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Introduction: Bacterial wilt (BW) caused by Ralstonia pseudosolanacearum is a

devastating soil-borne disease. Bacteriophages are important biocontrol

resources that rapidly and specifically lyse host bacteria, showing good

application potential in agricultural production.

Methods: This study isolated nine phages (YL1–YL9) and, using host range and

pot experiments, identified two broader host range phages (YL1 and YL4) and two

higher control efficacy phages (YL2 and YL3), which were combined to obtain five

cocktails (BPC-1–BPC-5).

Results: Pot experiments showed that BPC-1 (YL3 and YL4) had the highest

control efficacy (99.25%). Biological characterization revealed that these four

phages had substantial thermal stability and pH tolerance. Whole genome

sequencing and analysis showed that YL1, YL2, YL3, and YL4 belonged to the

genus Gervaisevirus. AlphaFold 3 predictions of tail fiber protein II structures

showed that YL1 differed significantly from the other phages. Amino acid

sequence alignment revealed that the ORF66 (YL1) “tip domain” of contained a

higher proportion of aromatic and positively charged amino acids. However, the

surface of the ORF69 (YL4) “tip domain” exhibited more positively charged

residues than ORF66 (YL2) and ORF70 (YL3). These characteristics are

hypothesized to confer a broader host range to YL1 and YL4.

Discussion: This study demonstrates that phages assembling a broad host range

and high control efficacy have better biocontrol potential, providing high-quality

resources for the biological control of BW.
KEYWORDS

bacteria wilt (BW), Ralstonia solanacearum, Ralstonia phage, phage cocktail, control
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1 Introduction

The Ralstonia solanacearum species complex (RSSC) infects

over 200 plant species from 50 families, including tobacco, tomato,

potato, and pepper, causing typical bacterial wilt (BW) (Denny,

2000; Lowe-Power et al., 2020; Paudel et al., 2020). Surveys have

shown that BW is the second most frequent plant disease globally,

causing annual economic losses of about USD 1 billion (Mansfield

et al., 2012; Elphinstone, 2005). RSSC has high variability and

complex genetic diversity (Jiang et al., 2017). Based on its

geographical origins and phylogenetic analysis, RSSC can be

divided into three species: R. pseudosolanacearum (formerly

Asian phylotype I and African phylotype III), R. solanacearum

(formerly American phylotype II), and R. syzygii (formerly the

Indonesian phylotype) (Paudel et al., 2020; Zhao et al., 2023).

Lytic Ralstonia phages that infect hosts have the following

characteristics: fast infection, short lysis time, and high host

specificity (Dion et al., 2020; Mushegian, 2020). They reduce the

number of host bacteria in the environment in a short time, without

causing harm to beneficial microorganisms in the environment,

while simultaneously regulating rhizosphere microbial composition

and function to collectively resist pathogen invasion. (Trivedi et al.,

2020; Ji et al., 2021; Markwitz et al., 2022). Therefore, phage therapy

is considered an effective method for BW control (Buttimer et al.,

2017). Askora et al. (2017) isolated and purified Ralstonia phage

fRSY1 from the soil, and root irrigation and stem injection with R.

solanacearum M4S infected with fRSY1 (108 cell/mL) significantly

reduced the incidence and disease index of tomato BW. Wang X

et al. (2019) inoculated soil with Ralstonia phages (106 PFU/mL)

and found that they significantly reduced the R. solanacearum

population, with a control efficacy of 83.4% against tomato BW.

Due to the strong host specificity of phages, their application

mostly follows the principle of “isolating phages from farm soil and

returning them to the farm” (Dıáz-Muñoz and Koskella, 2014; Ye

et al., 2019). Studies have shown that the combination of multiple

phages effectively inhibits resistance development in R.

solanacearum and improves the control efficacy of BW (Wang

et al., 2024). In current reports on phage cocktail applications, most

Ralstonia phages used in these combinations belong to the class

Caudoviricetes. Wei et al. (2017) screened phage P1 combinations

capable of lysing the host within a short period based on lysis

kinetics, resulting in a 20% reduction in BW incidence; Magar et al.

(2022) utilized a combination of Ralstonia phages RpT1 and RpY2,

which exhibit a broad host range, to significantly reduce BW

incidence. Therefore, the biological characteristics of phages, such

as host range and lysis kinetics, are critical criteria for formulating

effective phage cocktails (Gill and Hyman, 2010; Villalpando-

Aguilar et al., 2022; Tang et al., 2024).

To construct a phage cocktail with good control efficacy on

tobacco BW in different areas of Xiangxi Tujia Zu and Miao Zu

Autonomous Prefecture, Hunan Province, China, this study

isolated R. pseudosolanacearum and its phages from tobacco

fields with a high BW incidence in this region. After comparing
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the host range and single phage control efficacy, four phages were

selected to construct a phage cocktail. Pot experiments showed

that phage cocktails improved the control efficacy of BW. This

study provides high-quality candidate resources for the biological

control of BW.
2 Materials and methods

2.1 Isolation, purification, and identification
of R. pseudosolanacearum and phages

Ralstonia pseudosolanacearum strains were isolated from

tobacco plants with BW collected among towns in the Xiangxi

Tujia Zu and Miao Zu Autonomous Prefecture (Xiangxi

Prefecture), Hunan Province. Ralstonia pseudosolanacearum

strains were obtained using the plate streaking method on

nutrient broth (NB) medium (10 g tryptone, 3 g beef extract,

10 g glucose, and 5 g NaCl, 1000 mL ddH2O) and identified using

16S rRNA gene sequencing and strain-specific PCR (759/760)

(Wicker et al., 2007). Lytic phages were isolated from tobacco

rhizosphere soil using the isolated R. pseudosolanacearum strains

as hosts and employing the modified double-layer agar method, in

which 1 g of soil was added to 10 mL of sterile water, vortexed, and

centrifuged at 12,000 rpm for 10 min. The supernatant was

filtered through a 0.22-mm bacterial filter (Millex, Tullagreen,

Carrigtwohill, Co. Cork., Ireland). Equal volumes of NB

medium and 0.3% host bacterial suspension (V/V) were added

to the filtrate and co-cultured at 30°C for 12 h. The culture was

centrifuged and filtered, and the filtrate was diluted 1000-fold with

SM buffer (50 mM Tris-CL, pH=7.5, 100 mM NaCl, 10 mM

MgSO4, and 0.01% gelatin solution). The diluted solution was

mixed with an equal volume of the R. pseudosolanacearum

suspension (OD600 = 1.0), comprising the top layer of the plate,

which was incubated at 37°C until plaques appeared. This process

was repeated more than five times to complete phage purification

(Kropinski et al., 2009).
2.2 Phage host range determination

Host range determination experiments were conducted using

38 R. pseudosolanacearum strains, among which 31 were isolated

from tobacco (RStab-1 to RStab-31), 2 from peppers (RSpep-1,

RSpep-2), 2 from potatoes (RSpot-1, RSpot-2), and 3 from peanuts

(RSpea-1, RSpea-2, RSpea-3) (Supplementary Table S1). Each R.

pseudosolanacearum strain was mixed with NB solid medium

(0.2%, V/V) at 45°C and poured into plates. After the medium

solidified, 5 mL of phage was added to the plate surface, spread

evenly, and incubated overnight at 30°C. Plaque transparency was

observed, and the host range was recorded. Ralstonia

pseudosolanacearum strains with clear plaques were selected for

subsequent pot inoculation experiments (Wang et al., 2022).
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2.3 Pot experiments for the control of
tobacco BW with phages

Yunyan 87 tobacco plants at the four-leaf stage were

transplanted into a seedling substrate (Hunan Xianghui

Agricultural Technology Development Co., Ltd., China). The

pathogen used to inoculate tobacco was selected from the R.

pseudosolanacearum strain, which was lysed using all nine phages

in section 2.2. The pathogen was adjusted to OD600 = 0.1 with

phosphate-buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl, 10

mM Na2HPO4, and 1000 mL ddH2O), and the phage titer was

adjusted to 108 PFU/mL. Each plant was first inoculated with 10 mL

of the R. pseudosolanacearum suspension (OD600 = 0.1), followed

by 50 mL of the phage suspension. The experimental design

comprised 12 individual tobacco plants per treatment with 3

experimental replicates, the temperature of the greenhouse was

kept at 30°C throughout the experiment. The disease incidence was

investigated and recorded for each plant at the early and peak stages

of disease development. The disease index (DI) and control efficacy

(CE) were calculated (Huang et al., 2024) as follows:

DI = 100� (1� n1 + 3� n3 + 5� n5 + 7� n7 + 9� n9)=(n� 9) (1)

CE = (C − T)=C� 100% (2)

Where DI is the disease index; 1–9 refers to different disease

classification levels; n1–n9 is the number of infected plants in each

disease classification level; n is the number of plants investigated;

CE is the control efficacy (T versus C); C is the disease index of the

control group; and T is the disease index of the treatment group.
2.4 Construction and efficacy evaluation of
the phage cocktail

Lytic Ralstonia phages were divided into two groups based on the

host range and control efficacy. Two phages were selected from each

group to construct five phage cocktails following the principle of

‘broader host range + higher control efficacy’: BPC-1 (YL3, YL4),

BPC-2 (YL1, YL2, YL3, YL4), BPC-3 (YL1, YL3, YL4), BPC-4 (YL1,

YL4), and BPC-5 (YL2, YL3). Adjust all phage titers to 1×108 PFU/

mL using PBS buffer, then combine the phages in equal proportions

according to the cocktail combination to ensure a consistent final titer

of 1×108 PFU/mL in each cocktail. To simulate the infection of plants

with different R. pseudosolanacearum strains under natural conditions

(Genin and Denny, 2012), three virulent R. pseudosolanacearum

strains (RStab-5, RStab-12, and RStab-19) were mixed for

inoculation (Supplementary Figure S1). Pot experiments were

conducted to evaluate the control efficacy of the five phage cocktails.
2.5 Biological characteristics and
lysis curves

For the temperature tolerance experiments, 1 mL of phage

culture with an initial phage titer of 1×109 PFU/mL was subjected to
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water bath treatment at different temperatures (30, 37, 50, 60, 70,

80, and 90°C) for 1 h and then cooled to room temperature. The

plaques number were determined in the double-layer plate method

to compare the phage titers after different temperature treatments.

For the pH tolerance experiments, 10 mL of phage culture with an

initial phage titer of 1×109 PFU/mL was added to 990 mL of SM

buffer with different pH values (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,

10.0, 11.0, 12.0, and 13.0) and treated in a water bath at the optimal

temperature for 1 h. The pH was monitored using pH test strips

(JINLIDA, Tianjin Jinda Chemical Reagent Co., Ltd., China) after

the experiment to verify the stability of acid–base conditions

throughout the experimental process. Phage titers after different

pH treatments were determined using the double-layer plate

method. For optimal multiplicity of infection (MOI)

determination, phages and host bacteria (0.3%, V/V) were used

for inoculation and cultured overnight, and the host bacterial and

phage concentrations were determined. They were then mixed at

MOI = 103, 102, 101, 1, 10−1, 10−2, and 10−3 (Table 1) and incubated

at the optimal temperature and pH for 6 h. The phage titers were

determined at different ratios using the double-layer plate method

(Huang et al., 2022; Tian et al., 2022). Equal proportions of the

phage culture and host were added to 48-well plates at the optimal

MOI and co-cultured at the optimal temperature for 12 h. The

OD600 values of the co-culture were measured after 0–12 h using a

microplate reader (TECAN spark, Tecan (Shanghai)Trading Co.,

Ltd., Shanghai) to plot the lysis curves (Wei et al., 2017).
2.6 Electron microscopy observation of
phage morphology

Each phage culture (1×108 PFU/mL) was concentrated using a

100-kDa ultrafiltration tube (Millipore, Tullagreen, Carrigtwohill,

Co. Cork., Ireland), and 20 mL of concentrated phage solution was

dropped onto a copper grid and allowed to settle naturally for

15 min. The excess liquid was removed with filter paper, and 20 mL
of 2% phosphotungstic acid was added and left for 5 min for

staining. After drying, four phages were observed and

photographed using a Hitachi transmission electron microscopy

(HT7800, Hitachi America Ltd., Japan) (Ahmad et al., 2021).
2.7 Genome sequencing and assembly

Each phage suspension was concentrated using 100-kDa

ultrafiltration tubes (Millipore, Tullagreen, Carrigtwohill, Co. Cork.,

Ireland). DNase I (1 mg/mL, TransGen Biotech, TransGen Biotech
TABLE 1 Phage MOI rationing.

MOI
(Phage/Host)

10−3 10−2 10−1 1 101 102 103

Phage (PFU/mL) 105 105 105 105 105 105 105

Host bacteria
(CFU/mL)

108 107 106 105 104 103 102
f
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Co., Ltd., Beijing) and RNase A (1 mg/mL, TransGen Biotech) were

used to digest possible host nucleic acids in the suspensions and

inactivated using water bath treatment at 75°C for 30 min. Phage

genomes were extracted using a Virus DNA/RNA Extraction Kit

(Beijing Tiangen DP-315). DNase I, RNase A, and EcoRI (New

England Biolabs, Inc) were used to determine the nucleic acid type of

the phages (Wilcox et al., 1996).

Whole genome sequencing was performed on the Illumina

NovaSeq platform. The original sequencing data were quality

control led using FastQC and qual i ty tr immed using

Trimmomatic (Bolger et al., 2014). The A5-MiSeq and SPAdes de

novo assembly methods were used to obtain complete phage

genome sequences (Bankevich et al., 2012; Coil et al., 2015).
2.8 Comparative genomic analysis

GeneMarkS and RAST were used to predict the open reading

frames (ORFs) in phage genomes (Besemer and Borodovsky, 2005; Aziz

et al., 2008). For functional annotation, Diamond was used to compare

the predicted protein sequences with the NCBI Non-Redundant (NR)

database (Buchfink et al., 2015). Gene Ontology (GO) term annotation

was performed using Blast2GO (Conesa et al., 2005).

Skani was used to calculate the average nucleotide identity

(ANI) between phage genomes, and heat maps were generated to

visualize genome similarities (Shaw and Yu, 2023). Phylogenetic

analysis was performed using the Mashtree method based on Mash

distances (Katz et al., 2019). Mash was used to calculate Mash

distances between phage genomes (Ondov et al., 2016), and

Mashtree was used to construct a phylogenetic tree based on

Mash distances, with the kmer set to 21 and sketch set to 1000.

iTOL was used to visualize and annotate the phylogenetic tree

(Letunic and Bork, 2021). To identify genome structure

conservation and variation, Easyfig 2.2.5 was used for collinearity

analysis of phage genome sequences (Sullivan et al., 2011).
2.9 Tail fiber protein structure and
function analysis

Jalview was used to visualize the alignment results and identify

conserved and variable regions (Sievers and Higgins, 2018; Procter

et al., 2021). AlphaFold 3 was used for three-dimensional structure

prediction of tail fiber protein amino acid sequences (Abramson

et al., 2024). To verify the AlphaFold prediction results, SWISS-

Model was used for homology modeling (Waterhouse et al., 2018).

PyMOL was used for visualization analysis and coloring of the

predicted structures, focusing on analysis the tip domain, which

may affect host recognition (Rosignoli and Paiardini, 2022).
2.10 Statistical analysis

Analysis of variance (ANOVA) in SPSS was used to identify

significant differences in the control efficacies of single phages and

phage cocktails (p<0.05).
Frontiers in Plant Science 04
3 Results

3.1 Isolation and identification of R.
pseudosolanacearum and phages, and
construction of phage cocktails

3.1.1 Isolation and identification of R.
pseudosolanacearum and phages, evaluation of
single-phage biocontrol potential, and
construction of phage cocktails

This study collected tobacco with BW to screen phages with

effective lytic activity against tobacco BW pathogens in Xiangxi Tujia

Zu and Miao Zu Autonomous Prefecture, Hunan Province. A total of

26 R. pseudosolanacearum strains (RStab1–RStab26) and 9 phages

(YL1–YL9) were isolated and purified (Supplementary Figure S2).

Host range analysis (Supplementary Table S1) showed that

there were significant differences in the host ranges of nine

phages against 38 R. pseudosolanacearum strains isolated from

tobacco, peanut, pepper, and potato. YL1 and YL4 lysed 84.21

and 81.58% of the tested R. pseudosolanacearum strains,

respectively, showing higher lysis rates than the other seven

phages. Therefore, YL1 and YL4 were defined as broader host

range phages. As all nine phages could lyse RStab-12 with

obvious plaques, RStab-12 was selected to evaluate the biocontrol

potential of individual phages.

Pot experiments were conducted to compare the control

efficacies of nine individually inoculated phages against tobacco

BW to evaluate their biocontrol potential. The survey showed that

at 7 days after inoculation with RStab-12, seedlings in the control

treatment (CK) entered the peak period of BW, while only partial

wilting was observed in the phage-treated groups at the same time.

At 14 days after inoculation, the DI of CK were significantly higher

than that of the phage-treated groups. Among them, YL3 had the

highest control effect on BW (93.98 ± 3.03%), followed by YL2

(76.39 ± 8.37%), and YL9 had the lowest control efficacy (61.11 ±

1.60%) (Figures 1A, B). This indicates that phage inoculation

effectively reduces the occurrence of BW but that there are large

differences in efficacy between phages.

The two phages with the highest control efficacy (YL2 and YL3)

were selected and combined with YL1 and YL4 to construct five

phage cocktails: BPC-1 (YL3, YL4), BPC-2 (YL1, YL2, YL3, YL4),

BPC-3 (YL1, YL3, YL4), BPC-4 (YL1, YL4), and BPC-5 (YL2, YL3).

Further research on YL1, YL2, YL3, and YL4 was conducted to

clarify their biological characteristics and taxonomic relationships.

3.1.2 Control efficacy of phage cocktails against
tobacco BW inoculation with three R.
pseudosolanacearium strains

Using pot experiments, the control efficacy of five cocktails and

four single phages was compared against mixed inoculation with three

R. pseudosolanacearum strains of high virulence (Supplementary

Figure S1). At 14 days after inoculation, the survey results showed

that the control efficacies of all five phage cocktails against BW were

above 87%. BPC-1 exhibited the highest control efficacy (99.25 ±

0.65%), and the control efficacies of BPC-2, BPC-3, BPC-4, and BPC-5
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were 95.49 ± 1.95, 95.49 ± 4.06, 94.36 ± 3.90, and 87.22 ± 11.30%,

respectively. The control efficacy of each phage was between 62.03 ±

6.60 and 78.57 ± 13.30%. Comparisons between phage cocktails and

individual phages showed no significant differences among the five

cocktails. However, the control efficacies of BPC-1, BPC-2, BPC-3,

and BPC-4 were significantly higher than those of the individual

phages; all phage cocktails achieved control efficacies above 94%

against BW. The combination of two high control efficacy phages

(YL2 and YL3) in a cocktail (BPC-5) exhibited a control efficacy of

87.22 ± 11.30%, which was significantly improved compared to that of

phage YL1. BPC-5 had a 10.9% increase in control efficacy compared

to YL2 and YL3. The addition of two broader host range phages (YL1

and YL4) to BPC-5 (forming BPC-2) improved the control efficacy

against BW by 8.27% (Figures 1C, D). The experimental results

indicate that combining phages with a broad host range and high

contro l e fficacy enhances the i r coverage aga ins t R.

pseudosolanacearum strains and improves their control efficacy

against BW.
3.2 Biological characteristics

Phage stability is affected by environmental factors, such as

temperature and pH. Temperature sensitivity experiments showed

that YL1’s titer remained stable in the range of 30–50°C but decreased

significantly at temperature greater than 60°C. The titers of YL2, YL3,

and YL4 remained stable in the range of 30–60°C but decreased
Frontiers in Plant Science 05
significantly after water bath treatment at 70°C for 1 h, with YL2

showing a smaller decrease than YL3 and YL4. No plaques were

detected for the four phages at 80 or 90°C (Figure 2A-a), indicating

that 80°C was the lethal temperature.

pH stability experiments showed that the titers of all four

phages remained stable above 107 PFU/mL in the pH range of 4–

11 but decreased significantly at pH 11. No plaques were detected at

pH 3. At pH 12, YL2 showed no plaque, while the titers of YL1, YL2,

and YL3 decreased to 104 PFU/mL. No plaques were detected at pH

13 (Figure 2A-b). These results indicate that the four phages have

substantial application potential under environmental conditions of

30–50°C and pH 4–11.

The optimal MOI for all four phages was 10−2 (Figure 2A-c).

The lysis curves of phages against RStab-12 were determined at

the optimal MOI. After combining the four phages, the OD600 of

the co-culture decreased to less than 0.074 within 4 h. Notably, the

OD600 of YL3 increased to 0.135 at 5 h and decreased again to

0.053 after 1 h. In CK (RStab-12), the OD600 of CK continued to

increase within 12 h, reaching 1.128 at 12 h (Figure 2A-d). The

experimental results showed that an MOI = 10−2 enabled all four

bacteriophages to produce more progeny and lyse the host

within 4 h.

Transmission electron microscopy observation revealed that all

four phages had large icosahedral heads (YL1: 72.03 ± 6.50 nm; YL2:

70 ± 0.82 nm; YL3: 71 ± 0.82 nm; YL4: 72.67 ± 1.25 nm) and

relatively short tails (YL1: 31.33 ± 1.70 nm; YL2: 32 ± 2.83 nm; YL3:

30 ± 2.45 nm; YL4: 29.67 ± 1.25 nm). (Figure 2B).
FIGURE 1

Control efficiency of phages and phage cocktails against BW in pots. (A, B) show the evaluation of single-phage biocontrol potential; (C, D) show
the control efficacy of phage cocktails against tobacco BW inoculation with three R. pseudosolanacearium strains. Letters in the bar chart indicate
significant differences according to Duncan’s analysis (P ≤ 0.05); NCK is the negative control group.
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3.3 Genomic analysis

3.3.1 Genome characteristics and
phylogenetic analysis

The nucleic acids of YL1, YL2, YL3, and YL4 were not digested

by RNase A but were all cleaved into DNA fragments of different

sizes by EcoRI (Supplementary Figure S3), indicating that they were

all double-stranded DNA phages. Genome sequencing also

confirmed that they were all double-stranded circular DNA

phages, with genome lengths of 59,600, 60,770, 61,339, and

60,673 bp, respectively, G + C contents of 64.52, 64.86, 64.92, and

65.02%, respectively, and 73, 73, 75, and 74 ORFs, respectively

(Supplementary Tables S2-S5). The genome sequences of YL1, YL2,

YL3, and YL4 were submitted to GenBank under accession

numbers PQ295876, PQ295877, PQ295878, and PQ295879,

respectively. BLASTn analysis showed that YL1, YL2, YL3, and

YL4 had more than 92% similarity with the genome sequences of

previously reported Gervaisevirus phages in the Caudoviricetes

class, such as QKW1 (GenBank accession no. PP236328), AhaGv

(GenBank accession no. OR820515), P2110 (GenBank accession no.

OP947226), and GP4 (GenBank accession no. MH638294),

indicating that they belong to this genus and class.

The genome sequences of these four phages were compared

with 317 Ralstonia phages of the Caudoviricetes class recorded in

the NCBI database. These 321 phages were divided into four

families and eight genera according to their evolutionary

relationships. YL1, YL2, YL3, and YL4 were all located in the

Gervaisevirus branch (Supplementary Figure S4), showing high

similarity with other members of this genus. All four phages were

identified as belonging to the Gervaisevirus genus of the

Caudoviricetes class based on the classification principles of the

Bacterial and Archaeal Viruses Subcommittee (BAVS)

(Adriaenssens and Brister, 2017). Skani was used to calculate the

ANI between phage genomes to further quantify the differences

between genomes. The ANI values of YL2, YL3, and YL4 were all

above 95%, indicating that they belong to the same species, while

the ANI values between YL1 and YL2, YL3, and YL4 ranged from 92

to 94%, indicating that they are not the same species (Figure 3).
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3.3.2 Protein function annotation and
comparative genome analysis

Annotation results of the four phage genomes showed that the

three functional proteins in YL1 and YL3 did not have similar proteins

in the NR protein database (BLASTp e-value less than 1e−5), while YL2

and YL4 each had four. YL1, YL2, YL3, and YL4 had 36, 38, 41, and 54

hypothetical proteins, respectively. ORF2 occupied a large proportion

of their genomes (YL1: 5.32%, YL2: 7.29%, YL3: 7.29%, YL4: 7.29%),

and annotation showed that ORF2 was homologous to DarB (defense

against restriction), which is required to protect foreign genomic DNA

from restriction by host type I R-M systems (Piya et al., 2017).

This study classified the ORFs of the four phages into four

functional types: lysis, morphogenesis, replication and regulation, and

packaging genes. Among the ORFs related to lysis, all four phages had

holin proteins. ORFs related to morphogenesis mainly encoded head

proteins, tail fiber proteins, virion structural proteins, and portal

proteins. ORFs related to replication and regulation encoded

functional proteins, such as RecE-like recombination exonuclease and

plasmid-derived single-stranded DNA-binding protein. ORFs related to

packaging encoded functional proteins such as terminase small subunit

and phage terminase large subunit (Supplementary Tables S2-S5).

Easyfig was used for comparative genome analysis of the four

phage genomes, which showed good consistency with GP4 (Wang R

et al., 2019). The arrangement positions and transcription

directions of most genes with the same functions in the genome

were consistent, but there were partial gene deletions and position

shifts between phages. Compared to the other three phages, YL1

had nucleic acid sequence deletions in ORF2, significant differences

in ORF11, ORF30-31, and ORF67 compared to YL2, and position

shifts in ORF55. ORF56 in YL1 showed gene shifts in YL2, and YL2,

YL3, and YL4 showed high genome consistency, with ORF54 in YL3

and ORF58 in YL4 having position shifts (Figure 4).

3.3.3 Structure and function prediction of tail
fiber proteins

Host range analysis showed that the four phages had significant

differences in lysis capacity against 38 R. pseudosolanacearum

strains. Since phage tail fiber proteins play a key role in host
FIGURE 2

Biological characteristics, lysis curves, and transmission electron microscopy showing the morphology of four phages. (A-a–A-d) show temperature
sensitivity, pH stability, MOI, and lysis curves, respectively of four phages; (B) shows the morphology of four phages observed using transmission
electron microscopy.
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recognition and infection processes, analysis found that all four

phages had two types of tail fiber proteins: tail fiber protein I

(ORF65 (439 aa, YL1), ORF65 (439 aa, YL2), ORF69 (439 aa, YL3),

ORF68 (439 aa, YL4)), and tail fiber protein II (ORF66 (338 aa,

YL1), ORF66 (295 aa, YL2), ORF70 (290 aa, YL3), ORF69 (290 aa,

YL4)). Based on amino acid sequence alignment using Jalview, the

amino acid sequences of tail fiber protein I had high consistency in

the four phages, while the C-terminal amino acid sequences of tail

fiber protein II showed significant differences (Figure 5A).

Therefore, highly conserved tail fiber protein I is expected to have

little effect on host recognition, while tail fiber protein II may play

an important role in host recognition.

AlphaFold 3 was used to predict the three-dimensional

structure of tail fiber protein II from four phages. The

visualization of the predicted structure revealed that tail fiber

protein II adopts a trimeric structure. Furthermore, the N-

terminal structure of tail fiber protein II was highly consistent

with that of ORF78 (GP4) (Zheng et al., 2023). However, the “tip

domain” (P160-V338) of ORF66 (YL1) was significantly different

from the “tip domains” of ORF66 (T207-T242, YL2), ORF70 (T207-

T242, YL3), and ORF69 (H207-T237, YL4), with 11 b-sheets and 5

a-helices. However, the “tip domains” of ORF66 (YL2), ORF70

(YL3) and ORF69 (YL4) had similar structures (Figure 5B). In

addition, the ORF66 (YL1) “tip domain” region also had more

aromatic amino acids, such as phenylalanine (F), tryptophan (W),

and tyrosine (Y), and positively charged amino acids, such as

arginine (R) and lysine (K), which provide more binding sites for

its interaction with hosts (Bartual et al., 2010; Vyas, 1991). The “tip

domain” amino acid sequences of ORF66 (YL2), ORF70 (YL3), and

ORF78 (GP4) had high consistency, but those of ORF69 (YL4) had

a large number of amino acid deletions and mutations, including
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seven deleted polar amino acids (T207, N208, S209, N210, Y211,

Y212, N213) and three polar amino acids mutated to non-polar

amino acids (T221A, Q230A, S233A).

To further elucidate the differences in the “tip domains”

between ORF66 (YL2), ORF70 (YL3), and ORF69 (YL4), protein

surface electrostatic analysis was performed using Adaptive

Poisson–Boltzmann Solver in PyMOL (APBS) (Jurrus et al.,

2018). Five amino acid residues (G217, G218, S219, G220, and

T221) on the “tip domain” surfaces of ORF66 (YL2) and ORF70

(YL3) carried negative charges, while that in ORF69 (YL4) carried

more positive charges (G218, G219, G220, A221, and F222)

(Supplementary Figure S5). More positive charges in the “tip

domain” are believed to enhance the binding ability of YL4 to

its host receptor, thereby potentially conferring a broader

host range.
4 Discussion

Phage therapy is considered a most promising technology for

controlling plant bacterial diseases (Kering et al., 2019; Pandit et al.,

2022). Ralstonia pseudosolanacearum is a typical “species complex”

with diverse genotypic variations. Due to the strong host specificity

and narrow host range of most phages, mixing phages with different

host ranges in phage cocktails can improve the efficacy of phage

therapy or biocontrol (Buttimer et al., 2017; Magar et al., 2022).

This study isolated 26 R. pseudosolanacearum strains and 9 lytic

phages from Xiangxi Tujia Zu and Miao Zu Autonomous

Prefecture, Hunan Province. By comparing the host range and

pot control efficacy of phages, four were selected to construct five

phage cocktails. The control efficacy of combined phages against
FIGURE 3

Nucleotide similarity heatmap of four phages with 317 Ralstonia phages in the Caudoviricetes class. The ANI between phage genomes was
calculated using Skani and visualized as a heatmap. Different colored squares on the top and left sides of the heatmap represent different taxonomic
relationships among the phages. The color intensity in the heatmap indicates the degree of nucleotide similarity between phage genomes.
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mixed inoculation with R. pseudosolanacearum was significantly

higher than that of individual phages.

In field applications, complex soil environments affect phage lytic

activity. Most reported phages are stable in the range of 28–50°C

and pH 5–10 (Magar et al., 2022; Wang et al., 2022; Lin et al., 2023;

Huang et al., 2024). In this study, YL1, YL2, YL3, and YL4maintained

stable titers at 30–50°C and pH 4–11, enabling better adaptation

to problems caused by changes in environmental temperature and

soil pH, which may reduce phage activity or infection ability

(Figures 2A-a, A-b).YL1, YL2, YL3, and YL4 had high lysis

efficiency and rapidly reduced the R. pseudosolanacearum

population within 4 h, thereby reducing disease occurrence

(Figure 2A-d). Wei et al. (2017) summarized four types of phage

lysis curves, including a mode that showed immediate growth

inhibition of host bacteria, similar to the lysis curves of the four

phages in this study. To delay host bacterial resistance to phages,

phages with broad lysis spectra, high control efficacy, and short

infection cycles should be used when constructing phage cocktails

(Jones et al., 2007; Kaur et al., 2021). This study, building on the

method established by Wei and Magar, concentrated on screening

phages with a broad host range and high control efficacy, which were

subsequently combined into a phage cocktail. The results

demonstrated that, compared to individual phages, the phage

cocktail significantly enhanced the control efficacy against a mixed

inoculation of three R. pseudosolanacearum strain. BPC-1 exhibited

the highest control effect (99.25% ± 0.65%). Subsequent field
Frontiers in Plant Science 08
experiments should further compare the control efficacy of phage

cocktails against BW in agricultural and ecological environments. In

addition, through whole genome sequencing and AlphaFold 3

prediction, this study discovered the tail fiber II and its three-

dimensional structure, hypothesizing that this structure provides

the capability to bind with the outer membrane protein receptors

of R. pseudosolanacearum. These findings provide valuable materials

for further research into the interaction mechanisms between phages

and their host receptors.

Whole genome sequencing provides critical insights into

the taxonomic relationships and genomic characteristics of

bacteriophages (Dion et al., 2020). According to genomic analysis

and BAVS classification principles (Adriaenssens and Brister, 2017),

the four Ralstonia phage strains belonged to the Gervaisevirus genus

within the Caudovirivetes class, demonstrating high similarity

(>92%) with other members of this genus. Functional annotation

revealed that the genomes of the four Ralstonia phage strains

contained four functional types, namely lysis, morphogenesis,

replication and regulation, and packaging genes, consistent with

previously reported Gervaisevirus phages GP4 and P2110 (Wang

et al., 2019; Chen et al., 2023). Comparative genome analysis revealed

variations in gene arrangement, even among genomically similar

phages. These variations suggest dynamic genomic rearrangement

and gene mutation processes potentially driven by horizontal gene

transfer and evolutionary selective pressures, which are critical

mechanisms underlying bacteriophage genomic diversity (Brüssow
FIGURE 4

Comparative genome of four phages. Comparison of whole genome similarity between YL1, YL2, YL3, and YL4. Arrows represent transcription
direction of genes, and genes with consistent functional annotations are represented by the same color. Gray bands between genomes indicate
amino acid similarity.
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and Hendrix, 2002). Overall, the genetic diversity and functional

predictions for these four bacteriophage strains highlight the

conserved characteristics and plasticity of bacteriophages in the

Gervaisevirus genus.

The abundant lipopolysaccharides (LPS) and outer membrane

proteins in bacteria are the main binding sites for phages. The

interactions between phage tail fiber proteins and bacterial

receptors determine the phage’s host range. The number of

positively charged amino acids and aromatic amino acids in the

“tip domain” of tail fiber proteins affects the host range and

adsorption ability of phages (Nobrega et al., 2018; Mourosi et al.,

2022). The “tip domain” of tail fiber protein II of ORF66 (YL1) had

more aromatic amino acids and positively charged amino acids,

which interact with rough LPS and negatively charged

phospholipids in the host outer membrane, respectively (Vyas,

1991; Raetz and Whitfield, 2002; Bartual et al., 2010; Rakhuba

et al., 2010). Phages that bind rough LPS usually have a broader host

lysis range, which potentially explains the broader host range of

YL1. The amino acid sequences of the “tip domains” of ORF66

(YL2) and ORF70 (YL3) were highly similar, with amino acid

mutations (S228G, V237I) in ORF70 (YL3), which reduced its

lysis rate by 13.16%. Compared to ORF69 (YL4), the amino acid

deletions and mutations in ORF66 (YL2) and ORF70 (YL3) may
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reduce the binding ability of tail fiber II to the host receptor site

(Bolen and Rose, 2008). Further, the “tip domain” of tail fiber

protein II of ORF69 (YL4) also contained a positively charged

histidine (H207), which enhanced its electrostatic adsorption ability

to the host outer membrane (Bartual et al., 2010), increasing the

host range of YL4 (Figure 5B). Subsequent studies should verify

these speculations by performing amino acid mutations on the “tip

domain” of tail fiber protein II.
5 Conclusion

Phage therapy shows promising biocontrol potential for

managing BW caused by R. pseudosolanacearum in agricultural

production. This study isolated nine phages and selected those with

a broader host range (YL1 and YL4) and high control efficacy (YL2

and YL3) to construct five cocktails. In pot experiments, BPC-1

(YL3 and YL4) exhibited the highest control efficacy (99.25%). The

four phages maintained stable titers at 30–50°C and pH 4–11,

demonstrating substantial thermal stability and pH tolerance.

Whole genome sequencing revealed that phages YL1, YL2, YL3,

and YL4 belonged to the genus Gervaisevirus. AlphaFold 3

prediction of the three-dimensional structures of tail fiber protein
FIGURE 5

Amino acid sequence similarity and three-dimensional structure prediction of tail fiber protein II. (A) shows amino acid sequence similarity of tail
fiber protein II. Red boxes indicate mutations of polar amino acids in ORF66 (YL2), ORF70 (YL3) and ORF78 (GP4), and deeper blue indicates higher
conservation. (B) shows predicted structures of tail fiber II proteins of four phages using Alphafold 3. Light blue areas are collar domains located at
the base of phage tail fibers; orange areas are needle domains located in the middle long part of tail fibers; dark blue areas are tip domains located
at the “tip” part of the end structure of phage tail fiber II; and dotted lines with numbers indicate connections between structural domains.
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II in the four phages showed that ORF66 (YL1) had a distinct

structure in the “tip domain” compared to the other three phages,

with more aromatic amino acids and positively charged amino

acids. ORF70 (YL3), ORF66 (YL2), and ORF69 (YL4) had similar

structures, but ORF69 (YL4) had more amino acid mutations and

deletions and more positive charges in the tip region, potentially

explaining their different host ranges.
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