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Excessive nitrogen application and low nitrogen use efficiency have been major

issues in China’s agricultural development, posing significant challenges for field

management. Nitrogen is a critical nutrient for crop growth, playing an

indispensable role in crop development, yield formation, and quality

enhancement. Therefore, precisely controlling nitrogen application rates can

reduce environmental pollution caused by excessive fertilization and improve

nitrogen use efficiency. This study employs multispectral remote sensing images,

combined with field-measured nitrogen content, to develop canopy nitrogen

content inversion models for maize using three algorithms: backpropagation

neural network (BP), support vector machine (SVM), and partial least squares

regression (PLSR). The results reveal that there is a degree of redundancy in the

information contained in various spectral indices. Feature selection effectively

eliminates correlated and redundant spectral information, thereby improving

modeling efficiency. The spectral indices Green Index (GI) and Nitrogen

Reflectance Index (NRI) exhibit strong correlations with nitrogen content in the

maize canopy, suggesting that the green and red spectral bands are crucial for

retrievingmaize’s biophysical and biochemical parameters. In studies on nitrogen

content inversion in themaize canopy, the random forest (RF) algorithm, coupled

with PLSR, demonstrated superior predictive performance. Compared to the

standalone PLSR model, accuracy improved by 3.5%–6.5%, providing a scientific

foundation and technical support for precise nitrogen diagnosis and fertilizer

management in maize cultivation.
KEYWORDS

vegetation indices, multispectral, unmanned aerial vehicle (UAV), feature importance
scores, machine learning
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1 Introduction

Nitrogen is an essential component of proteins, chlorophyll,

and many enzymes in plants. It is one of the indispensable nutrients

for crop growth and development, and also serves as an important

indicator for monitoring crop growth status (Du et al., 2023). The

content levels of nitrogen directly influence crop yield and quality,

both of which are essential for national food security and the

sustainable development of agriculture. Traditional methods for

assessing crop nitrogen content primarily involve destructive

sampling and laboratory analysis, such as the Kjeldahl method,

combustion method, and distillation method. These techniques are

time-consuming, labor-intensive, and inefficient, making large-

scale, non-destructive diagnostics infeasible and hindering the

advancement of large-scale agriculture (Bao et al., 2024).

Therefore, efficiently and rapidly monitoring crop nitrogen

content is of significant importance for achieving precision

agriculture and modern agricultural production (Yin et al., 2022).

In recent years, research on UAV-based remote sensing

technology for crop monitoring has gained significant attention

and has become one of the most crucial areas of study in agriculture

(Dong et al., 2024). In the past, satellite remote sensing technology

provided some data support for monitoring crop growth; however,

its revisit cycle limitations and low resolution when collecting small

to medium-scale agricultural field information hindered its ability

to meet the demands of precise crop growth monitoring at the field

scale (Sishodia et al., 2020). UAV remote sensing technology, with

its advantages of low cost, high resolution, and strong timeliness,

effectively compensates for the limitations of satellite remote

sensing and has been widely applied in crop nitrogen nutrition

diagnosis and monitoring (Liang et al., 2023). Currently, research

on UAV-based remote sensing technology for crop monitoring

mainly focuses on the remote sensing inversion of parameters such

as crop water content, nitrogen content, and biomass (Alckmin

et al., 2022; Shendryk et al., 2020; Shu et al., 2022). Wan et al. (2020)

utilized UAV-acquired RGB and multispectral images of rice

canopy to develop a model for predicting moisture content. The

results indicated that the integration of vegetation indices and

texture features significantly improved the accuracy of moisture

content prediction. Wei et al., (2019) employed maize image data, in

combination with field-measured leaf nitrogen content, to analyze

the correlation between spectral variables and nitrogen content. The

study found strong correlations between the green band index

(GRE), the normalized difference vegetation index (GNDVI), and

leaf nitrogen content. Wang et al. (2024) investigated methods for

estimating rice biomass using UAV multispectral images and

proposed a biomass estimation model based on vegetation

indices. These studies provide effective management models and

scientific guidance for precision agriculture, rational resource

allocation, and the improvement of both yield and quality.

While UAV-based remote sensing technology has achieved

significant results in crop monitoring, feature selection has

become a critical step to further enhance the accuracy of remote

sensing inversion. It plays an indispensable role in realizing high-

quality remote sensing applications. Zhao et al. (2021) proposed a

method for multi-source remote sensing soil moisture inversion in
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agricultural fields, combining feature selection and genetic

algorithm optimization with a BP neural network. By performing

proper feature selection, it is possible to identify features that are

highly correlated with the inversion target, possess significant

distinguishability, and exhibit stability (Han et al., 2023). This

approach effectively reduces data redundancy and noise

interference, lowers computational complexity, and enhances both

the efficiency and accuracy of the inversion model, thereby

improving its interpretability and predictive capabilities (Zhou

et al., 2021). Existing studies have not sufficiently refined the

handling of data quality and noise during feature selection. Low-

quality data or inadequately processed noise can mislead feature

selection, thereby reducing the accuracy of remote sensing inversion

(Lan et al., 2024). Mao et al. (2022) proposed a non-parametric

feature selection algorithm that combines random forests and deep

neural networks. Through theoretical analysis and experimental

validation, the advantages of this algorithm in identifying useful

features, avoiding irrelevant features, and improving computational

efficiency were demonstrated. RF are capable of handling high-

dimensional and large-scale remote sensing data. By evaluating

feature importance, they can accurately identify key features, reduce

data redundancy, and minimize noise. Moreover, random forests

can automatically capture nonlinear relationships between features,

overcoming the traditional reliance on linear relationships. This

makes them a more effective solution for complex remote sensing

inversion problems (Sun and Chai, 2023; Zhou et al., 2016).

In this study, silage maize is used as the research subject.

Multispectral UAV imagery of maize canopy at different growth

stages is acquired, and supervised classification using ENVI 5.3

software is applied to eliminate soil background and shadows,

resulting in the maize canopy spectral reflectance. Seventeen

common vegetation indices (VIs) are established, and sensitive

spectral indices are selected using a RF model. BP, SVM, and

PLSR models are constructed to explore the optimal prediction

model for silage maize at different growth stages. Based on the best

model, a spatial distribution map of nitrogen content in the maize

canopy is inverted, aiming to provide a fast and non-destructive

technique for monitoring nitrogen content in field maize at different

growth stages.
2 Materials and methods

2.1 Overview of the study area

This experiment was conducted at Huarui Farm, located in

Minle County, Zhangye City, Gansu Province. Minle County lies in

the central part of the Hexi Corridor, in the southeastern region of

Zhangye City, with geographical coordinates ranging from 100°22′
59″E to 101°13′9″E and from 37°56′19″N to 38°48′17″N. The
county extends 73.8 km east to west and 95.4 km north to south,

covering a total area of 3,687.32 km². Minle County experiences a

continental desert steppe climate, characterized by prolonged

sunshine, abundant thermal resources, large temperature

fluctuations, and low precipitation. The average annual

precipitation is 351 mm, while the average annual temperature is
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4.1°C, with a frost-free period of approximately 154 days. Major

rivers in the region include the Minle, Heihe, and Malian rivers. The

elevation ranges from 1,589 m to 5,027 m from north to south. The

dominant soil types include aeolian sand, gray-brown desert soil,

gray calcareous soil, and millet calcareous soil. The study area is

shown in Figure 1, and the experimental plot was divided into 16

subplots. A diagonal sampling method was employed for uniform

sampling, with a total of 48 samples.
2.2 Data acquisition and preprocessing

2.2.1 Acquisition and processing of
multispectral data

Multispectral UAV imaging was conducted on maize at four

key growth stages: the seedling stage (May 18), jointing stage (July

1), tasseling stage (August 4), and milking stage (September 10). To

ensure the accuracy and reliability of the multispectral data,

observations were performed under clear weather conditions with

minimal wind disturbance. Data collection occurred between 11:00

AM and 1:00 PM, and UAV remote sensing data were obtained

prior to plant sampling to confirm that the plants sampled were

captured in the multispectral images. The DJI M300 RTK UAV,

equipped with the MS600 Pro multispectral camera, has a

maximum flight time of 55 minutes and a transmission range of

up to 15 kilometers. It is capable of carrying three payloads

simultaneously, with a maximum load capacity of 2.7 kg. The

multispectral sensor features six bands: blue, green, red, red edge

1, red edge 2, and near-infrared. The forward overlap was set to

75%, and the side overlap to 60%. The UAV flew at an altitude of 30

meters, with an image spatial resolution of 0.02 meters. The flight

missions, each lasting approximately 30 minutes, were

accompanied by synchronous ground-based imaging of

calibration panels before and after each flight for reflectance
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calibration purposes. The deployment of calibration panels

effectively compensated for illumination variations caused by

changes in solar zenith angles and atmospheric conditions,

thereby ensuring data consistency across different times within a

single day and over multiple days. The band parameters of the

multispectral camera are listed in Table 1.

To obtain a complete set of images for the study area, Pix4D

Mapper software was used to stitch images acquired at different

growth stages. Automatic aerial triangulation technology was

employed to precisely georeference the images and compute

stitching parameters, facilitating the construction of a high-

precision point cloud model. Based on this, the spatial positions

and stitching parameters of the original images were automatically

optimized and calibrated, ultimately generating a high-resolution

Digital Orthophoto Map (DOM) covering the entire experimental

area. False-color composite images were generated using ENVI

software, and supervised classification was performed to remove

soil backgrounds and shadows. Finally, ArcGIS software was

applied for mask clipping to extract reflectance values of each

spectral band during different growth stages, which were

subsequently used for VIs calculations (Figure 2).

2.2.2 Statistical analysis of plant nitrogen
content (PNC)

To minimize the potential influence of surrounding bare soil or

adjacent fields, sampling should be conducted at least 0.5 meters

from the edges of the experimental plots, ensuring a buffer zone

from the field ridges. In each experimental plot, three maize plants

exhibiting uniform growth and intact canopies were selected as

samples. The coordinates of the sampling points were recorded

using RTK. After removing the roots, the samples were separated

into three categories: stems, leaves, and ears. These samples were

sterilized in an oven at 105°C for 30 minutes and then dried at 85°C

until they reached a constant weight. The dry weight was measured,
FIGURE 1

Overview of the study area.
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and the three types of dried samples were ground into a fine powder

and thoroughly homogenized. Following digestion with an H2SO4-

H2O2 solution, the PNC was determined using a Kjeldahl

nitrogen analyzer.

Mathematical statistical analysis of nitrogen content in plant

samples from the study area was conducted. The maximum

nitrogen content in maize ranged from 3.01% to 18.72%

throughout the growing season, showing a trend of first

decreasing and then increasing. This trend may be related to the

contribution of nitrogen to changes in crop growth. Descriptive

statistics of nitrogen content in the maize canopy are shown

in Table 2.

The original dataset was sorted in ascending order and

subsequently divided using systematic sampling at fixed intervals.

Starting from the first element of the sorted dataset, every third

sample was selected for the validation set (comprising 16 data

groups), while the remaining samples formed the modeling set

(consisting of 32 data groups). Figure 3 shows the statistical results

of nitrogen content in the maize canopy. It can be observed that

both the training and validation sets for different growth stages

maintained statistical results similar to the overall dataset,

minimizing the bias between the training and validation sets.
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2.3 Calculation of VIs

VIs are constructed by linear or nonlinear combinations of

different spectral bands. VIs are designed to integrate various

related spectral signals, enhancing information from vegetation

while minimizing the effects of external factors such as soil

background, climate, and vegetation cover variability (Qiao et al.,

2022). The use of multispectral UAV remote sensing data to

calculate VIs for each band has become the most commonly used

method for monitoring PNC. Most researchers have employed VIs

derived from the visible spectrum and selected those with a high

correlation to ground truth data as input variables for model

development, achieving satisfactory prediction results. This

indicates that the establishment of VIs offers a distinct advantage

in PNC monitoring applications (Shah et al., 2019).

Studies have shown a significant correlation between VIs, PNC

of crop, and biomass. By linearly or non-linearly combining spectral

reflectance from different characteristic bands, VIs can be used to

invert various vegetation parameters and diagnose vegetation

growth status (Ma et al., 2022). In this study, multispectral UAV

data is combined with existing PNC inversion research to select six

spectral band reflectances and 17 VIs for the inversion of nitrogen

content in the maize canopy. The calculation formulas for the VIs

are shown in Table 3, and these indices will be used as input

variables for the nitrogen estimation model in subsequent analysis.
2.4 Model construction and
accuracy evaluation

The BP, SVM, and PLSR machine learning algorithms were

individually applied to develop separate inversion models for

nitrogen content in the maize canopy. All of these regression

algorithms were implemented using MATLAB.
FIGURE 2

Extraction of canopy spectral reflectance. (a) Classification result. (b) Making the canopy vector file. (c) Extraction the canopy reflectivity.
TABLE 1 Band parameters of multispectral sensor.

Band Band center/nm Band width/nm

NIR 840 35

REG-2 750 15

REG-1 720 10

RED 660 20

GREEN 555 25

BLUE 450 35
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2.4.1 RF model
To analyze the key spectral variables influencing nitrogen

content in the maize canopy, a quantification study using RF was

conducted. RF is an ensemble learning method composed of

multiple regression trees (Pang et al., 2022). There is no

correlation between the decision trees in the forest. The final

output of the model is determined collectively by each tree in the

forest. Unlike traditional decision trees, random forests do not

require predefined weights for each attribute. Instead, they

randomly select a subset of data as variables from the sample data

and use their attribute values to predict new samples (Everingham

et al., 2016). RF utilizes an iterative algorithm to select the best

decision trees, which are then used in ensemble learning. During the

splitting of each decision tree node, RF randomly selects a subset of

variables from the entire set to identify the optimal features, thereby

improving prediction accuracy. Additionally, RF exhibits strong

tolerance to noise and outliers, making it less prone to overfitting

(Sun and Chai, 2023).

2.4.2 BP model
BP is a multilayer feedforward neural network trained using the

error backpropagation algorithm, also known as the backpropagation

network (Tang et al., 2022). This algorithm is based on multilayer
Frontiers in Plant Science 05
neural networks and exhibits features such as fault tolerance,

automatic adjustment, and self-learning. It also possesses strong

nonlinear mapping capabilities, allowing it to handle complex

nonlinear relationships between inputs and outputs. As a result, it

is one of the most widely used neural network models today (Song

et al., 2021). During the training process, the error between the actual

and expected outputs at the output layer is calculated. This error

signal is then propagated backward from the output layer to the

hidden layers, and finally to the input layer. Throughout this process,

the connection weights and biases between neurons in each layer are

adjusted according to specific rules, enabling the network’s output to

gradually approach the desired output (Wang et al., 2022).

2.4.3 SVM model
SVM is a powerful and widely used machine learning algorithm.

It offers distinct advantages in small-sample, nonlinear, and high-

dimensional pattern recognition, and is relatively tolerant to noise

in the data (Sawut et al., 2021). Due to its focus on minimizing

structural risk rather than empirical risk, it demonstrates strong

generalization ability and can achieve good performance even with

a limited number of training samples (Wang et al., 2016). Moreover,

the solution of SVM exhibits sparsity, meaning that most training

samples do not affect the model, and only the support vectors play a
FIGURE 3

Box plot showing the statistical results of canopy nitrogen weight (g/m2).
TABLE 2 Descriptive statistics for the Nitrogen content in maize plants at different growth.

Date Samples Range/% Mean/% Standard Deviation/% Coefficient of Variation/%

Seedling 48 10.735~18.723 14.205 1.832 0.129

Jointing 48 5.489~8.150 6.349 0.501 0.079

Tasseling 48 3.012~4.210 3.632 0.270 0.074

Milking 48 12.340~16.892 14.461 1.006 0.070
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role. This results in relatively high computational efficiency and

lower storage requirements, which is why SVM is widely used in

spectral analysis research (Piccialli and Sciandrone, 2022).

2.4.4 PLSR model
PLSR is a statistical method that combines principal component

analysis (PCA), canonical correlation analysis (CCA), and multiple

linear regression (MLR). It is primarily used to address data analysis

problems involving multicollinearity among variables and a limited

number of sample points (Ezenarro et al., 2023). By minimizing the

sum of squared errors, the optimal matching function for a set of data

can be found, which can effectively address multicollinearity issues

between parameters to some extent (Alexis et al., 2023). PLSR

demonstrates good adaptability and stability when dealing with

high-dimensional and small sample data. By extracting key

component information, it reduces the data dimensionality and

prevents overfitting (Shen et al., 2020). Furthermore, PLSR can

simultaneously model multiple dependent variables, making it

suitable for regression problems involvingmultiple response variables.
2.4.5 Accuracy evaluation metrics
To evaluate the predictive capability and fitting accuracy of the

inversion model, three performance metrics were used: the root

mean square error (RMSE), coefficient of determination (R²), and

mean absolute error (MAE). R² measures the degree of correlation

between the predicted and observed values, while RMSE quantifies

the deviation between them. MAE represents the average error

between the predicted and observed values. Higher R² values,
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approaching 1, and smaller RMSE and MAE values indicate

better model fitting accuracy and enhanced prediction

performance. R², RMSE, and MAE are calculated using Equations

1–3, respectively.

R2 =
o
n

i=1
(Yi − �X)2

o
n

i=1
(Xi − �X)

2
(1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Yi − Xi)

2

n

vuuut
(2)

MAE =
1
no

n

i=1
Xi − Yij j (3)

Here, n represents the total number of samples, denotes the

observed mean value of the samples, and represent the observed

value and the predicted value of the i-th sample, respectively.
3 Results and analysis

3.1 Canopy spectral reflectance extraction

Figure 4 illustrates the variation in spectral reflectance across the

maize canopy at different growth stages. From the blue band (450 nm)

to the near-infrared (NIR) band (840 nm), spectral reflectance follows
TABLE 3 Vegetation indices used in this study.

Vegetation Index Name Formula

DVI Difference Vegetation Index NIR − RED

GNDVI Green Normalized Difference Vegetation Index (NIR − GREEN)=(NIR + GREEN)

SAVI Soil-Adjusted Vegetation Index (NIR − RDE)*(1 + 0:5)=(NIR + RED + 0:5)

BNDVI Blue Normalized Difference Vegetation Index (NIR − BLUE)=(NIR + BLUE)

NDVI Normalized Difference Vegetation Index (NIR − RED)=(NIR + RED)

RVI Ratio Vegetation Index NIR=RED

WDRVI Wide Dynamic Range Vegetation Index (0:12*NIR − RED)=(0:12*NIR + RED)

GDVI Green Difference Vegetation Index NIR − GREEN

ISR Improved Soil-Adjusted Ratio RED=NIR

NDREI Normalized Difference Red Edge Index (REG750 − GREEN)=(REG750 + GREEN)

GI Green Index GREEN=RED

NR Normalized Red RED=ðRED + GREEN + NIRÞ

NG Normalized Green GREEN=(RED + GREEN + NIR)

NNIR Normalized NIR index NIR=(RED + GREEN + NIR)

OSAVI Optimized Soil-Adjusted Vegetation Index (NIR − RED)=(NIR + RED + 0:16)

NRI Nitrogen Reflectance Index (GREEN − RED)=(GREEN + RED)

DVI Difference Vegetation Index NIR − RED
NIR, REG2, REG1, RED, GREEN, and BLUE represent the spectral reflectance of the multispectral camera at wavelengths of 840, 750, 720, 660, 555, and 450 nm, respectively.
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a distinct pattern: initially increasing, then decreasing, and

subsequently increasing again. A small peak appears in the green

band (555 nm), while absorption troughs are observed in the blue and

red bands (660 nm). In contrast, a sharp rise occurs, reaching a larger

peak in the red edge (720 nm and 750 nm) and NIR bands. As the

growing season progresses, the canopy reflectance exhibits significant

dynamic changes. During the seedling stage, the canopy reflectance

typically remains at a high level. As the plants enter the mid-growth

stage, reflectance gradually decreases, reaching the lowest point of the

entire growth cycle. In the milking stage, canopy reflectance increases

again, recovering to a higher value as a result of changes in the plant’s

physiological state.
3.2 Spectral index feature selection

The sensitivity of different spectral variables to PNC varies. A

random forest algorithm was employed to analyze the correlations

between six spectral bands and seventeen vegetation indices with

plant nitrogen content. The contribution of each feature to the

model’s prediction performance was assessed, and the importance

of each feature was quantified, ultimately ranking the features based

on their significance. Spectral variables with a feature weight greater

than 4% were selected for each growth stage, and the results are

presented in Table 4. At the seedling stage of maize, six features

were selected by the random forest model, listed in descending

order of importance: GI (22.2%), SAVI (19.5%), NRI (17.4%),

OSAVI (7.7%), DVI (7.4%), and NG (4.2%). The ranking of

feature variables at the jointing stage shows a decreasing trend in

importance, from NDREI, NRI, GI, REG750, REG720, GDVI, RED,

and SAVI to NG. NDREI contributed the most at 19.7%, while NG

had the lowest contribution at just 4.2%. During the tasseling stage,

the red light band was most sensitive to plant nitrogen content,

followed by NRI. However, at the milking stage, the sensitivity of

the red light band to plant nitrogen content decreased significantly,

with a relatively low value of only 1.3%.
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The correlation between nitrogen content and vegetation

indices in maize plants exhibits significant variations across

different growth stages, primarily attributable to the physiological

characteristics of maize, dynamic changes in canopy structure, and

temporal variations in spectral response features. During the

seedling stage, the low canopy coverage and small leaf area index

result in substantial interference from soil background on canopy

spectral reflectance. Both GI and SAVI demonstrate superior

resistance to soil background interference, effectively mitigating

the impact of soil reflectance and thereby providing more accurate

characterization of plant nitrogen status. The jointing stage, being a

critical phase for maize vegetative growth, is characterized by

canopy closure and a significant increase in leaf area index,

accompanied by elevated levels of chlorophyll content and

nitrogen demand. The NDREI demonstrates significant

correlation with plant nitrogen content by utilizing red-edge

bands that are sensitive to chlorophyll concentration changes,

while the NRI is based on an optimized combination of red and

green bands. During the tasseling stage, the maize canopy reaches

full closure, with the leaf area index peaking at its maximum value

for the growth cycle. At this stage, nitrogen demand is primarily

concentrated in ear development and grain formation processes.

Both RED and NRI exhibit high sensitivity in detecting the spatial

distribution of nitrogen and vertical heterogeneity of chlorophyll

content within the canopy, accurately reflecting the vertical

distribution characteristics of plant nitrogen status. This provides

reliable spectral evidence for nitrogen nutrition diagnosis during the

tasseling stage. As the maize plants enter the senescence phase at

milking stage, chlorophyll degradation leads to significant leaf

yellowing, accompanied by a noticeable decline in leaf area index.

Consequently, the influence of soil background on canopy spectral

reflectance becomes prominent again. Both SAVI and OSAVI

effectively mitigate soil reflectance interference on canopy spectra

through the incorporation of soil adjustment factors, significantly

enhancing the monitoring accuracy of plant nitrogen status.

Figure 5 presents the proportion of key feature variables at

different growth stages of maize when nitrogen content is inverted

using various spectral indices. The importance of each variable

radiating from the center increases incrementally by 5%. Both GI

and NRI show a strong correlation with nitrogen content in the

maize canopy, indicating that the red and green bands play a key
FIGURE 4

Spectral variation characteristics of maize canopy.
TABLE 4 Feature importance ranking.

Date Input Variables
Number

of
Variables

Seedling
GI(22.2%)、SAVI(19.5%)、NRI(17.4%)、OSAVI

(7.7%)、DVI(7.4%)、NG(4.2%)
6

Jointing
NDREI(19.7%)、NRI(11.8%)、GI(10.1%)、

REG750(9.2%)、REG720(6.8%)、GDVI(6.5%)、
RED(5.0%)、SAVI(4.3%)、NG(4.2%)

9

Tasseling
RED(19.4%)、NRI(18.2%)、GI(14.9%)、NR

(11.4%)、NDREI(7.4%)、RVI(4.5%)
6

Milking
SAVI(20.0%)、OSAVI(17.6%)、GI(11.6%)、NRI

(10.1%)、DVI(8.5%)
5
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role in the absorption and reflection of chlorophyll. Based on the

correlation between red and green band reflectance and chlorophyll

content, numerous studies have established various VIs to estimate

PNC. When nitrogen content is sufficient, chlorophyll levels are

relatively high, leading to increased absorption of red light and a

decrease in green light reflectance. Therefore, the GI and NRI

indices can indirectly reflect changes in nitrogen content within

the leaves.
3.3 Comparative analysis of
model accuracy

Building on the previous analysis and the importance ranking of

spectral variables in relation to maize canopy nitrogen content,

three prediction models—BP, SVM, and PLSR—were developed

using all spectral variables and the selected spectral variables as

independent variables, with PNC as the dependent variable, for

different growth stages. The results are presented in Figure 6.

Among all the models, PLSR achieved the highest prediction

accuracy across all growth stages. After feature selection, the

prediction accuracy of maize canopy nitrogen content improved

to some extent at each growth stage. The comparative analysis of the

impact of variable selection on prediction accuracy revealed that,

after variable selection, the BP model’s estimation accuracy

improved by 10.2%, 9.8%, 7.6%, and 3.8% for the seedling,

jointing, tasseling, and milking stages of maize, respectively. The

estimation accuracy of maize at milking improved by more than
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10% using SVM, while the improvement in prediction accuracy

with PLSR was generally lower before and after feature selection.

This is because PLSR inherently has some feature selection

capabilities. After feature selection, the prediction accuracy for all

four growth stages was optimized to varying degrees, with the best

performance observed during the jointing stage.

A comparative analysis of the performance of three modeling

approaches reveals that the PLSR model provides the best predictive

accuracy. When comparing the maize canopy nitrogen content

inversion models developed using these methods, the model based

on the PLSR algorithm achieved a maximum accuracy that was

5.56% higher than the SVM model and 7.04% higher than the BP

model. Notably, the maize canopy nitrogen content inversion

model constructed using RF feature selection combined with

PLSR exhibited the best fit, with an R² of 0.76.
3.4 Spatial distribution of PNC

To improve the evaluation of the model’s inversion

performance, a comparative analysis of the prediction results

from three machine learning algorithms after feature selection is

conducted. The optimal prediction model, RF coupled with PLSR, is

utilized to estimate the nitrogen content in the maize canopy at

various growth stages. The predicted values closely match the

observed values, and the distribution of nitrogen content aligns

well with the actual conditions. The results are presented

in Figure 7.
FIGURE 5

Proportion of feature importance.
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4 Discussion

4.1 Inversion of PNC based on
feature selection

Traditional approaches typically build crop nitrogen content

estimation models based on a single spectral variable. However,

models constructed using a single variable are prone to saturation,

while using too many variables may lead to overfitting (Ma et al.,

2024). Previous studies have shown that feature selection can

effectively reduce redundancy in model input variables, thereby

improving both model efficiency and accuracy. Lee et al (Lee et al.,

2020). employed the random forest algorithm for feature selection,

successfully identifying variables with minimal impact on model

predictions. By removing redundant variables, they reduced the

computational time of the model while simultaneously enhancing

its prediction accuracy. The random forest importance plot can

identify variables that have little or no impact on the model.

Removing these variables not only reduces processing time but

also improves prediction accuracy (Hua et al., 2023).

As shown in Figure 8, the RF coupled PLSR model demonstrates

better predictive performance in the maize canopy nitrogen content

inversion, with an accuracy improvement of 3.5% to 6.5% compared

to the single PLSR model. By comparing the prediction results of

maize canopy nitrogen content at different growth stages, it was

found that the highest prediction accuracy was achieved during the

tasseling stage, which is consistent with the findings of Liu et al.

(2012). This may be due to the relatively stable growth conditions of

maize plants during this stage, where their physiological and

morphological traits are more pronounced and representative,

facilitating the extraction of relevant information associated with
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nitrogen content. Additionally, during the tasseling stage, external

environmental factors such as temperature, light, and moisture are

more stable, reducing the interference of environmental variables on

nitrogen content prediction.
4.2 The impact of different models on the
spatial distribution of PNC

The BP, SVM, and PLSR models were applied to estimate PNC.

The results show that the BP model demonstrated strong nonlinear

fitting capability, with an R² of 0.71 and an RMSE of 0.15. Alhnaity

et al (Alhnaity et al., 2020). utilized deep learning techniques to

predict plant growth and yield in greenhouse environments. The

results indicated that the BP network performed exceptionally well

in handling complex plant growth data. However, the training

process is intricate and requires substantial computational

resources and time. Additionally, the model is prone to

overfitting, necessitating large amounts of training data to

mitigate this issue. Furthermore, the choice of parameters has a

significant impact on the results. The SVM model, with its

advantages in handling small samples and high-dimensional data,

yields relatively stable results, achieving an R² value of 0.72 and an

RMSE of 0.13. Shahhosseini et al. (2019) evaluated the performance

of five machine learning algorithms in predicting maize yield and

nitrogen loss. The study found that SVM demonstrated better

predictive capabilities under certain conditions, although its

performance was dependent on the size of the training dataset

and the selection of input variables. In studies of nitrogen content

inversion in maize, it effectively handles noise and outliers in the

data by finding an optimal hyperplane for classification or
FIGURE 6

Comparison of model accuracy before and after feature selection.
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regression. When sample size is limited, the SVMmodel tends to be

more stable than other models and can, to some extent, overcome

overfitting. However, it is sensitive to the choice of kernel function

and parameter tuning, requiring careful optimization to achieve

optimal performance; The PLSR model has certain advantages in

handling multivariate collinearity, with an R² value of 0.76 and an

RMSE of 0.13. It simultaneously considers the relationships

between multiple independent and dependent variables, effectively

addressing the complex multivariate interactions. By performing a

comprehensive analysis of the independent and dependent

variables, the PLSR model can more fully reveal the underlying

patterns in the data. Jiang et al. (2006) investigated the application

of PLSR in short-term climate forecasting and found that PLSR, by

extracting principal components, can effectively handle high

correlations between independent variables, thereby improving

the accuracy of predictive models. By extracting principal

components, the information of both independent and dependent

variables is integrated, reducing the impact of multicollinearity and

resulting in more reliable regression coefficient estimates.
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Additionally, the PLSR model not only allows for prediction but

also offers interpretability. By extracting principal components, it

can explain the relationship between independent and dependent

variables, helping to understand the underlying structure and

influencing factors within the data.

The choice of model is crucial during the analysis and modeling

of plant samples. Considering various factors, the PLSRmodel may be

a more efficient choice for plant samples with relatively stable growth

conditions and clearly defined linear characteristics in the data. This is

because, under stable growth conditions, the physiological indicators

and growth data of plants often exhibit regular linear relationships.

The PLSR model can effectively capture these linear patterns and

accurately predict and analyze the plant’s growth status by fitting the

linear relationship between the independent and dependent variables

(Hensold et al., 2019). However, when plant growth is influenced by

multiple complex factors, such as climate change, uneven soil fertility,

and pest infestations, which result in significant nonlinear data

characteristics, the BP and SVM models demonstrate

greater potential.
FIGURE 7

Spatial distribution map of PNC.
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4.3 Limitations and future
research directions

This study provides valuable insights for future research by

comparing the inversion accuracy of different models under feature

selection. However, the morphological and physiological

characteristics of maize plants vary significantly across different

growth stages, and the applicability of the inversion model at

various growth stages requires further validation. In addition, due

to the influence of regional environmental conditions, plant growth

characteristics, and local climatic factors, the transferability of the
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model exhibits a certain degree of uncertainty across different

regions. To improve the generalization ability and reliability of

the model, it is essential to thoroughly investigate the mechanisms

through which these factors affect the model transfer process.
5 Conclusion

Based on multispectral UAV remote sensing imagery, optimal

spectral variables were selected using RF. Models such as BP neural
FIGURE 8

Linear fit of PNC predictions under different models.
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networks, SVM and PLSR were then applied to effectively estimate

nitrogen content in the corn canopy. The study found that:
Fron
(1) During the multispectral remote sensing inversion of PNC

using UAVs, redundancy exists in the information

provided by different feature variables. By applying

random forest for feature selection, redundant spectral

information can be effectively removed, thus improving

modeling efficiency. This process enhances the model’s

predictive capability and optimization, ultimately

improving the applicability of the inversion model.

(2) During the four growth stages, the VIs GI and NRI show a

strong correlation with the nitrogen content in the corn

canopy, indicating that the green and red light bands can

effectively be used for the inversion of corn’s biophysical

and biochemical parameters.

(3) During the tasseling stage, the spectral indices RED, NRI, GI,

NR, NDREI, and RVI, selected based on RF, were used as

input variables for the PLSR model. The RMSE was 0.13,

MAE was 0.11, and R² reached 0.76, indicating the optimal

inversion performance. These results demonstrate that the

model excels in both accuracy and reliability, providing strong

support for the accurate retrieval of relevant information.

(4) A comparative analysis of three models based on RF feature

selection shows that the PLSR model consistently

outperforms the BP and SVM models in inversion

accuracy. Overall, the PLSR model exhibits the highest

inversion accuracy, followed by the SVM model, with the

BP model showing slightly lower accuracy.
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