with average precision values of 96.4%, 93.2%,

and 81.5% in the booting, heading, and filling stages, respectively.

YOLO_ECO also excels in detecting occluded and small

rice panicles while reducing model size, computational demand,

and parameter count. In terms of model optimization,

YOLO_ECO_INT8_640 is the optimal choice when prioritizing

model size, achieving an average precision of 83.9% for rice

panicle detection and 97.0% for rice growth stage recognition

with a model size of just 1.7 MB. For better overall accuracy,

YOLO_ECO_FP32_1280 is the best model, with an average

precision of 90.4% for rice panicle detection and 99.7% for rice

growth stage recognition, though it has a larger model size of 7.5

MB. Looking forward, future work will focus on exploring more

advanced deep learning algorithms to optimize the trade-off

between detection accuracy and computational cost, as well as

expanding the application’s functionality, including real-time

video counting and rice yield prediction.
FIGURE 14

Comparison of the Grad-CAM heatmaps in YOLOv8n and YOLO_ECO: Original images (A, D), heatmaps in YOLOv8n (B, E), heatmaps in YOLOv8n (C, F).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

HZ: Writing – original draft, Writing – review & editing, Data

curation, Methodology, Software, Validation. CL: Software, Writing –

review & editing, Data curation. LZ: Data curation, Writing – review

& editing, Software. JW: Investigation,Writing – review & editing. JH:

Visualization, Writing – review & editing, Validation. FL: Funding

acquisition, Resources, Supervision, Writing – review & editing. XM:

Funding acquisition, Resources, Writing – review & editing. ST:

Funding acquisition, Resources, Writing – review & editing,

Conceptualization, Formal analysis, Investigation, Methodology,

Project administration, Supervision, Writing – original draft.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported
Frontiers in Plant Science 19
by the Guangzhou Science and Technology Project (No.

2024B03J1310), the Innovation Projects of the Ordinary

University in Guangdong Province (No. 2024KTSCX099).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Anbarasi, M., Garg, K., Garg, S. D., Yokesh Babu, S., and Saleem Durai, M. A. (2019).
An android application for plant leaf disease detection using convolution neural
network. Int. J. Innovative Technol. Exploring Eng. 8 (12), 4133–4137. doi: 10.35940/
ijitee.L3649.1081219

Bai, X., Cao, Z., Zhao, L., Zhang, J., Lv, C., Li, C., et al. (2018). Rice heading stage
automatic observation by multi-classifier cascade based rice spike detection method.
Agric. For. Meteorol 259, 260–270. doi: 10.1016/j.agrformet.2018.05.001

Brichet, N., Fournier, C., Turc, O., Strauss, O., Artzet, S., Pradal, C., et al. (2017). A
robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-
throughput phenotyping platform. Plant Methods 13, 1–12. doi: 10.1186/s13007-017-
0246-7

Cai, W., Lu, K., Fan, M., Liu, C., Huang, W., Chen, J., et al. (2024). Rice growth-stage
recognition based on improved yolov8 with uav imagery. Agronomy 14 (12), 2751.
doi: 10.3390/agronomy14122751

Cai, Z., and Vasconcelos, N. (2018). “Cascade r-cnn: Delving into high quality object
detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. (IEEE). doi: 10.1109/CVPR.2018.00644

Dandrifosse, S., Ennadifi, E., Carlier, A., Gosselin, B., Dumont, B., and Mercatoris, B.
(2022). Deep learning for wheat ear segmentation and ear density measurement:
From heading to maturity. Comput. Electron. Agric. 199, 107161. doi: 10.1016/j.compag.
2022.107161

Deng, H., Sun, X., and Zhou, X. (2019). A multiscale fuzzy metric for detecting small
infrared targets against chaotic cloudy/sea-sky backgrounds. Front. Plant Sci. 12,
701038. doi: 10.1109/TCYB.2018.2810832

Draelos, R. L., and Carin, L. (2020). Use HiResCAM instead of Grad-CAM for
faithful explanations of convolutional neural networks. arXiv preprint arXiv:2011.08891.
doi: 10.1109/ACCESS.2024.3400254

Gagic, V., Holding, M., Venables, W. N., Hulthen, A. D., and Schellhorn, N. A.
(2021). Better outcomes for pest pressure, insecticide use, and yield in less intensive
agricultural landscapes. Proc. Natl. Acad. Sci. United States America 118 (12), e2018100118.
doi: 10.1073/pnas.2018100118

Hong, S., Jiang, Z., Liu, L., Wang, J., Zhou, L., and Xu, J. (2022). Improved mask r-
cnn combined with otsu preprocessing for rice panicle detection and segmentation.
Appl. Sci. (Switzerland) 12 (22), 11701. doi: 10.3390/app122211701
Ikasari, I. H., Ayumi, V., Fanany, M. I., and Mulyono, S. (2017). “Multiple
regularizations deep learning for paddy growth stages classification from landsat-8,”
in 2016 International Conference on Advanced Computer Science and Information
Systems, (ICACSIS). (IEEE). doi: 10.1109/ICACSIS.2016.7872790

Komyshev, E., Genaev, M., and Afonnikov, D. (2017). Evaluation of the seedcounter,
a mobile application for grain phenotyping. Front. Plant Sci. 7. doi: 10.3389/
fpls.2016.01990

Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., and Ren, Q. (2024). Slim-neck by gsconv: a
lightweightdesign for real-time detector architectures. J. Real-Time Image Process. 21
(3), 62. doi: 10.1007/s11554-024-01436-6

Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., et al. (2023). “Efficient
multi-scale attention module with cross-spatial learning,” in ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing - Proceedings
(ICASSP). (IEEE). doi: 10.1109/ICASSP49357.2023.10096516

Qiu, F., Shen, X., Zhou, C., He, W., and Yao, L. (2024). Rice ears detection method
based on multi-scale image recognition and attention mechanism. IEEE Access 12,
68637–68647. doi: 10.1109/ACCESS.2024.3400254

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
Unified, real-time object detection. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), 2016-December,
779–788. doi: 10.1109/CVPR.2016.91

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39 (6), 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Song, Z., Ban, S., Hu, D., Xu, M., Yuan, T., Zheng, X., et al. (2024). A lightweight yolo
model for rice panicle detection in fields based on uav aerial images. Drones 9, 1.
doi: 10.3390/drones9010001

Sun, J., Zhou, J., He, Y., Jia, H., and Toroitich Rottok, L. (2024). Detection of rice
panicle density for unmanned harvesters via rp-yolo. Comput. Electron. Agric. 226,
109371. doi: 10.1016/j.compag.2024.109371

Tan, S., Lu, H., Yu, J., Lan, M., Hu, X., Zheng, H., et al. (2023). In-field rice panicles
detection and growth stages recognition based on riceres2net. Comput. Electron. Agric.
206, 107704. doi: 10.1016/j.compag.2023.107704
frontiersin.org

https://doi.org/10.35940/ijitee.L3649.1081219
https://doi.org/10.35940/ijitee.L3649.1081219
https://doi.org/10.1016/j.agrformet.2018.05.001
https://doi.org/10.1186/s13007-017-0246-7
https://doi.org/10.1186/s13007-017-0246-7
https://doi.org/10.3390/agronomy14122751
https://doi.org/10.1109/CVPR.2018.00644
https://doi.org/10.1016/j.compag.2022.107161
https://doi.org/10.1016/j.compag.2022.107161
https://doi.org/10.1109/TCYB.2018.2810832
https://doi.org/10.1109/ACCESS.2024.3400254
https://doi.org/10.1073/pnas.2018100118
https://doi.org/10.3390/app122211701
https://doi.org/10.1109/ICACSIS.2016.7872790
https://doi.org/10.3389/fpls.2016.01990
https://doi.org/10.3389/fpls.2016.01990
https://doi.org/10.1007/s11554-024-01436-6
https://doi.org/10.1109/ICASSP49357.2023.10096516
https://doi.org/10.1109/ACCESS.2024.3400254
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3390/drones9010001
https://doi.org/10.1016/j.compag.2024.109371
https://doi.org/10.1016/j.compag.2023.107704
https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zheng et al. 10.3389/fpls.2025.1561632
Tao, M., Ma, X., Huang, X., Liu, C., Deng, R., Liang, K., et al. (2020). Smartphone-
based detection of leaf color levels in rice plants. Comput. Electron. Agric. 173, 105431.
doi: 10.1016/j.compag.2020.105431

Varghese, R., and Sambanth, M. (2024). “Yolov8: A novel object detection algorithm
with enhanced performance and robustness,” in 2024 International Conference on
Advances in Data Engineering and Intelligent Computing Systems (ADICS). (IEEE).
doi: 10.1109/ADICS58448.2024.10533619

Wang, X., Yang, W., Lv, Q., Huang, C., Liang, X., Chen, G., et al. (2022). Field rice
panicle detection and counting based on deep learning. Front. Plant Sci. 13, 966495.
doi: 10.3389/fpls.2022.966495
Yang, Q., Shi, L., Han, J., Yu, J., and Huang, K. (2020). A near real-time deep learning

approach for detecting rice phenology based on uav images. Agric. For. Meteorol 287,
107938. doi: 10.1016/j.agrformet.2020.107938
Frontiers in Plant Science 20
Zeng, T., Li, S., Song, Q., Zhong, F., andWei, X. (2023). Lightweight tomato real-time
detection method based on improved yolo and mobile deployment. Comput. Electron.
Agric. 205, 107625. doi: 10.1016/j.compag.2023.107625

Zhang, J., Zhang, J., Zhou, K., Zhang, Y., Chen, H., and Yan, X. (2023). An improved
yolov5-based underwater object-detection framework. Sensors 23 (7), 3693.
doi: 10.3390/s23073693

Zhang, Y., Xiao, D., Liu, Y., and Wu, H. (2022). An algorithm for automatic
identification of multiple developmental stages of rice spikes based on improved
faster r-cnn. Crop J. 10 (5), 1323–1333. doi: 10.1016/j.cj.2022.06.004

Zhao, J., Yan, J., Xue, T., Wang, S., Qiu, X., Yao, X., et al (2022). A deep learning
method for oriented and small wheat spike detection (OSWSDet) in UAV images.
Comput Electron Agric. 198, 107087. doi: 10.1016/j.compag.2022.107087
frontiersin.org

https://doi.org/10.1016/j.compag.2020.105431
https://doi.org/10.1109/ADICS58448.2024.10533619
https://doi.org/10.3389/fpls.2022.966495
https://doi.org/10.1016/j.agrformet.2020.107938
https://doi.org/10.1016/j.compag.2023.107625
https://doi.org/10.3390/s23073693
https://doi.org/10.1016/j.cj.2022.06.004
https://doi.org/10.1016/j.compag.2022.107087
https://doi.org/10.3389/fpls.2025.1561632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	An android-smartphone application for rice panicle detection and rice growth stage recognition using a lightweight YOLO network
	1 Introduction
	2 Materials and methods
	2.1 Image acquisition and dataset construction
	2.1.1 Image acquisition
	2.1.2 Dataset construction

	2.2 Construction of rice panicle detection model based on lightweight YOLOv8
	2.2.1 YOLOv8n
	2.2.2 YOLO_ECO construction
	2.2.2.1 The improvement of backbone
	2.2.2.2 The improvement of the neck structure
	2.2.2.3 The improvement of the detection head

	2.3 Design of the Android platform
	2.3.1 NCNN
	2.3.2 YOLO-RPD software development

	2.4 Experimental platform
	2.5 Evaluation metrics

	3 Results and discussion
	3.1 Data augmentation for enhanced model performance
	3.2 Ablation studies
	3.3 Evaluation of different rice panicle detection models
	3.4 Evaluation of rice panicle detection using YOLO-RPD
	3.4.1 Comparison of YOLO-ECO and YOLOv8n
	3.4.2 Comparison of different quantization models and input image sizes
	3.4.3 Performance evaluation on mainstream Android devices

	3.5 Recognition of rice growth stage using YOLO-RPD
	3.6 Performance in dense and occluded conditions evaluated using heatmaps
	3.7 Comparative analysis in the relevant studies of rice panicle detection
	3.8 Discussion, limitations, and future works on real-time rice yield estimation

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

