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Soil acidification adversely affects plant growth and development by decreasing the

accessibility of roots to essential nutrients. Thus, it decreases crop yield. However,

there has been a lack of systematic research on how soil acidification influences

nutrient absorption in eggplant cultivated in greenhouse. To address this research

gap, an experiment was conducted in a greenhouse with seven different acidity

levels (4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5), achieved by adding dilute H2SO4. The findings

indicated that the soil organic matter (SOM) content at pH 4.5 decreased by 49% -

50% compared to pH levels of 7.0 - 7.5. In addition, the levels of exchangeable

aluminum (Al3+) and soil electrical conductivity (EC) were highest at pH 4.5, with

increases of 82 -88 mg kg-1 and 1.78 - 1.82 ms cm-1, respectively, compared to pH

7.0 - 7.5. The total nitrogen (TN), phosphorus (TP), and potassium (TK) content in the

soil declined as acidity increased, reaching their lowest levels of 0.59, 0.42, and 3.79 g

kg-1 at pH 4.5. Among the available nutrients, only potassium levels did not exhibit

significant variation across treatments. However, the levels of macro elements in the

soil consistently decreased, while the concentrations of trace elements (Fe, Cu, Zn)

increased with rising acidity; conversely, the levels of other trace elements (B, Mo,

Mn) decreased. The amounts of exchangeable calcium (Ca2+) and magnesium

(Mg2+) at pH levels of 4.5 - 5.0 dropped by 61% - 66% and 70% - 78%, respectively,

compared to pH 7.5. Further analyses indicated that soil pH values between 6.0 -

4.5 reduced the nutrient absorption capacity of eggplant, with the lowest nutrient

content observed at pH 4.5. Mantel analyses confirmed that soil pH significantly

affects plant nutrient uptake. This research provides both theoretical insights and

practical guidance for the effective management of vegetable soil in greenhouse.
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1 Introduction

The vegetables industry in China has experienced rapid

development since the 20th century. According to the 2019 census

conducted by the National Bureau of Statistics of China (2020), the

area dedicated to vegetables cultivation in the country has reached

20 million hectares (Shen et al., 2021). This cultivated area has been

gradually increasing and ranks first globally (Puissant et al., 2019;

Lv et al., 2020; Yuan et al., 2024). The advent of greenhouse

cultivation has become a vital component of agricultural

practices, establishing a stable ecological environment conducive

to vegetables growth. It helps to extend the planting season, increase

yields, boost farmers’ incomes, and ensure a year-round supply of

vegetables (Bai et al., 2020; Das et al., 2022). Despite the numerous

advantages offered by facility agriculture, it simultaneously

confronts a succession of challenges (Zhou et al., 2021).

The widespread adoption of facility agriculture and the practice

of multi-stubble cultivation in numerous greenhouse have

contributed to an increased prevalence of soil acidification. For

example, the overuse of ammonium-based nitrogen fertilizers has

been shown to facilitate the accumulation of hydrogen ions (H+) in

the soil, thereby elevating soil acidity (Li et al., 2018; Zhang et al.,

2022b; Wang et al., 2023a, b). In addition, the application of various

acidic fertilizers, including potassium chloride, ammonium sulfate,

and ammonium chloride, in facility production has resulted in the

retention of significant quantities of acidic ions such as sulfate

(SO4
2-), chloride (Cl-), and nitrate (NO3

-) in the soil over extended

cultivation periods. These ions are either not absorbed or are

infrequently utilized by plant, leading to their interaction with H+

in the soil and a subsequent reduction in soil pH (Benelli et al., 2020;

Liang et al., 2024). Research conducted by Lv et al. (2020) indicates

that the long-term application of nitrogen fertilizers contributes to

decline in soil pH. This includes the use of nitrogen-containing

alkaline fertilizers (such as ammonium bicarbonate and ammonia)

or neutral fertilizers (such as ammonium nitrate and urea), where

excessive ammonium (NH4
+) is converted into nitrate (NO3

-) and

nitrite (NO2
-), further exacerbating soil acidification. Notably,

ammonium nitrogen also promotes the production of substantial

amounts of H+, which perpetuates the increase in soil acidity (Hafez

et al., 2020; Lv et al., 2020; Zhang et al., 2024).

Soil nutrients play a crucial role in agriculture and plant growth

(Yang et al., 2024). A significant amount of soil exchange calcium

(Ca2+) has been leached out due to soil acidification, leading to

severe damage to soil structure and compaction (Babin et al., 2019;

Liang et al., 2024). The inadequate development of soil aggregates

impairs the soil’s capacity to act as a buffer and facilitate aeration

(Zhang et al., 2016; Latifah et al., 2017; Arwenyo et al., 2023). As soil

acidity changes, the availability of phosphorus (P), potassium (K),

calcium (Ca), magnesium (Mg), molybdenum (Mo) and other

elements also reacts accordingly (Shi et al., 2018; Yao et al., 2024).

Soil acidification makes phosphorus and potassium easily fixed, low

uptake and utilization of medium and trace elements, and weak root

growth, resulting in increased fertilizer use but poor plant growth

(Wang et al., 2020b; Zhang et al., 2022a).Soil acidity not only leads

to deficiencies in essential nutrients but also contributes to the
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accumulation of harmful substances, such as exchangeable

aluminum (Al3+) in the soil (Guo et al., 2018; Munyaneza et al.,

2024). When the soil pH drops below 5.5, Al3+ becomes highly

soluble in the soil solution, significantly affecting the fluidity of

phospholipids within root cell membranes and potentially leading

to membrane peroxidation. This phenomenon can subsequently

result in stunted growth of lateral roots and root tips (Ballagh et al.,

2023). In addition, elevated concentrations of NH4
+, produced

through microbial nitrification, can inhibit plant growth (Shoghi

Kalkhoran et al., 2021). Such as conditions may cause leaves to lose

their green pigmentation, disrupt biochemical processes, alter

energy transfer mechanisms, and ultimately impede overall plant

development (Fan et al., 2024).

Eggplant (Solanum melongena L.) is one of the most significant

greenhouse vegetables crop in China, contributing approximately

64.48% of the global output. Due to its high economic value and

market demand, the excessive use of nitrogen fertilizers in

greenhouse conditions has become a prevalent issue. The

increased fertilizer application can lead to soil acidification and

other problems, which seriously threaten the eggplant market and

industry (Wang et al., 2020a; Adamczewska-Sowińska et al., 2022).

Despite the significance of soil acidification, there is a lack of

research examining its effects on the growth and development of

eggplant, as well as its influence on nutrient distribution within the

soil and plant tissues. Consequently, we designed a pot experiment to

simulate a soil acidification environment by applying dilute sulfuric acid

under controlled greenhouse conditions. This approach is based on the

understanding that soil acidification primarily results from an increase

H+. Dilute sulfuric acid, which can fully dissociate in aqueous solutions,

serves as a significant source of H+ ions for the soil. Unlike alternative

acidification methods, eggplant was chosen as the experimental subject

for this study. The primary goals of our current research were: 1) to

study the effects of soil acidification on soil properties, and 2) to explore

the effects of soil acidification on nutrient absorption in eggplant.
2 Materials and methods

2.1 Experimental site and design

The experiment was conducted in greenhouse (41°48’N, 123°25’E) at

Shenyang Agricultural University, Liaoning Province, China. The

eggplant variety “Xi ‘an green” was used as a test material. We initially

collecteded soil from an adjacent field to the greenhouse, the soil type is

meadow soil, the basic properties of the original soil are detailed in

Supplementary Table S1. Polyethylene plastic pots, eachmeasuring 27.00

cm in width and 30.00 cm in height, were utilized to contain equal.

Before planting, 190.00g of chicken manure was applied to each pot as a

base fertilizer, and 15.00g of NPK (15:15:15) compound fertilizer was

applied to each pot after planting.We established seven acidity levels and

repeated each treatment four times. The pH of each treatment was

checked every seven days and H2SO4 (with corresponding acid solution

concentrations of 0.10, 0.13, 0.20, 0.53, 0.70, 0.95 and 1.00 mL L-1) was

added as needed to maintain the target soil pH values (Supplementary

Table S2).
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2.2 Sample collection

On 28th June 2023, plants were carefully uprooted, and the fresh

weights of the stem, root, and leave were recorded before being

transferred to an oven for drying. Subsequently, the dry weights of

the plant were measured and used to determine nutrient absorption

in the dried plant parts. Meanwhile, the soil auger was used to

collect soil samples from a depth of 0 - 10.00 cm at five different

points in each pot for each treatment. The fresh soil was passed

through 2.00 mm sieve to remove stones, pebbles and roots. The

collected samples were left to dry at room temperature for the

measurement of chemical properties.
2.3 Measurement methods

2.3.1 Determination of soil basic properties
Soil pH (deionized water: soil, 2.5: 1) was measured using a

standard pH meter (pHS - 25). Soil electrical conductivity (EC)

(deionized water: soil, 5: 1) was determined by a conductometer

(DDS - 241 307A, INESA Scientific Instrument, Shanghai, China).

Total nitrogen (TN) was measured through an automatic Kjeldahl

distillation titration method (Cabrera and Beare, 1993). Total

calcium (TCa), total magnesium (TMg), total copper (TCu), total

iron (TFe), total manganese (TMn), total zinc (TZn) and total

potassium (TK) in soil were determined by H2SO4 - HClO4

digestion method and analyzed by flame spectrophotometer.

Total phosphorus (TP) was determined by H2SO4 - HClO4

digestion method and analyzed by ultraviolet spectrophotometer

(Nobile et al., 2020). Bao (2000) method was utilized to measure

Alkali-hydrolyzed nitrogen (AN). The NaHCO3 leaching

molybdenum antimony colorimetric technique was used to

measure available phosphorus (AP). Leaching NH4OAC

(pH=7.00) solution in 1.00 mol L-1 was used, and then the rapid

available potassium (AK), exchange calcium (Ca2+) and exchange

magnesium (Mg2+) were analyzed by flame photometer (Bao, 2000).

Soil organic matter (SOM) was determined by H2SO4 - K2Cr2O7

titration (Kalembasa and Jenkinson, 2006). After digestion with

HNO3 - HClO4, total molybdenum (TMo) was determined by ICP -

MS method, and total boron (TB) was measured by methimine

colorimetry. The available molybdenum (AMo) was determined by

ICP - MS method after leaching with oxalic acid and ammonium

oxalate. Soil available copper (ACu) and available zinc (AZn) were

ana lyzed by 0 .10mol L -1 HCl ext rac t ion and flame

spectrophotometer. The leaching was carried out by DTPA - TEA

with flame separation Soil available manganese (AMn) and

available iron (AFe) were analyzed by optical photometer.

Leaching with boiling water and determination of available boron

(AB) by methylimine colorimetry (Bao, 2000).
2.3.2 Plant nutrient determination
Plant total potassium (PK), calcium (PCa), magnesium (PMg),

copper (PCu), iron (PFe), zinc (PZn) and manganese (PMn) were

analyzed by flame spectrophotometer after digestion with H2SO4 -
Frontiers in Plant Science 03
H2O2, and plant total nitrogen (PN) was measured through an

automatic Kjeldahl distillation titration method. Total phosphorus

(PP) was determined by vanadium-molybdenum yellow

colorimetric method. Total boron (PB) was analyzed by curcumin

colorimetric method (Bao, 2000).
2.4 Statistical analyses

Excel 2021 was utilized for basic data collation and processing

analyses, SPSS Statistics 26.0 (IBM, New York, USA) was employed to

conduct one-way ANOVA (p<0.05), while Duncan’s test was used for

multiple comparisons of the data. RDA and Pearson correlation

analyses were performed to investigate the relationships between soil

chemical properties and soil nutrients. In addition, Principal

Coordinate Analyses (PCA) was conducted using the vegan

package in R software to compare nutrient absorption differences

among various treatments. Mantel correlation was applied to analyses

the relationship between soil chemical properties and plant nutrients.

The Origin2021 was used to visualize the results.
3 Results

3.1 Effect of simulated acidification on soil
basic chemical properties and nutrients of
eggplant in greenhouse

3.1.1 Effect of acidification on soil EC, SOM
and Al3+

The results showed that soil organic matter (SOM) content

decreased by 49% - 50% to 5.57 g kg-1 at pH 4.5 compared with pH

7.0 - 7.5 (Table 1). Meanwhile, the soil electrical conductivity (EC)

value at pH 4.5 was significantly different from that at pH 7.5, and

the exchangeable aluminum (Al3+) content in soil reached the

maximum value (113 mg kg-1) at pH 4.5, which was 4.42 times

that at pH 7.5. Soil Al3+ content at pH 7.0 and 7.5 was significantly

different from that at pH 4.5 and 5.0 (Table 1).
TABLE 1 Effects of acidification on EC, SOM and Al3+.

Treatment pH EC
(ms cm-1)

SOM
(g kg-1)

Al3+

(mg kg-1)

7.50 0.19 ± 0.01e 11.08 ± 0.45a 25.65 ± 4.48d

7.00 0.23 ± 0.01e 10.90 ± 0.95a 31.72 ± 2.02d

6.50 0.56 ± 0.02d 9.19 ± 0.99ab 50.62 ± 6.46c

6.00 0.68 ± 0.01d 9.53 ± 0.33ab 62.10 ± 3.31c

5.50 1.22 ± 0.08c 8.51 ± 0.33ab 93.82 ± 2.78b

5.00 1.70 ± 0.03b 7.98 ± 0.49b 99.90 ± 7.31ab

4.50 2.01 ± 1.07a 5.57 ± 1.42c 113.40 ± 11.76a
The same letter in the same column indicates that the results are not significant (P<0.05).
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3.1.2 Effect of acidification on macro
elements content

Soil total nitrogen (TN) peaked at pH 7.5, 55% higher than at

pH 4.5. Alkali-hydrolyzed nitrogen (AN) increased with acidity,

ranging from 51 - 81 mg kg-1 (Table 2). The content of soil total

phosphorus (TP) at soil pH7.5 was significantly higher than that at

soil pH 4.5. Available phosphorus (AP) varied greatly, with the

highest (278 mg kg-1) at pH 4.5 and the lowest (134 mg kg-1)

at pH 6.5, and the difference between treatments was significant

(Table 2). The data indicated that the trend in the variation of total

potassium (TK) and available potassium (AK) content in the soil

decreased as soil pH decreased, the soil pH content at 7.5 was

significantly different from that at 4.5 (Table 2).

3.1.3 Effect of acidification on medium
elements content

With the decrease in soil pH, the contents of calcium (Ca) and

magnesium (Mg) in the soil also gradually decreased, as presented

in Table 2; soil total calcium (TCa), total magnesium (TMg),

exchange calcium (Ca2+) and exchange magnesium (Mg2+) in soil
Frontiers in Plant Science 04
were consistent with the changes of total potassium, and the highest

content at soil pH7.5 was significantly different from that at soil pH

4.5, which significantly increased by 346%, 173%, 196% and 346%,

respectively (Table 2).

3.1.4 Effect of acidification on trace
elements content

Soil total iron (TFe) and available iron (AFe) content exhibited

an increasing trend as soil pH decreased. The highest TFe content

(12.71 g kg-1) was recorded at pH 4.5, while the lowest values (9.09

and 9.13 g kg-1) were observed at pH levels of 7.0 and 7.5 (Table 2).

The maximum AFe concentration of 90 mg kg-1 and the minimum

concentration of 9.09 mg kg-1 were measured at pH 4.5 and 7.5,

both treatments were statistically significant (Table 2). In addition,

available manganese (AMn) at pH levels of 7.0 - 7.5 was statistically

significant when compared to pH 4.5 (Table 2).

Soil total copper (TCu) content at pH 4.5 was statistically

significant when compared to pH 7.0, while the other treatments

were comparable and not statistically significant (Table 2). The

content of soil available copper (ACu) at pH 4.5 was 0.17 mg kg-1
TABLE 2 Effect of acidification on soil nutrients of eggplant in greenhouse.

pH 7.5 7.0 6.5 6.0 5.5 5.0 4.5

TN(g kg-1) 1.30 ± 0.06a 1.00 ± 0.21ab 0.87 ± 0.08bc 0.81 ± 0.04bc 0.72 ± 0.08bc 0.75 ± 0.08bc 0.59 ± 0.13b

TP(g kg-1) 0.66 ± 0.05a 0.60 ± 0.02ab 0.51 ± 0.13ab 0.50 ± 0.04ab 0.50 ± 0.03ab 0.48 ± 0.01ab 0.42 ± 0.03b

TK(g kg-1) 6.12 ± 1.10a 5.18 ± 0.15ab 4.94 ± 0.34ab 4.90 ± 0.09ab 4.39 ± 0.63ab 4.52 ± 0.71ab 3.79 ± 0.60b

TCa(g kg-1) 2.81 ± 0.08a 2.44 ± 0.12a 1.97 ± 0.14b 1.77 ± 0.20b 1.57 ± 0.14b 0.93 ± 0.23c 0.63 ± 0.05c

TMg(g kg-1) 8.73 ± 0.36a 7.32 ± 0.87ab 6.11 ± 1.01abc 7.12 ± 1.09ab 5.84 ± 1.46bcd 3.58 ± 0.36cd 3.20 ± 0.23d

TFe(g kg-1) 9.13 ± 0.48c 9.09 ± 0.22c 10.98 ± 0.35b 11.00 ± 0.30b 11.00 ± 0.35b 12.27 ± 0.44ab 13.71 ± 1.22a

TMn(mg kg-1) 189 ± 25a 208 ± 33a 185 ± 27a 156 ± 13a 167 ± 10a 194 ± 16a 173 ± 23a

TCu(mg kg-1) 6.09 ± 0.59b 6.06 ± 0.38b 7.32 ± 0.74b 6.46 ± 0.38b 7.26 ± 0.81b 7.63 ± 0.63b 11.29 ± 0.44a

TZn(mg kg-1) 23.17 ± 0.83c 26.02 ± 0.53bc 28.92 ± 1.15ab 29.61 ± 2.56ab 30.03 ± 0.21ab 31.75 ± 1.86a 33.44 ± 2.27a

TB(mg kg-1) 460 ± 14a 429 ± 20ab 368 ± 30bc 311 ± 21cd 280 ± 31de 235 ± 12ef 215 ± 9.3f

TMo(mg kg-1) 8.37 ± 0.96a 8.22 ± 1.04a 6.85 ± 0.16a 4.35 ± 0.85b 2.63 ± 0.47bc 1.99 ± 0.46c 1.58 ± 0.30c

AN(mg kg-1) 51 ± 6.47c 54 ± 2.26c 54 ± 2.26c 59 ± 2.99bc 67 ± 3.20b 67 ± 3.78b 817 ± 3.61a

AP(mg kg-1) 140 ± 15.20b 156 ± 7.18b 134 ± 9.64b 176 ± 13b 178 ± 17b 178 ± 7.40b 278 ± 20.19a

AK(mg kg-1) 870 ± 2.35a 810 ± 31ab 784 ± 28bc 749 ± 9.51bc 731 ± 25c 669 ± 24d 640 ± 2.72d

Ca2+(mg kg-1) 1227 ± 54a 1053 ± 4.79b 1052 ± 22b 827 ± 94c 756 ± 36c 473 ± 42d 414 ± 40d

Mg2+(mg kg-1) 147 ± 8.51a 132 ± 11.82a 114 ± 7.95ab 94 ± 23.62b 79 ± 8.24bc 45 ± 9.77cd 33 ± 8.41d

AFe(mg kg-1) 9.09 ± 0.61d 10.85 ± 0.29d 19.50 ± 5.34d 38.46 ± 3.34c 51.30 ± 6.04c 68.00 ± 6.21b 90.36 ± 4.52a

AMn(mg kg-1) 4.89 ± 0.39c 4.14 ± 0.30c 7.06 ± 1.11c 12.22 ± 0.49b 15.89 ± 1.18ab 18.85 ± 3.42a 20.19 ± 1.85a

ACu(mg kg-1) 0.20 ± 0.02d 0.28 ± 0.02c 0.31 ± 0.01bc 0.30 ± 0.02bc 0.34 ± 0.00ab 0.34 ± 0.01ab 0.37 ± 0.01a

AZn(mg kg-1) 8.02 ± 0.26b 8.36 ± 0.44b 8.52 ± 0.16b 8.37 ± 0.30b 9.47 ± 0.90ab 9.57 ± 1.29ab 10.74 ± 0.43a

AB(mg kg-1) 52.14 ± 1.11a 43.43 ± 8.59ab 33.82 ± 3.02bc 30.84 ± 1.59c 31.59 ± 0.67c 27.24 ± 2.97c 27.83 ± 1.69c

AMo(mg kg-1) 0.13 ± 0.00a 0.12 ± 0.00b 0.10 ± 0.00bc 0.10 ± 0.00cd 0.09 ± 0.00cde 0.08 ± 0.00de 0.08 ± 0.01e
The same letter in the same line means the difference is not significant (p<0.05).
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higher than that at pH 7.5 (Table 2). The highest values of total and

available zinc (TZn and AZn) content were recorded at pH 4.5,

which were statistically significant compared to pH 6.0, 7.0, and 7.5.

The variation trend of boron (B) and molybdenum (Mo) contents

in soil is consistent with that of zinc (Zn) contents in soil, and the

difference between the content of pH 4.5 and the content of pH 7.5

is very significant (Table 2).

In summary, the contents and availability of soil trace elementst

B and Mo are the highest in the neutral range of soil pH 7. 0 and 7.5,

while the contents and availability of soil Fe, Cu and Zn are the

highest in the strong acidic range of pH 4.5 and 5.0.
3.2 Effect of simulated soil acidification on
nutrient uptake of eggplant plant
in greenhouse

3.2.1 Effect of soil acidification on plant uptake of
macro elements nutrient

The growth rate of eggplant exhibited a declining trend with

increasing soil acidity (Figure 1). Meanwhile, the macro elements

composition data (nitrogen, phosphorus, and potassium - NPK) in

various plant parts, including root, stem, leave, and fruit tissues,

were statistically significant (Figure 2). The total nitrogen content in

plant (PN) reached its maximum at pH levels of 7.0 - 7.5, showing a

significant increase of 263% - 322% compared to plant grown at pH

4.5 (Figure 2A). The distribution of phosphorus in each part of the

plant was significant. The maximum contents of total phosphorus

(PP), leaf phosphorus (LP) and stem phosphorus (SP) at pH 7.5

were significantly different from those at pH4.5 (Figure 2B). The

absorption of fruit potassium (FK) was the highest, while the

absorption of root potassium (RK) was the lowest and decreased

with the decrease of soil pH. At pH 5.5 and 6.0, leaf potassium (LK)

and stem potassium (SK) contents were slightly higher than pH

6.5 (Figure 2C).
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3.2.2 Effect of soil acidification on plant uptake of
medium elements nutrient

Soil acidification significantly reduced the distribution of

calcium in plant tissues. The calcium concentration and

absorption of fruits (FCa) and roots (RCa) were higher than those

of leaves (LCa) and stems (SCa). The maximum total calcium

content (PCa) of plant was 1.19 g plant-1 at pH 7.5, which was

significantly different from that at soil pH4.5 (Figure 3A). The

results showed that with the increase of soil pH, the magnesium

distribution of fruit (FMg) was the highest, and that of root (RMg)

was the lowest (Figure 3B).

3.2.3 Effect of soil acidification on plant uptake of
trace elements nutrient

Soil acidification will affect the significant absorption and

distribution of trace element nutrients in eggplant plants (Figure 4).

Most absorbed boron (B) was found in fruit tissues at pH 7.5,

followed by stems. The plants total boron content (PB) at pH 7.5

was 235% - 299% higher than at pH 4.5 - 5.0 (Figure 4A).

Furthermore, total plant molybdenum content (PMo) at pH 7.5

was significantly higher than at pH 4.5 -5.0 (Figure 4B). With the pH

set at 6.5, the copper content in fruits (FCu) registered a significant

139% rise as compared to the value at pH 4.5 (Figure 4C). Total plant

copper (PCu) ranged from 1.58 - 3.09 g plant-1, peaking at pH 7.5

and dipping at pH 5.0 (Figure 4C). Total plant zinc (PZn) followed

similar trend, with the highest levels at pH 7.5 and the lowest at

pH 4.5 (Figure 4D).

Data on total plant iron (PFe) content are shown in Figure 4E,

revealing significant differences in leaf iron (LFe) and root iron (RFe)

among treatments. The impact of seven pH treatments on plant

manganese (PMn) content was statistically significant, with levels

ranging from 7.13 - 19.49 mg plant-1, peaking at pH 5.0 and lowest at

pH 7.0 (Figure 4F). In summary, the total amounts of boron (B),

molybdenum (Mo), copper (Cu), zinc (Zn), and iron (Fe) were lowest

at pH 4.5 and 5.0, while manganese (Mn) was highest.
FIGURE 1

Growth performance of eggplant under varied acidification treatments.
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3.3 Principal component analyses of soil
acidification on nutrient uptake of eggplant
in greenhouse

Principal component analyses of soil acidification on nutrient

uptake of eggplant (Figure 5). PCA analyses is used to demonstrate

the effects of different simulated acidification treatments on plant

nutrients. PCA analyses shows that the nutrient distribution

capacity of plant organs at soil pH 4.5, 5.0, 5.5 and 6.0 is well

separated from the other four acidity ranges on the PCA1. And the

two axes together explained 94% of the total variation. Adonis

results also confirmed that soil acidification had a significant effect

on plant nutrients (R²=0.996, P=0.032).
3.4 Comprehensive analyses of nutrient
absorption of greenhouse eggplant by
soil acidification

As can be seen from Table 3, the three most important chemical

factors for macro elements nutrient uptake of eggplant in greenhouse

under simulated soil acidification conditions were Mg2+ (r=0.99,
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p=0.001), pH (r=0.60, p=0.001) and TB (r=0. 59, p=0.001). The

three most important chemical factors of medium elements nutrient

uptake in eggplant plants in solar greenhouse were Mg2+ (r=0.94,

p=0.001), TCa (r=0.61, p=0.001) and pH (r=0.58, p=0.001). The three

most important chemical factors of trace elements nutrient uptake in

eggplant in greenhouse were Mg2+(r=0.69, p=0.001), pH (r=0.32,

p=0.001) and TB (r=0.30, p=0.001). In conclusion, soil pH and Mg2+

play a crucial role in regulating plant nutrient uptake under simulated

acidification conditions. Therefore, we should monitor and control

the soil pH in the greenhouse and avoid the application of excessive

and concentrated physiological acids and nitrogen-containing

fertilizers to ensure the healthy growth of eggplant in the greenhouse.
4 Discussion

4.1 Effect of simulated soil acidification on
soil physicochemical properties
in greenhouse

Soil nutrients are essential for the growth and development of

plants. However, intensive use of chemicals in all cropping systems
FIGURE 3

Effect of soil acidification on medium elements nutrient uptake of eggplant in greenhouse. (A) Total plant calcium; (B) Total Plant magnesium
(p<0.05). Different lower-case letters indicate significant differences between streatment (p<0.05).
FIGURE 2

Effect of soil acidification on macro elements nutrient uptake of eggplant in greenhouse. (A) Total plant nitrogen; (B) Total plant phosphorus;(C)
Total plant potassium (p<0.05). Different lower-case letters indicate significant differences between streatment (p<0.05).
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led to environmental pollution and soil degradation issues (Leghari

et al., 2024). In greenhouse conditions fertilizers are excessively

applied, which resulted in the soil acidification and consequently

affected nutrient availability in eggplant (Wang et al., 2022). The

continued application of dilute sulfuric acid results in a decrease in

soil pH, leading to an increase in soil EC value (Zhang et al., 2020;

Zhou et al., 2020). In this study, EC was observed to be highest,

ranging from 1.70 - 2.01 ms cm-1, at pH levels between 5.00 - 4.50
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(Table 1, p < 0.05). This increase in H+ concentration significantly

impacts the alteration of physicochemical properties (Junior et al.,

2020; Raza et al., 2020). Soil acidification contributes to the

depletion of essential basic cations, including K+, Ca2+, and Mg2+

(Cai et al., 2021; Du et al., 2024b), which aligns with the findings of

the present study. Meanwhile, the results concerning Mg2+ in our

research diverge from those reported by Vogels et al. (2024). This

inconsistency may be explained by the increased production of H+

under acidic conditions, which can lead to enhanced leaching losses

of Ca2+ and Mg2+ (Cusack et al., 2016). In addition, soil acidification

may diminish the soil’s capacity to retain N, P, K, and other

essential nutrients (Li et al., 2018; Bai et al., 2020; Cai et al., 2021).

Soil acidification leads to the production of toxic substances, such

as Al3+, which can accumulate significantly when soil pH< 5.00 (Wang

et al., 2023b; Borges et al., 2024; Du et al., 2024a) This phenomenon

restricts the availability of phosphorus in the soil (Brownrigg et al.,

2022; Xie et al., 2022; Baccari and Krouma, 2023). The highest

concentration of Al3+ recorded was 113.40 mg kg-1 at soil pH of 4.5

(Table 1), which is 5 - 6 times the critical threshold for aluminum

toxicity symptoms in plant (Cai et al., 2017). Under acidic soil

conditions, aluminum is released into the soil solution in its active

and toxic form, reaching levels that can inhibit root growth and

damage root, there by hindering the growth and development of

eggplant (Bonomelli and Artacho, 2021). Some scholars have found

that increasing soil acidification leads to an imbalance in soil nutrients,

while heightened acidity reduces the decomposition rate of soil organic

matter. In addition, a study on the excessive fertilization of tomatoes in

solar greenhouses revealed that the content of AN remains at a
FIGURE 5

Principal component analyses of soil acidification on nutrient uptake
of eggplant in greenhouse.
FIGURE 4

Effect of soil acidification on trace elements nutrient uptake of eggplant in greenhouse. (A) Total plant boron. (B) Total plant molybdenum.
(C) Total plant copper. (D) Total plant zinc. (E) Total plant iron. (F) Total plant manganese (p<0.05). Different lower-case letters indicate significant
differences between streatment (p<0.05).
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moderate level (Lv et al., 2020). However, the finding that the content

of AP was four times higher than the relative abundance standard

aligns with this experiment’s results (Table 3, p < 0.05), yet it

contradicts the findings of Wang et al. (2023b). This discrepancy

may be attributed to the increased production of phosphatase in acidic

soils (Long et al., 2016; Hafez et al., 2022; Wang et al., 2022).

In addition, it is important to highlight that as soil acidity

increases, the content of soil AK tends to rise. This may be

explained by the secretion of lower organic acids by the root

system, which increases the net negative charge on the soil

surface, there by facilitating the accumulation of K+ in the soil

(Wang et al., 2022; Liu et al., 2023; Wang et al., 2023b).
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Consequently, soil pH is a critical factor in regulating various soil

properties (Hong et al., 2019; Wan et al., 2020; Mosley et al., 2024).
4.2 Effect of simulated soil acidification on
nutrient uptake of eggplant in greenhouse

The ability of crops to absorb and utilize various nutrients is

significantly influenced by soil acidification. Under acidic conditions,

plants encounter difficulties in absorbing and utilizing essential

elements necessary for their growth and development. Our findings

demonstrate that plants absorb higher concentrations of Ca and Mg, a
TABLE 3 Mantel test of acidification on the relationship between nutrient uptake and soil basic chemical properties of eggplant in greenhouse.

Soil properties Macro elements in plant Medium elements in plant Trace elements in plant

Mantel r P Mantel r P Mantel r P

pH 0.60 0.001 0.58 0.001 0.32 0.001

EC 0.44 0.001 0.43 0.001 0.20 0.007

Al3+ 0.32 0.122 0.31 0.002 0.01 0.333

SOM 0.13 0.036 0.12 0.133 0.06 0.258

TP 0.31 0.019 0.36 0.014 0.32 0.059

AP 0.33 0.010 0.28 0.016 0.02 0.369

TN 0.08 0.169 0.08 0.189 0.02 0.339

AN 0.25 0.036 0.21 0.058 0.07 0.212

TK 0.28 0.027 0.25 0.052 0.26 0.002

AK 0.39 0.001 0.43 0.001 0.24 0.006

TCa 0.57 0.001 0.61 0.001 0.39 0.005

Ca2+ 0.58 0.001 0.58 0.001 0.33 0.004

TMg 0.40 0.001 0.40 0.001 0.20 0.007

Mg2+ 0.99 0.001 0.94 0.001 0.69 0.001

TZn 0.32 0.005 0.36 0.002 0.34 0.017

AZn 0.28 0.012 0.31 0.009 0.24 0.059

TMn 0.02 0.354 0.04 0.317 0.03 0.334

AMn 0.33 0.001 0.30 0.001 0.16 0.019

TFe 0.42 0.001 0.46 0.001 0.29 0.023

AFe 0.43 0.001 0.40 0.001 0.23 0.002

TCu 0.20 0.040 0.21 0.041 0.10 0.151

ACu 0.20 0.067 0.22 0.066 0.06 0.229

TB 0.59 0.001 0.52 0.001 0.30 0.001

AB 0.31 0.001 0.30 0.019 0.13 0.154

TMo 0.47 0.001 0.43 0.001 0.26 0.004

AMo 0.53 0.001 0.55 0.001 0.31 0.015
Bold indicates the most influential factors.
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result that aligns with the observations made by Wang et al. (2024).

Mielcarek et al. (2023) reported that the P content in tomato plants

decreased as pH increased, with the highest absorption of N, P, and K

occurring at pH of 6.50. In our study, the absorption of N, P, and K by

eggplant was highest at pH of 7.50 and lowest at pH of 4.50. These

results indicate that the absorption of macronutrients by plant is

severely inhibited under acidic conditions, with EC also identified as

a primary factor affecting the absorption of substantial amounts of

elements by plants. In addition, soil pH significantly impacts the

absorption of trace elements (Yang et al., 2019). For instance, when

soil pH decreased from 7.50 - 4.50, the absorption of B by plants

declined from 4.19 - 2.30 g plant-1, and the absorption of Mo exhibited

a significant decreasing trend (Shi et al., 2018; Zhang et al., 2021).

Through our analyses, we hypothesized that soil acidification

significantly impacts the nutrient absorption of eggplant, potentially

by altering the availability of soil nutrients. For instance, soil

acidification can lead to the release of substantial amount of Al,

which inhibits the uptake of essential nutrient elements such as P, K

and Fe by plant roots, as confirmed by Baccari and Krouma (2023). This

occurs because acidification diminishes the soil’s capacity to retain and

supply fertilizers, exacerbates the loss of essential elements, and reduces

the overall availability of soil nutrients. Furthermore, the quantity of

nutrients absorbed by plants is contingent upon a specific subset of

nutrients available in the surrounding soil (Brownrigg et al., 2022). The

Mantell test revealed for the first time that the soil pH of eggplant grown

in a solar greenhouse under simulated acidification significantly affects

the amount of nutrients absorbed by the plants, thereby demonstrating

that soil nutrient content is closely linked to the nutrient absorption

capacity of the plants (Sánchez-Moreno and Curiel Yuste, 2022).
5 Conclusions

Elevated soil acidity significantly impacts the nutrient absorption

process in eggplant. The SOM dropped to 325 5.57g kg-1 at pH 4.50,

while EC and Al3+ peaked at 2.01 ms cm-1 and 113.40 mg kg-1,

respectively. At this pH level, the concentrations of macroelements,

medium elements, and trace elements (B and Mo) were minimized,

whereas the levels of other nutrients were maximized. Elements

deficiencies in soil can diminish nutrient content in eggplant, with

soil pH being the main factor. The findings provides useful insights for

maintaining soil health and promoting sustainable greenhouse

vegetable. However, present study primarily focused on the

relationship between soil nutrients and plant nutrients. The future

research should navigate the dynamic association between rhizosphere

microorganisms and plant nutrient uptake in the context of soil

acidification. This research is crucial for maintaining soil health and

promoting sustainable greenhouse vegetable production.
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