
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Functional and Applied Plant Genomics
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1555388
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The shoot apex of Populus alba primarily comprises the shoot apical meristem, axillary meristem, leaf primordium, and young leaves, all of which exhibit high division potential. The single-cell RNA sequencing of the apical buds of P. alba can provide deeper insights into the processes of cell proliferation and differentiation, including the key genes and signaling pathways that regulate these processes. Scanning electron microscopy was used to examine the structure of the shoot apex, followed by single-cell sequencing analysis. A total of 29,011 cells were obtained from two biological replicates. Dimensionality reduction and clustering identified 17 distinct cell clusters. Pseudotime analysis revealed that shoot apex meristem cells and mesophyll cells emerged first, followed by the differentiation and maturation of vascular and intercalary meristem cells over time. Trichome differentiation occurred last, whereas epidermal cell differentiation persisted throughout development. At the single-cell level, auxin signaling pathway genes potentially involved in leaf tissue development were identified, along with an analysis of the expression specificity of CYC and CDK genes across mesophyll, epidermis, vascular, and shoot apex meristem tissues. These findings facilitate the elucidation of the molecular regulatory mechanisms by which CYC and CDK genes influence leaf development in P. alba.
Keywords: Shoot apex, cyclin, Cell Division, auxin, ScRNA-seq, Populus alba
Received: 04 Jan 2025; Accepted: 17 Feb 2025.
Copyright: © 2025 Liang, Wu, Zhang, Yang, Wang, Gai, Wang, Zhang, Xue, Duan and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Hai-ling Yang, Beijing Forestry University, Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.