
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Muhammad Qasim Shahid,
South China Agricultural University, China

REVIEWED BY

Allah Bakhsh,
University of the Punjab, Pakistan
Faheem Shehzad Baloch,
Mersin University, Türkiye
Ansar Hussain,
Ghazi University, Pakistan

*CORRESPONDENCE

Muhammad Farhan Yousaf

farhanyousaf0455@gmail.com;

farhanyousaf@qgg.au.dk;

Just Jensen

just.jensen@au.dk

†These authors have contributed equally to
this work

RECEIVED 14 January 2025
ACCEPTED 05 March 2025

PUBLISHED 04 April 2025

CITATION

Yousaf MF, Tomar V, Romé H, Bagge M,
Timmermann M, Chu TT and Jensen J (2025)
Rate of double reduction and genetic
variability in yield, quality, and senescence
related traits in tetraploid potato
(Solanum tuberosum L.).
Front. Plant Sci. 16:1560123.
doi: 10.3389/fpls.2025.1560123

COPYRIGHT

© 2025 Yousaf, Tomar, Romé, Bagge,
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Merethe Bagge3, Mathias Timmermann3, Thinh
Tuan Chu1 and Just Jensen1*

1Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark, 2Research and
Development, EUROPLANT Innovation, GmbH & Co. KG, Lüneburg, Germany, 3DANESPO A/S,
Give, Denmark
The amount of genetic variability is the foundation for genetic change in any

plant breeding program, and the amount of double reduction can influence

genetic gain and the amount of future genetic diversity in polyploid species. Our

study investigates these factors using variance components analysis on a dataset

comprising 13,131 potato breeding lines and phenotypic data from Scandinavian

environments spanning 17 years (2003 to 2021). Pedigree information was used

in quantitative genetic models to estimate additive genetic variance and the

relative importance of additive and non-additive genetic variance. We used two

models, a baseline model (M1) without effects due to specific combining ability

(SCA) and M2 (including SCA due to interaction between parental genomes). Two

cross-validation (CV) schemes [5-Fold and leave-one-breeding-cycle-out

(LBCO)] were used to evaluate the prediction ability (PA) of each model. We

estimated the rate of double reduction phenomenon (DRP) by determining the

rate best fitting the data using a marginal likelihood approach. Our findings

showed a wide range of variation in different traits, with very large proportion of

additive genetic variance in dry matter content (DMC), but intermediate additive

genetic variance for relative yield (RY), germination (GR), and withering (WNG). All

traits showed modest non-additive genetic variance. Furthermore, genotype x

environment interaction played a significant role in trait variability but is still much

smaller than the additive genetic variance. After using different DRP rates, we

found that a model with a 0.05 DRP rate provided the best fit to the data.

Heritability estimates indicated a strong genetic basis for DMC, while other traits

showed more moderate heritability, which shows contributions from both

additive and interaction factors. Model comparison by 5-Fold CV and LBCO

and the log likelihood ratio test (LRT) highlighted the importance of considering

SCA when capturing trait variability. In 5-Fold CV, PA ranged from 0.296 to 0.812

in M1 and 0.300 to 0.813 in M2. Under LBCO CV, PA ranged from 0.180 to 0.726

in M1 and 0.180 to 0.728 in M2. However, an increase in PA in Model 2, which

incorporates SCA, compared toModel 1, can be attributed to the inclusion of SCA

effects. Furthermore, the LRT results indicated a highly significant difference

between the models. CV and LRT suggest the need for genetic models that
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account for both additive and SCA effects. Our analysis also showed that

genotype x environment interactions should be accounted for in order to

maximize the accuracy of predicted breeding values of tetraploid potato

clones. The rate of double reductions was small and insignificant.
KEYWORDS

potato, genetic variability, double reduction, mixed models, variance components
1 Introduction

Potato (Solanum tuberosum L.) is one of the most significant

vegetal crops across the globe and is the fourth most important food

crop after rice, wheat, and maize (FAOSTAT, 2022). It is a member

of the asterid group of eudicot plants, which denotes approx. 25% of

all flowering plants. Potato is adapted to wide ecological and

geographical ranges and is foremost in mass-producing stolons

among the global food crops (Hijmans, 2001). Potato breeders are

primarily interested in contributing to genetic gain to deliver future

food security at the global level, as well as providing economic

benefits to potato breeding companies and potato growers.

The potato is extremely heterozygous, and therefore, many traits

in potatoes can be affected by both additive and non-additive genetic

effects. In general, additive genetic effects contribute to General

Combining Ability (GCA) while Specific Combining Ability (SCA)

is mainly a function of non-additive genetic effects (Falconer, 1996).

GCA effects are primarily used for breeding because they include

additive genetic effects that are inherited by the next generations. The

SCA can be used to select commercial varieties/crosses but is not

important for long-term genetic gain in the breeding population

because non-additive effects are lost in future generations due to

recombination. Knowledge of the genetic variance components (VCs)

contributing to GCA and SCA is required to be able to design optimal

breeding programs, estimate expected genetic response from a genetic

selection program, and is a required parameter in mixed models for

prediction of genetic effects. The relative importance of GCA and SCA

depends on the specific traits under analysis, the population studied,

and the environmental conditions where the population is grown.

Brown and Caligari (1989) found that GCA effects were significant for

three traits tested (total tuber weight, number of tubers, and breeder’s

preference), whereas SCA was only significant for mean tuber weight.

Furthermore, the interaction of test sites with GCA was significant for

total tuber weight and very significant for average tuber weight. This
ield; GR, Germination;

A, Specific Combining

Estimation Maximum

, Breeding values; CV,

ratio test; LBCO, Leave-

nteraction; RC, Relative

02
implies that the performance of crossings may be predicted based on

the phenotype of the parents, with GCA playing an important role in

determining the superior crosses/matings.

The findings suggest that the primary importance of GCA is in

identifying better parents and forecasting progeny performance in

potato breeding programmes. Similarly, Maris (Maris, 1990)

performed a study to compare the performance of diploid (2x)

and tetraploid (4x) potatoes, focusing particularly on tuber yield,

and concluded that ploidy (2x and 4x) influences phenotypic

variation among potato families. While GCA was evident in the

significant differences observed among the families, the discovery of

strong SCA effects and genotype by environment interactions

emphasises the necessity of taking non-additive genetic factors

into account in potato breeding programmes. Ruiz de Galarreta

et al. (2006) performed a partial diallel cross using 14 potato

cultivars chosen for fertility. They assessed the progeny

throughout numerous generations for yield, tuber number, and

average tuber weight. Significant diversity was found across all traits

and generations due to both general and specific combining ability,

with SCA having the largest influence.

Potato cultivars exhibit significant diversity, as evidenced by

extensive allelic diversity, altered coding and transcript sequences,

preferential allele expression, and structural variation observed across

six cultivars in the study conducted by Hoopes et al. (2022).

Understanding this genetic variability is crucial for investigating the

genetic basis of yield, quality, and senescence related traits in tetraploid

potato. However, environmental variability, for example, seasonal

variation, site effect, and their interactions, greatly affects production

(Aina et al., 2021). Unpredictable yield losses of potato crops across

years and sites are mainly due to numerous biotic and abiotic effects,

along with the absence of widely adapted and early maturing varieties

(Acevedo et al., 2020; Tiwari et al., 2022), underscoring the need for

improved potato varieties that can adapt to diverse environmental

conditions. Plant breeders utilize information on the genetic

components of traits and the level of genetic variability amongst

locally grown varieties to foresee the requirement for the development

of new improved varieties in breeding (Uzun et al., 2013).

Polyploidy refers to the condition where an organism has more

than two complete sets of chromosomes. It can occur naturally and

is common in many plant species. Polyploids can be categorized as

either autopolyploids, where the extra sets of chromosomes come

from the same species, or allopolyploids, where the additional sets
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come from different species (Otto and Whitton, 2000; Udall and

Wendel, 2006; Soltis et al., 2004). Potato is an autopolyploid with a

chromosome number of 2n = 4x = 48 and a genome size of 844

megabase pairs (Mbp). Therefore, homologous chromosomes can

be paired to create multivalents in the meiosis phase. Then, due to

crossing-over and chiasma formation, alleles at target loci from

sister chromatids can be delivered to the same gamete. This process

is called the double reduction phenomenon (DRP) (Milbourne

et al., 2008; Bradshaw, 2017) (Figure 1). In conjunction with

random bivalent pairing during prophase I of meiosis, the

coupling behavior of potato is reasonably well explained

(Sawaminathan and Howard, 1953; Milbourne et al., 2008;

Bourke et al., 2015) compared to other autotetraploid species

such as rose, rice, and alfalfa (Cao et al., 2004; Bourke et al., 2017;

Li et al., 2020; Liu et al., 2023). The DRP evaluation is generally

performed from two known genotypes/parents by developing and

analyzing a population of crosses (Haynes and Douches, 1993; Wu

et al., 2001). DRP may play an important role in genetic drift

(Moody et al., 1993) and in gametophytic selection (Butruille and

Boiteux, 2000). Veteläinen et al. (2005) came to the conclusion that

Nordic countries have a great diversity of potato landraces, which

vary in many traits and have a high potential to improve the potato

crop. The variability present in the crop germplasm is vital for the

breeding of improved varieties.

This study aimed to estimate population parameters in term of

variance components for traits related to yield, quality, and

senescence, as well as the amount of genotype by environment

interaction for varieties grown under Danish conditions. It also

aimed to determine the level of DRP in the population studied.

The estimated variance components will be used to derive the

importance of GCA and SCA and validate the models developed

using cross validation strategies and standard likelihood

ratio tests.
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2 Materials and methods

2.1 Plant material

Breeding lines from a large-scale potato breeding program

tested in Denmark (2003 to 2021) were used for the present

study. These lines or varieties were developed and maintained by

Danespo A/S as part of a long-term breeding program. The lines

used in the present study were developed for different market

segments, including table, starch, and crisp potatoes. The

breeding program included phenotyping from preliminary to elite

trials, and these lines were chosen to represent all the trials

(preliminary to elite) at a given period. New clones from each

market segment consisted of clones in the second to fifth year after

the initial cross and were tested in trials specific to their respective

market segments. The distribution of data on years and trials was

very uneven, as some trials were missing in some years, good

genotypes were assessed in numerous trials and replicates, and

poor clones were tested in only a single trial, which is usual for a

breeding program since not all genotypes are evaluated in all trials.

For example, 76%, 14%, and 10% of the genotypes were tested in a

single trial, two trials, and >3 trials, respectively.
2.2 Phenotypic data collection

A total of 13,131 lines were scored for dry matter content

(DMC), relative yield (RY), germination rate (GR), and withering

trait (WNG). DMC is the percentage of a sample’s mass that

remains after all water has been removed. It is based on weighing

above and underwater and calculated using the formula shown in

Supplementary Table S1. RY is a measure of yield relative to all tests

of the same market segment within a given test year and site. GR is
FIGURE 1

Double reduction phenomenon in tetraploid crops. Modified from the video “Double Reduction Estimation and Equilibrium Tests in Natural
Autopolyploid Populations” presented by David Gerard dated 24.11.2021.
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the percentage of planted tubers that successfully germinate within

a given period. WNG refers to the degree to which a plant exhibits

signs of withering. The GR and WNG traits were evaluated three

times. The germination assessment began approximately 2 weeks

after planting, depending on the weather. The withering evaluation

started when the first clones showed signs of dying off and was also

conducted three times. A detailed explanation of the traits analyzed

is provided in Supplementary Table S1.
2.3 Pedigree information

The total size of the pedigree available included 59,289

individuals, which was used to trace the pedigree for the lines

under study. We utilized the DMUTrace software (Madsen et al.,

2014) to trace the pedigree of the phenotyped lines and assess the

completeness of the pedigree. Completeness was expressed as the

number of known generations of ancestors for each individual. In

total, 897 lines had missing information on one or both parents. If

both parents of an individual were known, the completeness of this

individual was 1. If all grandparents of the individual were also

known, the completeness of the individual was 2. Only 6% of lines

had unknown parents, and the remaining 94% of the lines had

known parents/generations, with 24% having both parent

information and 70% having information about both parents and

grandparents. The maximum number of known generations for an

individual was 4.90. The average completeness of the pedigree was

2.39. Relationships between the lines or varieties were determined

using pedigree information. The pedigree file corresponding to all

clones with data was arranged chronologically using DMUtrace

(Madsen et al., 2014) software and was further analyzed by the

AGHmatrix R package (Amadeu et al., 2016) to calculate the

additive relationship matrix (A) accounting for the tetraploid

nature of potato and the possibility of double reduction. Different

pedigree relationship matrices were built assuming different DRP

frequencies (0.05 to 0.9). The completeness of the pedigree was

further subdivided by year and market segment and presented in

the Supplementary Material (Supplementary Table S2).
2.4 Statistical methods

Quality control protocols were used to prevent errors and

ensure the precision and dependability of our results. It was done

using R and SPSS software. Discrepancies such as typographical

errors and outliers were observed by plotting box plots and

corrected, and assumptions of normal distributions were checked

using histograms. All the data generated were further analyzed

using DMU statistical software version 6 (Madsen et al., 2014).

In this study, two mixed models were used to estimate the rate

of double reduction and the amount of genetic variability of studied

traits. First, a baseline mixed model (M1) with no SCA was used as a

starting point for building the other model. Before using this

baseline model as a starting point, many other factors were tested

to analyze the relationship between the traits studied and genetic
Frontiers in Plant Science 04
factors. Only significant factors (P<0.05) were included in the

model. These models showed promise in capturing intrinsic

variability while noting that these models had not yet included

SCA. After preliminary experimentation, M1 was chosen based on

the likelihood ratio test (LRT) and the significance of variance

components. Second, the baseline model was extended by including

an SCA effect (M2), estimating the non-additive genetic variation

contributed by the interaction between specific combinations of

individuals as parents. The AI-REML (Average Information

Restriction Estimation Maximum Likelihood) algorithm in DMU

software (Madsen et al., 2014) was used for variance components

estimation using bivariate models including for DMC and RY, and

for GR and WNG. The models used were:

y   =  Xb     +Z ₁ a   +  Z ₂ g +  Z ₃ i   +e (1)

From the baseline model (1), the SCA random effect was added:

y   =  Xb   +  Z ₁ a   +  Z ₂ g +  Z ₃ i   +  Z ₄ s   +e (2)

where y is a vector of phenotypes and b is the vector of fixed

effects, which included effects due to trial/market segment, year, and

their interaction between trial and year on phenotypic response

variable. a, g, i, and s are random effects that come from

independent, normal distributions, where a is a vector of additive

genetic effect with a ∼ N(0, A ⊗
s 2
a1 sa1a2

sa1a2 s 2
a2

� �
), A is the pedigree

relationship matrix, s 2
a1, s 2

a2 and sa1a2 are additive genetic variances

of trait 1 and 2, and the covariance, respectively. g is a vector of line

effect with g∼N(0,I⊗
s 2
g1 sg1g2

sg1g2 s 2
g2

" #
), where s 2

g1, s 2
g2 and sg1g2 are

line variances of traits 1 and 2 and covariances respectively, and I is

an identity matrix. i is a vector of interaction effect of genotype ×

trial × year interaction (G×T×Y) with i∼N(0,I  ⊗
s 2
i1 si1i2

si1i2 s2
i2

� �
),

follow a bivariate normal distribution with a mean of 0, where s 2
i1,

s2
i2 and si1i2 are the interaction (co)variances of traits 1 and 2. s is a

vector for SCA with s∼N(0,I  ⊗
s 2
s1 ss1s2

ss1s2 s 2
s2

� �
), follows a bivariate

normal distribution (N) with a mean of 0 where s 2
s1, s 2

s2 and ss1s2

are the SCA variances of traits 1 and 2, and covariances respectively.

e represents the residual effect or error term with ∈ eN(0, S  ⊗
s 2
e1 se1e2

se1e2 s 2
e2

� �
), where s 2

e1, s 2
e2 and se1e2 are the residual variances of

traits 1 and 2 and covariances respectively. X and Zj are design

matrices for fixed and random effects, respectively. Fixed effects

included trial, year, and their interaction, while the random effects

capture the random variation due to the grouping structure of the

data (additive genetic effect, remaining non-additive genetic effects,

genotype×trial×year interaction effects, and SCA as the interaction

between parent 1 and parent 2 of individual lines). SCA effects were

added in the second model, where SCA refers to the non-additive

genetic effects that arise due to the interaction between genes

originating from different parents (parent 1 and parent 2). The

mixed model methodology permits the estimation of b by the
frontiersin.org
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generalized least squares and the prediction of the random effect by

the best linear unbiased predictions (BLUP) procedure. The models

were run using different assumptions on the rate of double

reductions and the log-likelihood was then used to compute a

marginal likelihood profile. The maximum of this likelihood was

used to estimate the rate of DR in the population. All rates of DRP

below 0.05 yielded the same log-likelihood, and we, therefore, chose

only to report results from a rate of DRP of 0.05 and onwards.
2.5 Heritabilities

Broad-sense (H2) and narrow-sense (h2) heritability at the plot

level were computed using the estimated variance components as

follows.

cH2 =
d Að Þcs2

a

� �
+cs2

g +  cs2
s

d(A)cs2
a

� �
+cs2

g +
cs2
i +

cs2
s +

cs2
e

(3)

bh2 =
d(A)cs2

a

� �
(d(A)cs2

a ) +
cs2
g +

cs2
i +

cs2
s +

cs2
e

(4)

The above formula corresponds to M2. For the M1 model, H2

and h2 were calculated without SCA. d(A) is the average diagonal of

the additive genetic relationship matrix. The heritability presented

refers to heritability at the plot level, i.e., the heritability of

measurement on a single plot. The heritability of a clone means
Frontiers in Plant Science 05
assuming a different level of replication that can easily be computed

from the information provided.
2.6 Assumption on DRP affecting the
relationship matrix A

The double reduction phenomenon is genetic and occurs

during meiosis. It can impact the distribution of alleles and

expected additive genetic relationships among individuals. In

potato breeding, the DRP increases the complexity of the

additive genetic relationship matrix A. Different assumptions of

the occurrence of the DRP significantly impact the diagonal

elements of A through changes in genetic diversity and genetic

structure (Figure 2). The off-diagonal elements represent the

pairwise relatedness between individuals, and the DRP can have

notable effects on the expected relationships between clones,

especially when shared ancestors have undergone the DRP.

Figure 2 depicts how the double reduction phenomenon

changes the additive relationship matrix A by affecting both the

relatedness of individuals to themselves (inbreeding) and the

relatedness of individuals to other individuals (off-diagonal

elements), i.e., individual lines become more related. The

strategy used for estimating the rate of the DRP is in line with

methodologies used in numerous studies, including the

development of accurate models for leaf area prediction in

loquat cultivars, as evidenced by Teobaldelli et al. (2019) in

their study on Eriobotrya japonica.
FIGURE 2

Effect of different assumptions of the DRP on the relationship matrix (diagonal and off-diagonal elements of A).
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2.7 Model validation by assessing
prediction accuracy using cross-validation

To validate the models used for the prediction of genetic effects,

the present study used two cross-validation (CV) schemes: 5-Fold

(Burgueño et al., 2012) and leave-one-breeding-cycle-out (LBCO)

for each prediction model. In brief, for 5-Fold CV, the clones were

divided into five random non-overlapping subsets. Then, one group

served as the testing set, while the remaining groups served as the

training set [breeding values (BV) were predicted for each clone in

the testing set]. This procedure was repeated until breeding values

from all 5 subsets were predicted (Supplementary Figure S1). A 5-

fold CV provides a reliable model comparison, helps in model

selection, and aids in understanding the bias-variance trade-off. For

LBCO CV, the lines were organized based on their crossing year,

and for each crossing year, the lines were checked for the presence

of their parents in the rest of the data. If a parent was present

anywhere (either as parent 1 or parent 2), they were included in that

crossing year and were considered a breeding cycle. In this way, all

full and half siblings were masked for each line within one breeding

cycle. The masked breeding cycle/year was predicted using the

remaining breeding cycles (Supplementary Figure S2). This

procedure was repeated for each breeding cycle (number of

breeding cycles = 28) until all breeding cycles were predicted. The

LBCO emulates the prediction problem in which a new generation

(newly developed lines) is predicted based on parental and

historical data and is, therefore, very relevant in a breeding context.
Frontiers in Plant Science 06
The predictive ability (PA) of the models was evaluated using

the Pearson correlation between the average value of lines after

correcting for fixed effects and the vector of predicted breeding

values, cor(yc, baR). The fixed effects were estimated for each model

using the full dataset to obtain as accurate estimates as possible. The

phenotypes were corrected for the fixed effects by subtracting the

estimated fixed effects from each observation byc = (y − Xb̂ ) and

then average corrected phenotypes (�yc) were computed for each

clone or line. The correlation between �yc and predicted breeding

values can at most be the square root of heritability of �yc (Figure 3;

Supplementary Table S5) (Crossa et al., 2010; Kristensen et al.,

2019). The relative change in prediction accuracy of breeding values

(RC) when going from the reduced to the full dataset was calculated

as the correlation between full model prediction ( baF), which is the

breeding values estimated with complete phenotypic information

for all the lines, and breeding values when phenotypic information

was partially masked ( baR), I .e. cor( baF , baR) (Legarra and

Reverter, 2018).
3 Results

This study used 13,131 breeding lines for all the studied traits

under 12 different trial types maintained by the DANESPO potato

breeding program from 2003 to 2021. Simple descriptive statistics

are summarized in Table 1. In general, the population displayed a

wide range of variation, with all the traits exhibiting a wide range
FIGURE 3

Predictive abilities in 5-Fold and leave-breeding-cycle-out (LBCO) cross-validations and a comparison of model 1 and model 2 for potato dry matter

content (DMC), relative yield (RY), germination (GR), and withering features (WNG) traits. Furthermore, the theoretical maximum of cor(yc ,caR), which

was calculated as
ffiffiffiffiffiffiffich2
yc

q
, providing a reference for the performance of our prediction models (Supplementary Table S5). The complete formula for

the theoretical maximum of cor(yc ,caR) is provided in the Supplementary Material as Equation 1.
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between the minimum and maximum phenotypic values. For

example, DMC ranged from 11 to 34 with an average of 23.5.

Similarly, RY ranged from 23 to 251 having an average of 96.3.

WNG ranged from 2 to 9 with an average of 5.9, while GR ranged

from 1 to 9 with an average of 4.5.
3.1 Estimates of DRP based on marginal
log-likelihoods

Different expected frequencies of the DRP, i.e., 0.05, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, were considered to estimate the

amount of DRP in the population. The marginal log-likelihood

values were obtained for each assumed frequency of the DRP using

both M1 and M2. The models that assumed that the rate of DRP

was smaller than 0.05 yielded the same results as those that used a

rate of 0.05, and these results, therefore, were not presented.

We found that with an expected DRP of 0.05, the

-2*loglikelihood value (-2LogL) was minimum (likelihood

maximized) for all traits investigated. After estimating the rate of
Frontiers in Plant Science 07
DRP, which was consistent across all the traits analyzed, the focus

moved to estimating the genetic parameters (variance parameters

and breeding values) while assuming a DRP rate of 0.05.
3.2 Variance components of the studied
traits under the optimal model (0.05 DRP)

VCs were estimated by two models, i.e., the M1 model without

SCA and the M2 model with the SCA effect included. The results,

shown in Figure 4, revealed that the additive genetic variance (s2
a )

and residual variance (s 2
e ) accounted for the largest proportion of

variance compared to the other variance components. A detailed

account of the estimates can be found in Supplementary Table S3.

3.2.1 Dry matter content
The estimated additive genetic variance (s 2

a ) was 3.1 ± 0.1 in

M1 and 3.2 ± 0.1 in M2, which was high compared to other VCs in

the model and showed that the additive genetic component has a

substantial influence on the variation observed in the trait.

Furthermore, the non-additive genetic effect showed less influence

than the interaction and residual variances. Notably, the interaction

effect was consistent across both models, implying uniform levels of

genotype-environment interaction in DMC in both models

(Figure 4). Additionally, additive genetic variance explained

67.9% of the total phenotypic variance (s 2
p ) while the residual

variance (s 2
e ) contributed 18.6%, with other variance components

collectively explaining the remaining 5.4% to 7.8% in the baseline

model (M1). In the SCA model (M2), a similar trend was observed

where additive genetic variance (s 2
a ) of 3.2 at 0.05 DRP explained

approximately 68.3% and residual variance (s 2
e ) 17.1% of the total
FIGURE 4

Bar graph showing variance components obtained by models M1 and M2 for dry matter content (DMC), relative yield (RY), germination rate (GR), and
withering (WNG).
TABLE 1 Descriptive statistics of the studied traits.

Trait N-lines N-obs Average SD Min Max

DMC 13131 24284 23.5 4.1 11 34

RY 13131 23878 96.3 19.5 23 251

WNG 13131 24669 5.9 1.2 2 9

GR 13131 27729 4.5 1.3 1 9
DMC, dry matter content; RY, relative yield; WNG, withering; GR, germination; N-obs,
number of observations; N-lines, number of lines/individuals; SD, standard deviation.
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phenotypic variance. Notably, the SCA accounts for variance that

was previously attributed to non-additive variance components in

the baseline model (M1), explaining about 5.7%. The SCA effects

are due to non-additive interactions between alleles inherited from

different parents.

3.2.2 Relative yield
The genetic variance (s 2

a ) was 84.3 ± 7.4 which explained 24.6%

of the total phenotypic variance among plots (s2
p ), suggesting a

stronger additive genetic influence on this observable trait as

compared to other VCs (Figure 4). Furthermore, the non-additive

genetic variance (s 2
na) were lower compared to the other VCs and

explained 10.05%, while the residual variance (s 2
e ) explained 54.1%

of the total phenotypic variance (s 2
p ) in M1. In M2, when SCA was

included in the model, there was a reduction in both additive

genetic variance (from 84.3 ± 7.4 to 83.3 ± 7.8) and non-additive

genetic variance (from 34.5 ± 5.1 to 28.0 ± 5.4), indicating that the

SCA component accounts for some of the genetic variance

previously attributed to additive and non-additive genetic

influences and it was 7.5 ± 2.0 (Figure 4). Surprisingly, the

interaction and residual variances exhibited a modest increase.

The observed increase with the inclusion of SCA suggests that the

model better accounts for additional sources of variation caused by

interactions between parental genotypes. These findings highlight

the importance of considering SCA in genetic models, as it

contributes to a better understanding of the genetic architecture

underlying the observed trait. Finally, the (s 2
a ) explained

approximately 24.2% and residual variance (s 2
e ) 54.06% of the

total phenotypic variance.

3.2.3 Germination rate
VCs revealed that both additive genetic variance (s 2

a ) (0.34 ±

0.02 in M1 and 0.30 ± 0.02 in M2) and residual variance (s 2
e ) (0.46

± 0.006 in both models) were the dominant sources of variation in

GR, while non-additive genetic effects (s 2
na) and interaction effects

(s2
i ) contributed to a lesser extent. Interestingly, the interaction

effect was found to be more influential than the non-additive

genetic effect (Figure 4). Additive variance explained

approximately 30.08% of the total phenotypic variance (s 2
p ) while

the residual variance (s 2
e ) contributed 40.70% and other variance

components collectively explained the remaining 13.2%. to 15.9%.

In the SCA model (M2), a similar trend was observed where

additive genetic variance (s 2
a ) explained approximately 26.6% and

residual variance (s 2
e ) 40.90% of the total phenotypic variance (s 2

p )

(Supplementary Table S3). The SCA captures 4.80% of the total

phenotypic variance, which was attributed to non-additive variance

components in the baseline model (M1).

3.2.4 Withering
Like for the other traits analysed, the estimated additive genetic

variance (s2
a ) was high (0.51 ± 0.03 in M1 and 0.48 ± 0.03 in M2)

compared to the other VCs (Figure 4) and showed that the additive

genetic component (s2
a ) has substantial influence on the variation

observed in the trait, (s 2
a ) explaining 38.63% of the total phenotypic

variance (s 2
p ), while the residual variance (s 2

e ) contributed 31.06%,
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and other variance components (non-additive genetic effects, SCA,

and G*E) collectively explained the remaining 13.6% to 16.6%. In the

SCA model (M2), a similar trend was observed where the additive

genetic variance (s 2
a ) explained 36.47% and residual variance (s 2

e )

31.15% of the total phenotypic variance (s 2
p ). The reduction of

genetic variance components after the addition of the SCA

component showed that in M1, it was attributed to additive and

non-additive genetic variances (Figure 4). These findings emphasise

the necessity of considering SCA in genetic models, which leads to a

more comprehensive understanding of the genetic architecture

underlying the observed characteristic.
3.3 Estimation of heritability

Heritability below 30% is considered low, while medium is

between 30% and 60%, and high is above 60%. In the present study,

the h2 was estimated in both M1 and M2 models and expressed as

the heritability of a single plot measure. For DMC, the estimates

were 0.69 in M1 and 0.70 in M2 model and H2 was 0.75 in M1 and

0.82 in M2 model (Figure 5). This shows that genetic factors play

major roles in determining DMC. Further details can be found in

Supplementary Table S3.

The h2 estimate for RY was 0.26 in M1 and 0.25 in M2 model

suggesting a moderate impact of additive genetic effects on the trait

(Supplementary Table S3). However, H2 increased from 0.36 in M1

to 0.46 in M2 suggesting that genetic effects, both additive and non-

additive (e.g., dominance and epistasis) captured by SCA, account

for a significant fraction of the phenotypic diversity in RY.

In M1, the narrow-sense heritability of the GR trait was

estimated to be 0.31 while in the M2 model it was 0.28. In

contrast, the broad-sense heritability values in the M1 model were

estimated at 0.44, whereas in the M2 model it was 0.60. The narrow-

sense heritability of the WNG trait was 0.40 in the M1 model and

0.38 in the M2 model. Broad-sense heritability estimates was found

to be 0.56 in M1 and 0.69 in M2. Interestingly, when the SCA effect

was included in the model, we observed a modest increase in broad

sense heritability estimates across all the traits compared to the

baseline model (model without SCA). This could be due to the

specific combining ability component, which captures non-additive

genetic effects due to interactions between parental genomes.

Narrow sense heritability estimate was observed to be low except

for DM in M2 (with SCA) which means including specific

combining ability in a model redistributes part of the variation in

the trait to non-additive genetic effects.
3.4 Cross-validation

The models were validated using 5-Fold and LBCO cross-

validation. The validation results are presented as PA and RC in the

accuracy of breeding values when going from predicting breeding

values based on the reduced dataset to predicting based on the full data,

i.e., the change in accuracy of predicted breeding values when the
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masked data is added to the model. The results are shown in Figure 3,

and more details can be found in Supplementary Table S4.

The PA for the two models were similar in the 5-fold CV. The

accuracy of the predicted breeding values for the lines with their

phenotypes masked ranged from 0.296 for RY to 0.812 for DM. The

RC ranged from 0.839 in WNG to 0.950 in DM in M1. In

comparison, the accuracy was 0.300 in RY and 0.813 in DM, and

the RC ranged from 0.849 in GR to 0.949 in DM trait in M2 model.

Interestingly, when the SCA model (M2) was compared to the

model without SCA (M1), the RC in both models were practically

identical for DMC, but a considerable improvement was noticed in

RY, GR, and WNG traits in M2. The PA was slightly improved in

DMC and RY.

The LBCO CV evaluates the accuracy that can be obtained

when making decisions for future years not yet included in the data.

The prediction accuracy ratio is improved in M2 compared to M1.

The PA of values ranged from 0.180 in GR to 0.726 in DM, and RC

was 0.599 in GR and 0.904 in DM in the M1 model as compared to

an average accuracy of 0.180 in GR and 0.728 in DM and the

accuracy ratio was between 0.627 in GR and 0.906 in DM trait in the

M2 model. In LBCO, it was observed that PA was improved in

the DM, RY, and WNG traits in M2 (with SCA), but for RY, it was

the same as M1.
3.5 Model comparison using standard
likelihood ratio test

We used the LRT to compare the fit of the two mixed models in

explaining the observed variance in the traits studied. The models
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included the M1 model (without the SCA effect) and the M2 model

(with the SCA effect as a random effect).

The LRT results indicated a statistically significant difference in

model fit between the two tested bivariate mixed models (M1 and

M2) for DMC and RY, yielding a P< 1.57E-22 at 0.05 DRP with

three degrees of freedom. The analysis was conducted in a bivariate

model, where the combined effect of both traits was tested.

Therefore, the p-value reflects the shared model fit improvement

for both traits simultaneously. Similarly, for the traits GR and

WNG, the LRT test resulted in P< 8.96E-35, also with three

degrees of freedom (df = 3). The obtained p-values from the LRT

strongly suggest a highly significant difference in model fit between

the mixed models in favor of M2.

M2 showed a significantly better fit to the observed data

compared to the alternative model M1, suggesting that it included

components or effects within the SCA model that contributed to the

explanation of observed variability. This implies that the SCA effect

included in the model better captures non-additive genetic effects

due to interaction between alleles inherited from the specific

combination of two parents used in a given mating.
4 Discussion

The amount of additive genetic variability is directly related to

the potential genetic gain in any breeding program. We used 13,131

potato lines (clones), maintained by DANESPO A/S, to estimate the

rate of double reductions and population parameters for dry matter

content, relative yield, germination, and withering. Pedigree

information was used to calculate the numerator relationship
FIGURE 5

Estimates of the narrow- and broad-sense estimates of heritability at 0.05 DRP in both models. DMC, dry matter content; GR, germination; RY,
relative yield; WNG, Withering.
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matrix A for the estimation of additive genetic variance and

estimation of the amount of DRP in the population. We defined

models (M1 and M2) to uncover the relative importance of additive

genetic, non-additive, and other variance components, especially

variance due to specific combining ability and genotype by

environment interaction. In the M2 model, a parent-by-parent

interaction effect was included to account for the SCA effect due

to the interaction between parental genomes. Furthermore, the PA

for both models was investigated using two CV schemes: (i) 5-Fold

and (ii) LBCO. Generally, the population used in the study

displayed a wide range of variation, with all traits exhibiting a

wide range between the minimum and maximum genotype values.

Previous studies also showed the same high phenotypic diversity

among genotypes (Yousaf et al., 2021, 2024).
4.1 The extent of double reduction

According to Nemorin et al. (2012), autotetraploidy is

characterized by the occurrence of double reduction events, which

results in decreased heterozygosity. It is a genetic process involving

the recombination of homologous chromosomes during meiosis but

is frequently neglected in tetraploid crops. We investigated the rate

of DRP in both M1 and M2 by considering different assumptions of

double reduction rates from low to high. The estimated amount of

DRP corresponds to the maximum of the marginal likelihood

computed under different assumptions on the rate of DRP.

Higher log-likelihood values indicate a better fit of the model to

the data. DRP at 0.05 or lower had the smallest -2*log(L), indicating

the best model fit when the rate of double reduction was very low.

Slater et al. (2014) revealed similar findings, demonstrating that

different proportions of double reduction (how often this genetic

event happens) affect the traits observed in the offspring and

concluded that the impact of double reduction (average DRP)

rate was approximately 0.1. In potatoes, the chance of double

reduction ranges from 0 at the centromere and increases towards

the telomere (Bourke et al., 2015). In the investigated population,

the rate of double reductions was found to be low and is not

expected to have a significant influence on the amount of genetic

variance in the population.
4.2 Variance components

The estimated variance components showed that additive

genetic variance and residual variance in all traits were more

important than genetic variance due to non-additive genetic

effects, interaction [genotype (G) x environment (E)], and SCA.

These results align with other authors concerning the

preponderance of additive genetic effect for yield-related traits

(Cabello et al., 2014; Paget et al., 2014; Tripura et al., 2016). The

significant additive genetic variance observed in DMC, along with

little to no non-additive genetic variance, indicates that DMC is

mostly affected by additive genetic effects. Ruiz de Arcaute et al.

(2022) revealed that GCA had significant effects on variables such as
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specific gravity (proxy of dry matter content), emphasizing the

importance of additive genetic effects in passing these traits to

offspring. The RY, GR, and WNG traits showed substantial additive

genetic variance, but non-additive genetic variance was also modest

when compared to the additive genetic variance, indicating that

non-additive effects have a minimal impact. This shows that line

differences are primarily due to additive genetic effects and less due

to interactions between genes or between parental combinations.

Mishra et al. (2017) observed low genetic gain for characteristics

related to yield, such as the number of tubers per plant and plant

emergence percentage (germination), and suggested that non-

additive gene effects exist. Similarly, Thompson and Mendoza

(1984) estimated genetic variance for 11 potato traits and

discovered non-additive genetic variance in the yield-related

traits. The other non-additive effects were calculated as SCA. The

estimated variance component associated with the SCA effect

reflects the contribution of specific parent cross effects to the trait

variability. It provides information about the extent to which

genetic interaction between specific genotypes impacts the

observed trait values. In the current study, all traits showed much

higher GCA variance than SCA variance, demonstrating the

importance of additive genetic effects in determining the

inheritance of these traits. Thus, additive gene actions were much

more important than non-additive gene actions (dominance or

epistatic interactions) in the expression of these features. This

implies that the traits investigated could be improved efficiently

through a well-designed selection approach. Tai (1976) also

concluded that GCA effects were significant for average weight

per tuber, average weight per marketable tuber, and specific gravity.

The genotype x environment interaction explained a sizable

fraction of the total phenotypic variance (from 7.3% to 15.7%

depending on the trait), with the highest G x E variance found in

GR. The significant influence of G x E interaction indicates that the

performance of individual genotypes does change with

environmental conditions, but this effect is much smaller than the

general additive genetic variance. The relatively limited amount of

G x E variance might be because the test sites were all within the

mainland of Denmark and, therefore, had somewhat similar

climatic conditions. This highlights the importance of considering

the interaction between genotype and environment when

determining an individual’s genetic potential and selecting

superior genotypes to ensure that selected genotypes perform well

over a range of relevant environments.

The considerable residual variance compared to other variance

components in all traits except DMC suggests that the traits are

influenced by unexplained environmental sources of variation.

Therefore, selection should be based on replicated experiments.

In open-field variety trials, multiple causes of variation might

exist within a location, such as variations in nutrient distribution

(Haefele and Wopereis, 2005; Allaire et al., 2014), soil particle size

(Santra et al., 2008), and soil organisms (Lupatini et al., 2017), all of

which contribute to soil heterogeneity. This field variation can lead

to even more unexplained variation because of interactions between

the soil environment and genotype (Portman and Ketata, 1997).

Inter-plot interference may also be a cause of plot-level effects
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(Kempton, 1997). Inter-plot interference occurs when adjoining

plots compete for resources (above or below ground). In potato,

cultivars compete for plant height, tuber yield, and dry matter

content across plots (Bradshaw, 1994; Connolly et al., 1993). An

important means to reduce errors due to residual environmental

effects is the use of replicated plots of each variety in randomized

testing designs. It can also be reduced by using larger plots, planting

similar types close together, and utilizing border plants surrounding

each plot (Bradshaw, 1994, 2021; Kempton, 1997). Additive genetic

variance was the most important factor impacting the traits,

accounting for most of the observed variation. Although non-

additive genetic effects and residuals exist, their impact is

relatively low and may be efficiently handled by replicating plots

across trials and years. This implies that while environmental

factors such as temperature, precipitation, soil quality, and disease

pressure interact with genetic factors, the additive genetic

component is a fundamental driver of trait variation.
4.3 Broad- and narrow-sense heritability

The DMC trait showed a very high heritability, indicating that

selective breeding based on individual phenotypic performance is

likely to result in significant genetic improvement. Seid et al. (2020)

and Adams et al. (2023) found high heritability of DMC, which is in

line with our results. More modest heritability was found in RY, GR,

and WNG, indicating that both additive and non-additive genetic

effects contribute to the total phenotypic variation. Breeding

techniques should account for both additive and non-additive

genetic effects in the prediction applied. Cabello et al. (2014)

reported low to modest heritability for tuber yield traits within

the Andigenum group of potatoes, similar to our results.

Furthermore, Sood et al. (2020) and Slater et al. (2014) observed

low to moderate heritability related to tuber yield traits and

moderate heritability for senescence-related traits.
4.4 Accuracy ratio and prediction ability

In breeding programs, using the most effective models for

predicting genetic values is critical for enhancing crop potential.

Model comparison and accuracy assessment are critical steps in this

process. Breeders can make informed decisions that are consistent

with the underlying hypothesis of their breeding aims by comparing

the PA of various models. Commonly used methods for evaluating

models and assessing prediction accuracy include CV and the log-

likelihood ratio test (Allen, 1974; Stone, 1974; Geisser, 1975; Hastie

et al., 2001). In our study, we used two CV strategies (5-Fold and

LBCO). Previous research has revealed that a k-fold CV is an

effective strategy for model selection (Ron, 1995; Ortiz et al., 2023).

In contrast, the LBCO better represents the conditions in a breeding

scenario in which new generation/lines must be predicted before

phenotypes can be obtained. Our results revealed that RC was
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significantly improved when SCA was included in the model. This

means that obtaining the phenotype significantly increases

prediction accuracy. In cases when SCA effects are significant,

they can account for a portion of the variance previously

attributed to additive genetic effects.

Using random 5-Fold cross-validation may result in close

relatives in both the training and validation sets, leading to high

PA. In contrast, LBCO CV ensures temporal consistency by

selecting particular time periods for training and testing, more

closely mimicking the real-world scenario (Arlot and Celisse, 2010;

Zhang and Yang, 2015). We noted a high PA for the DMC trait in

both CVs, while we observed moderate PA for the RY, GR, and

WNG traits under 5-Fold and LBCO cross-validation. The 5-fold

CV gave a high PA as compared to LBCO, which is because all full

and half siblings are masked in LBCO but not in 5-Fold CV.

Furthermore, GR exhibited a lower PA in CV2, and PA was

moderate in CV1. GR is a complex trait highly impacted by

environmental effects. We found low heritability and large

variation among lines that were attributed to environmental

factors. Although the GR predictions were good for the selection

of genotypes based on germination, further increasing the training

population size of breeding lines could improve predictions

specifically for yield and enhance breeding value estimation for

yield improvement (Sood et al., 2020).

The prediction accuracy is also affected by the relationships

between individuals in the training population and individuals in

the validation population, which is why accuracy in the 5-Fold CV

is larger than prediction accuracy in the LBCO CV procedure.

In potato, out of 4,397 cultivars cultivated worldwide, 14.9%

have been bred from 15 genotypes (Li et al., 2018), which indicates

that common parents have been used in potato breeding across the

globe. Therefore, increasing the depth of the pedigree might

improve the description of additive genetic relationships in the

matrix and better account for all relationships in the population

under study. Including genomic information from dense markers

will also contribute to a better description of cryptic relationships

between individuals due to the historical use of common parents.

The model that included the effects of SCA had a much better fit

to the data. SCA reflects the genetic variation that arises from

dominance and epistatic interactions between alleles inherited from

the parents involved in a mating. These interactions lead to

deviations from purely additive genetic expectations, highlighting

the importance of non-additive gene action in trait expressions. By

adding SCA effects into evaluation models, breeders can exploit

genetic interactions between parents to discover superior clones for

the market, but for the selection of parents, only the additive effects

should be considered because non-additive effects are lost in future

generations due to recombination.

Pedigree-based EBVs could be an effective breeding strategy

until genomic selection can be routinely implemented. Decisions

about parent selection based on EBVs and GEBVs will ultimately

enable new, improved high DMC, yielding potato varieties with a

range of senescence timings, from early to late.
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5 Conclusion

This study focused on estimating the rate of double reductions,

which is crucial for refining genetic models and improving the

accuracy of breeding value predictions and a source of variance

affecting traits such as DMC, RY, GR, and WNG. The aim was to

quantify the importance of GCA and SCA, enabling breeders to

make informed decisions when selecting parental combinations to

optimize genetic gain. At the same time, accounting for the

influence of environmental factors on trait variability helps

breeders identify stable genotypes that perform well across

different conditions. Our investigation estimated the occurrence

of double reductions and observed that a model with a DRP rate of

0.05 or lower provided the best fit to the data so that the effects of

DRP on the population studied were low.

Considerable additive genetic variance and heritability (h²) were

found for DMC, indicating great potential for improvement

through selective breeding, whereas heritability for RY, GR, and

WNG were more moderate. However, non-additive genetic

variance was low for RY, GR, and WNG, indicating that non-

additive influences had a limited impact on these traits. These

findings emphasize the importance of additive genetic variance in

determining trait heritability, especially for DMC. Additionally, our

findings highlighted the need to include SCA in genetic models, as

SCA played a substantial role in capturing trait variability. Model

comparison using cross-validation and the log-likelihood ratio test

revealed that including SCA improved the model’s accuracy in

capturing trait variability. These comparisons highlight the need for

comprehensive genetic models that account for both additive and

non-additive genetic effects and G x E interactions, improving the

predictive value of breeding methods for important traits in

tetraploid potatoes.
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