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Introduction: Reforestation has been widely considered to best solve this

problem, but this requires an accurate estimation of carbon stocks in the

forest aboveground biomass (AGB) at a large scale. AGB models based on traits

and remote sensing indices (moisture vegetation index (MVI)) are the two good

methods for this purpose. But limited studies have developed them to estimate

carbon stock in AGB during restoration of degraded mining areas.

Methods: Here, we have successfully addressed this challenge as we have

developed trait-based and MVI-based AGB models to estimate carbon stock in

the AGB after performing reforestation in a 0.2 km2 degraded tropical mining area

in Hainan Island in China. During this reforestation, seven non-native fast-growing

tree species were planted, which has successfully recovered soil processes

(including soil microorganisms, nematodes and chemical and physical properties).

Results and discussions: By using these two models to evaluate carbon stock in

AGB, we have found that an average of 78.18 Mg C hm-2 could be accumulated

by our reforestation exercise. Moreover, wood density could predict AGB for this

restored tropical mining site, and indicated that strategies of planting fast-

growing species leads to fast-growing strategies (indicated by wood density)

which in turn determined the largely accumulated carbon stocks in the AGB

during restoration. This restoration technology (multiple-planting of several non-

native fast-growing tree species) and the two accurate and effective AGBmodels

(trait-based and MVI-based AGB models) developed by us could be applied to 1)

restore other degraded tropical mining area in China, and 2) estimate carbon

stock in forest AGB after performing restoration.
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1 Introduction

Variations in global carbon stocks are largely determined by

terrestrial ecosystem (Migliavacca et al., 2021; Tang et al., 2022).

Globally, industrial mining has destroyed nearly 2 million hectares of

land (FAO, 2015), and the changes in land use and cover as a

consequence of mining are considered as a main driver of terrestrial

carbon loss (Baier et al., 2022; Tagesson et al., 2020). Mining activities

have influenced approximately 11.5% of the global terrestrial area

(Luckeneder et al., 2021). Thus, ecological degradation and emission

of greenhouse gases throughout the world may be aggravated by

mining, which in turn influence the global climate and pose a serious

threat to the ecological safety (Zhu et al., 2024).

Two potential ways have been assumed to be effective in balancing

the global C cycle. The first involves cutting the carbon emissions,

whereas the second warrants an increase in the natural C sink to offset

the increased carbon emissions (Ahirwal et al., 2017). The loss of forest-

cover due to open strip mining activities have significantly increased

the C level in the atmosphere (Mukhopadhyay and Maiti, 2014).

Increasing forest area could be a sustainable tool to mitigate elevated

atmospheric CO2 concentration (IPCC, 2001). As a result, performing

reforestation in degraded mining area to increase forest cover has

widely been suggested to decrease the potential carbon emission due to

mining (Ahirwal et al., 2017; Yuan et al., 2023; Zhu et al., 2024).

Tropical forests contain 55% of the global stores of aboveground

forest carbon (Pan et al., 2011; Philipson et al., 2020). Mining

constitute one of the biggest threats to vegetation and soil in

the tropical forests, which thereby gives rise to a large amount of

carbon emission (Ahirwal et al., 2017; Zhang et al., 2024a). Thus, it is

very necessary to perform reforestation in degraded tropical mining

area to enlarge natural C sink to prevent the increase in the

atmospheric CO2 level.

Accurate estimation of forest aboveground biomass (AGB) can

directly determine the C accumulation capacity of the tree species in

the restored mining area. The greater estimates of AGB indicate a

high C accumulation capacity of the plants (Zhao et al., 2014;

Ahirwal et al., 2017). Traditionally, AGB is estimated by harvesting

multiple individuals of several tree species to obtain diameter at

breast height (DBH) and height (H) for developing an estimation

model [AGB = a × (DBH2 × Hb)] (Chave et al., 2005). Then, by

measuring DBH and H for all the individuals of every tree species in

an ecosystem could accurately estimate the AGB for an ecosystem.

However, this method could only be used at a small scale, because it

takes a long time to measure DBH and H of all trees of every species

in a forest.

Two more ABG models could be developed for a forest

ecosystem, (1) a remote sensing indices-based AGB model; and

(2) a trait-based AGB model. Vegetation indices obtained from

remote sensing (moisture vegetation index (MVI)) are highly

related to forest AGB in tropical forests (Boyd, 1999; Foody et al.,

2003; Freitas et al., 2005). MVI, at large and regional scales, could be

easily obtained from remote sensing images. Therefore, MVI-based

model is more effective than a traditional model for estimating AGB

for a forest ecosystem. Functional traits that are correlated with the

growth rate of individual plants (Perez-Harguindeguy et al., 2013)

are also expected to be mechanistically related to primary
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productivity of the vegetation (Garnier et al., 2004). It has been

found that key traits (for example, specific leaf area (SLA), and

wood density) not only directly determine AGB, they also indicate

the mechanisms that result in alterations in AGB in the tropical

forests (Baker et al., 2004; Nam et al., 2018; Phillips et al., 2019;

Finegan et al., 2015; Wang and Ali, 2021). Functional traits could

only be measured for 3-5 individuals of one tree species (Garnier

et al., 2004; Zhang et al., 2018). Consequently, compared to a

traditional model, a trait-based model is also more effective for the

estimation of AGB for tropical forests. However, relatively few

studies have developed these two models to accurately and

effectively estimating AGB for tropical forests, let alone for

restored tropical mining area.

Since 2013, a reforestation project has been initiated to restore a

0.2 km2 degraded tropical limestone mining area near the southern

edge of Hainan Island (Figures 1A–C, Zhang et al., 2024a, b).

Limestone mining for the cement industry had been performed for

two decades in this area, which had converted an original tropical

rainforest into an open-mining area (bare rocky substrates, without

any plants; Figures 1B, C, Zhang et al., 2023, 2024a). By mix-

planting one non-native shrub species and seven non-native fast-

growing tree species, this open-mining area now has been

successfully restored into a secondary tropical rainforest, whose

soil microorganisms, nematodes and physical and chemical

properties are comparable to those of an adjacent undisturbed

tropical rainforest (Zhang et al., 2024a, b).

Limestone mining and the global production of cement has

grown in tandem with economic development (Uwasu et al., 2014;

Farfan et al., 2019). The exponential increase in cement production

and export in recent decades has resulted in a global annual

quarrying of over 178 million metric tons, with huge areas being

mined for limestone, particularly in Asia (Hughes et al., 2017). The

production of cement at this scale has enormous environmental

implications as it utilizes about 1.9% of the global electricity

production and contributes 5-8% of the global CO2 emissions

(Farfan et al., 2019).

Moreover, China has become a major mining country, which in

turn may lead it to be one of the largest carbon emitters (assessment

of carbon sequestration potential of mining areas under ecological

restoration in China). Recovering the degraded mining areas,

preventing the geological hazards and performing reforestation to

recover the green landscape in the mining areas are the main focus in

China (Chen et al., 2022; Zhu et al., 2024). However, it remains

unclear whether restored mining areas could increase carbon

sequestration potential (assessment of carbon sequestration

potential of mining areas under ecological restoration in China).

Thus, the above-mentioned restored tropical limestone mining area

(in the Hainan Island) provide us with a perfect platform to develop

trait-based and MVI-based AGB models to determine the amount of

carbon accumulated by this successful reforestation. For achieving

this goal, we first harvested a total of 35 trees (five individuals for each

of the seven native tree species) to obtain DBH and H so that we

could develop a traditional AGB model. Then, we measured six key

functional traits (transpiration rate (mmol m−2 s−1), stomatal

conductance (mmol m−2 s−1), leaf hydraulic conductance (mmol

m−1 s−1 MPa−1), photosynthesis rate (mmol m−1 s−1), specific leaf area
frontiersin.org
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(cm g-1) and wood density (g m-3) and obtained the MVI from the

remote sensing images for this restored tropical mining area. Finally,

we utilized data on six functional traits, and the MVI to further

generate more effective trait-based and MVI-based AGB models.

These two models could not only accurately estimate how much

carbon stock was accumulated by our reforestation, but also provide

two useful tools for estimating AGB for other restored tropical

mining areas in China.
2 Materials and methods

2.1 Study sites

The study site was located in a limestone mountain near Sanya

City of Hainan Island, China (110°58′01′′E, 19° 38′48′′N;

Baopoling Mountain; 300 m a.s.l). The area has a tropical

monsoon oceanic climate, with a mean annual temperature of 28°

C, and 1500 mm of mean annual precipitation, about 91% of which

occurs between the months of June to October (Zhang et al., 2024a).
Frontiers in Plant Science 03
The natural vegetation of the area is classified as broadleaf tropical

rainforest (Zhang et al., 2024a). In this area, limestone was

extensively mined between 1995 to 2015 (Zhang et al., 2023). We

reforested a degraded mine area of about 0.2 km2, whose mining

history and our reforestation efforts has been described in detail in a

recent study (Zhang et al., 2023).
2.2 Harvesting of trees and sampling of
functional traits in the restored mining area

Since seven non-native tree species (Terminalia neotaliala,

Bombax ceiba, Ficus concinna, Muntingia colabura, Cleistanthus

sumatranus, Acacia mangium and Syzygium hainanense) were used

in our restoration, we harvest 35 trees (five individuals for each

species). First, we measured the DBH and height for all the

individuals for all the seven tree species in the restored site and

calculated the mean DBH and height for each of the seven non-

native tree species. Then, for each species, we randomly selected 5

individuals whose DBH and height were comparable to the mean
FIGURE 1

The location of the study sites (A), landscape for mining area before and after reforestation, and the location of our sampled 35 trees of the seven
species (5 individuals for each tree species) that were used for our reforestation and generating the aboveground biomass (AGB) model (B, C).
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DBH and height; their locations were shown in detail in Figure 1C.

Finally, we harvested the aboveground parts of all 35 selected trees

and obtained their dry weight as AGB. We also used these 35

selected trees/individuals to measure six functional traits

(transpiration rate, stomatal conductance, leaf hydraulic

conductance, photosynthesis rate, specific leaf area and wood

density). The details of measurements of these six functional

traits have been described in previous studies (Li et al., 2015;

Shen et al., 2016; Zhang et al., 2018), and further summarized in

the Supplementary Material.
2.3 The developments of traditional, trait-
based and MVI-based AGB models

Following Chave et al. (2005), we first used the following

equation (AGB= a×(DBH2×H)b) to develop a traditional AGB

model. Then, we used a penalization on the number of

parameters, the Akaike information criterion (AIC) to get the

best parameter (a and b). Specifically, the best a and b should be

derived at the minimum AIC. We also provided the residual

standard error (RSE) to be used as an alternative statistic.

For developing a MVI-based AGB model, we first collected the

remote sensing images for the restored mining areas, which are

from Landsat8 OLI (http://glovis.usgs.gov/) and Jilin-1 (https://

www.jl1mall.com/store/). The ENVI software was used to

perform a series of processing, such as radiometric correction,

atmospheric correction, and terrain correction, for the remote

sensing images of the mining areas from Landsat8 OLI. The

ENVI software was also first used for completing the radiometric

and atmospheric corrections for Jilin-1. Then, topographic maps

(1:10000), the RTK sampling of the ground point coordinates, and

the DEM data for the whole of the restored mining area were

utilized to finish the orthorectified processing of Jilin-1, with a

resampling resolution of 0.75m. By using the Jilin-1 image as the

reference, automatic registration module in the ENVI software was

used to complete the dynamic matching processing of Landsat8

OLI and Jilin-1 remote sensing images, and the fusion processing

of Landsat8 OLI and Jilin-1 was completed to generate the

high-resolution remote sensing data, whose map projection

coordinate system was WGS1984-UTM_Zone49N. Following

Freitas et al. (2005), this study selected the following

combinations of red band (0.63-0.69 m m) and short infrared

band (1.55-1.75 m m) to analyze the generated high-resolution

remote sensing data to get the moisture vegetation index (MVI).

The following equation was used: MVI5 = (NIR −MIR5)=(NIR +

MIR5), where NIR and MIR5 represent the near-infrared band and

mid-infrared band, respectively. Specifically, the unit for unit size

for extracting the Moisture Vegetation Index (MVI) is based on

each 0.75 ×0.75 m2 image. With the support of ArcGIS Pro

software, the mean DBH and H for the mining area were used to

develop the model between MVI and DBH, and between MVI and

H. Specifically, the DBH-MVI and H-MVI models are

DBH=1.1770×MVI5m00 + 11.7964 and H=44.171×MVI5r01-

10.06405 and respectively (Supplementary Figures S1 and S2).
Frontiers in Plant Science 04
Finally, the MIV-based AGB model was directly obtained by

using the developed traditional AGB mode.

In terms of trait-based AGB model, we only used the linear

regression to quantify the relationship between AGB and each of the

six functional traits (transpiration rate, stomatal conductance, leaf

hydraulic conductance, photosynthesis rate, specific leaf area and

wood density). Our main purpose was to find out which trait could

best determine AGB.
3 Results

By using the measured mean DBH and H values for the restored

mining area, and AGB for the harvested 35 individuals for the seven

tree species, we finally derived the traditional AGB model as

following: AGB= 34.8279×(DBH2×H)0.1117 (Figure 2). By using

the measured mean DBH and H for the restored mining area and

the generated high-resolution remote sensing data, which is derived

from Landsat8 OLI and Jilin-1, first, we got the model between the

DBH and MVI (DBH=1.770×MVI5m00 + 11.7964; the generated

mean DBH of the whole mining area is presented in Figure 3A).

Also , we obtained a model between H and MVI as

(H=44.4171×MVI5r01-10.0650511.7964; the generated mean H

for the whole of the mining area is presented in Figure 3B). Here,

MVI5m00 and MVI5r01 represent the mean MVI in the wet and dry

season, respectively. Then, by using the developed traditional AGB

model, we finally obtained the MVI-based AGB model as (AGB=

34.8279×((1.770×MVI5m00 + 11.7964)2×(44.4171×MVI5r01-

10.0650511.7964))0.1117, Figure 4). We also provided the actual

AGB (ranging from 65.0426-87.5317, Figure 3C) and predicted

the AGB (ranging from 70.6116-83.0665, Figure 3D), which are

based on both traditional and the MVI-based AGB models.

Our linear regression analysis clearly demonstrated that among

the six functional traits, only wood density could determine the

AGB. Wood density was significantly positively related to AGB

(Figure 5), whereas the other five traits were not significantly

associated (Figure 5).
4 Discussion

A greater AGB indicates a high C accumulation capacity of the

plants (Zhao et al., 2014; Ahirwal et al., 2017; Zhu et al., 2024).

Developing trait-based and MVI-based AGB models could directly

indicate the amount of C that could be accumulated during the

reforestation of degraded tropical mining areas. In this study, we

have successfully developed trait-based and MVI-based AGB

models for accurately estimating the carbon stock in the AGB of

a successfully restored 0.2 km2 tropical limestone mining area. By

using these two models, we have found that an average of 78.18 Mg

C hm-2 could have been accumulated during our reforestation

exercise. This value is much higher than those in the other

restored tropical mining areas. For example, Ahirwal et al. (2017)

showed that a restored tropical mining area could only accumulate

23.7 Mg C hm-2. Similarly, Agus et al. (2016) had demonstrated that

recovered tropical mining area was able to accumulate less than 30
frontiersin.org

http://glovis.usgs.gov/
https://www.jl1mall.com/store/
https://www.jl1mall.com/store/
https://doi.org/10.3389/fpls.2025.1553886
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mao et al. 10.3389/fpls.2025.1553886
FIGURE 2

Development of a traditional AGB model (AGB= 34.8279×(DBH2×H)0.1117) on the basis of AGB, DBH and height for our sampled 35 individuals for the
seven tree species.
FIGURE 3

Predicted mean height (A) and DBH (B) that were used along with the remote sensing images. Actual AGB (C) and predicted AGB (D), which are
based on traditional AGB model, are presented.
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Mg C hm-2. It has been found that mature tropical forests can

accumulate 57-375 Mg C hm−2 across the tropics (Lewis et al., 2013;

Niiyama et al., 2010). In these scenarios, our reforestation exercise

was able to achieve high levels of accumulated carbon stocks.

Consequently, we recommend that our tropical limestone mining

restoration program should be expanded to other degraded tropical

limestone mining areas.

Vegetation indices (MVI) has been widely used to estimate AGB at

large scale (Freitas et al., 2005). But to the best of our knowledge,

limited studies have developed aMVI-basedmodel for estimating AGB

in a restored tropical mining area. By combining the use of a traditional

AGB model and a MVI obtained from remote sensing images, for the

first time, our study has successfully developed a MVI-based AGB

m o d e l ( A G B = 3 4 . 8 2 7 9 × ( ( 1 . 7 7 0 × M V I 5 m 0 0 +

11.7964)2×(44.4171×MVI5r01-10.0650511.7964))
0.1117). This model

can be applied to estimate the amount of carbon that has been

stored after the reforestation of the degraded tropical mining areas.

The relationships between the six traits and the AGB clearly

demonstrated that only wood density could predict AGB for our

restored limestone mining area. This result is consistent with other

findings (Iida et al., 2012; King et al., 2006; Poorter et al., 2008). This

also further confirms that wood density can determine AGB for

tropical forests (Baker et al., 2004; Nam et al., 2018; Phillips et al.,

2019). We found wood density is significantly positively related to

AGB in our restored tropical mining area. This observation

supports the findings in Chave et al. (2008), who show that the

species with higher wood densities could attain more AGB than

those with low wood density in different forest sites in three

continents (Africa, America and Asia). Wood density is

considered as a key trait for capturing growth of tropical forest

species, with higher wood density indicating fast-growing strategies

(Nam et al., 2018). Thus, this results also clearly elucidated fast-

growing strategies determined the accumulation of C in all the tree

species. The other five functional traits are highly associated with

plant photosynthesis and hydrology (Li et al., 2015; Shen et al.,
Frontiers in Plant Science 06
2016; Zhang et al., 2018). However, they were not good predictors of

AGB in our restored tropical mining area. Thus, strategies of plant

photosynthesis and hydrology may not be the good predictor of C

accumulation in our restored tropical mining area. However, future

control experiments of light and water environments are required to

further verify this.

The choice of tree species for initial planting are primarily based

on the goals of the restoration (de Souza Barbosa et al., 2021). But a

natural recommendation is to plant native species to recover

original biodiversity and function (Cunningham et al., 2015).

Importantly, it has been amply demonstrated that restoration

could contribute greatly to achieving the multiple sustainable

development goals (SDGs) of the United Nations (Ahirwal and

Maiti, 2022; Ghosh and Maiti, 2021a, b). Land supports the

resources and provides the matrix for achieving multiple SDGs,

which include climate action, life on land, reduction of poverty and

hunger, human health and wellbeing, as well as affordable and clean

energy (Ghosh and Maiti, 2021a). So, the goals of restoration could

be very broad and comprehensive. Irrespective of the set of goals

and the choice of tree species for initial planting, the basic ecological

processes of colonization and establishment by native species, and

the natural ecological successions are bound to operate and

contribute to plant community development (Ahirwal et al., 2017).

Generally when the reforestation begins at an open-site

conditions, fast-growing, and native early successional species are

a natural choice for their better growth and survival and also their

facilitation for recovering original biodiversity and function (Nunes

et al., 2020; Reid et al., 2015). However, the choice of species may

often be limited by the availability of seeds and seedlings for

planting (Nunes et al., 2020; Osorio-Salomón et al., 2021).

Therefore, non-native tree species have often been used in the

initial planting for restoration (Cunningham et al., 2015; Damptey

et al., 2020; Nunes et al., 2020). Planting non-native species may

result in a poor or slow recovery of attributes like biodiversity, soil

physical and biological structure (for example, soil bulk density and
FIGURE 4

Development of a MVI-based AGB model (AGB= 34.8279×((1.770×MVI5m00 + 11.7964)2×(44.4171×MVI5r01-10.0650511.7964))
0.1117).
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microorganism), soil water content, and soil fertility (Cunningham

et al., 2015; Liu et al., 2021; Zhao et al., 2021). However, non-native

species could greatly improve the recovery of biomass at a speed at

which restoration can be achieved. Based on this scenario, we finally

mix-plant seven non-native fast-growing tree species, to restore our

degraded tropical mining area. This type of restoration has

successfully restored this degraded tropical mining area into a

secondary tropical rainforest, whose soil microorganisms,

nematodes and physical and chemical properties are comparable

to those of an adjacent undisturbed tropical rainforest (Zhang et al.,

2024a, b). More important, we further demonstrate that this type of

reforestation may result in very high carbon accumulation. As a

result, multiple non-native fast-growing tree species should be

utilized to perform restoration of degraded tropical mining area
Frontiers in Plant Science 07
in China. However future comparison experiments should be

performed whether planting native tree species can achieve more

carbon stock than planting-non-native tree species.
5 Conclusion

The restoration of mined areas has been widely assumed as a

good way to reduce carbon emission that result from mining. By

using a successfully recovered tropical limestone mining platform, we

have demonstrated that this restoration could indeed accumulate

high levels of C, and thereby could facilitate in reducing C emissions.

This restoration technology, along with the two accurate (and

effective) AGB models (trait-based and MVI-based AGB models)
FIGURE 5

The relationships between the six functional traits (transpiration rate, stomatal conductance, leaf hydraulic conductance, photosynthesis rate,
specific leaf area and wood density) and AGB. Specifically the responding trait-based model for these six traits are shown respectively as:
AGB=59.16057 + 0.03575×WD (wood density), AGB=76.705-0.176×A (transpiration rate), AGB=76.89237 + 0.00810×SLA (specific leaf area),
AGB=85.55175 + 6338.4294×E (photosynthesis rate), AGB=78.99113 + 56.83343×gsw (stomatal conductance), and AGB=81.98104 +
435.44942×Kleaf (leaf hydraulic conductance).
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developed in this study, can be applied to 1) restore other degraded

tropical mining area in China, and 2) to evaluate carbon stocks in the

forest AGB in other restored mining area.
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