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Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural
University, Zhengzhou, China, 2Anhui Fermented Food Engineering Research Center, School of Food
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Introduction: Accurately determining the moisture content of cigar leaves

during the air-curing process is crucial for quality preservation. Traditional

measurement techniques are often subjective and destructive, limiting their

practical application.

Methods: In this study, we propose a stacking ensemble learning model for non-

destructive moisture prediction, leveraging image-based analysis of naturally

suspended cigar leaves. In this study, front and rear surface images of cigar leaves

were collected throughout the air-curing process. Color and texture features

were extracted from these images, and a filtering method was applied to remove

redundant variables. To ensure optimal model selection, the entropy weight

method was employed to comprehensively evaluate candidate machine learning

models, leading to the construction of a stacking ensemble model. Furthermore,

we applied the SHAPmethod to quantify the contribution of each input feature to

the prediction results.

Results: The stacking ensemble model, comprising MLP, RF, and GBDT as base

learners and LR as themeta-learner, achieved superior prediction accuracy (R2
test

=0.989) and outperforms than traditional machine learning models (R2
test ranged

from 0.961 to 0.982). SHAP analysis revealed that front surface features (45.5%)

and leaf features (38.5%) were the most influential predictors, with airing period

(AP), af
*, Gf, and ASMf identified as key predictors.

Conclusion: This study provides a feasible and scalable solution for real-time and

non-destructive monitoring of cigar leaf moisture content, offering effective

technical support for similar agricultural and food drying applications.
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1 Introduction

Air-curing is a key link in the production process of cigar leaves,

as an important medium in this process, the dynamic change of

moisture content directly affects the enzymatic reaction intensity of

cigar leaves, resulting in the change of color and morphology (Yang

et al., 2024). The harvested cigar leaves are hung in the drying room,

and the temperature and humidity in the drying room are artificially

adjusted to dissipate the moisture of the leaves, operators usually rely

on intuition to estimate the moisture content of cigar leaves, this

method has the defects of strong subjectivity and poor accuracy

(Zhao et al., 2024a). Traditional moisture content measurement

methods such as hot air drying, although with high accuracy, can

cause damage to leaves (Nirmaan et al., 2020). However, some new

measurement methods, such as spectral detection method, provide

non-destructive detection of the moisture content of agricultural

products during the drying process, they all rely on relatively

expensive spectral equipment and are difficult to apply in actual

production (Arevalo-Ramirez et al., 2020; Wei et al., 2021).

The image collected by the digital camera contains the color and

texture information of the leaves (Li et al., 2022), with the rise of

computer vision and machine learning algorithms, it is possible to

predict the moisture content of the leaves by analyzing the

morphological changes of the image representation. Yang et al.

(2023b) used the color and texture features of cigar leaf images

during the air-curing process to construct a moisture content

prediction model for different stages. The prediction results show

that the machine learning model can better predict the moisture

content of cigar tobacco leaves at the wilting and yellowing stages,

while the prediction performance of the model is poor when the

tobacco leaves enter the fixation stage. (Xing et al., 2024). selected

the key features of cigar leaf images during air-curing by

constructing a random forest (RF) model, the results showed that

for cigar leaves in a flat state, color features contributed more to the

prediction results of moisture content. In addition, the above

researches showed that when the tobacco leaves entered the

fixation period, the change of apparent morphology was

concentrated in the main vein, and the image information of the

main vein could not be fully obtained by image acquisition after the

cigar leaves were artificially flattened, resulting in poor prediction

effect of the model on the moisture content of cigar leaves in the

later stage of air-curing. To address this issue, in this study, by

collecting the front and back images of cigar leaves under the

natural suspension state during the air-curing process, a more

comprehensive image information of tobacco leaves is obtained

under the condition that it is closest to the actual production form.

For the extracted numerous image features, choosing a suitable

prediction model has become another important issue. Single

machine learning algorithms such as linear regression (LR), SVR,

and artificial neural networks are effective at modelling nonlinear

data by fitting feature distributions to specific functions within large

data spaces (Lu et al., 2023). However, as the number of features

increases, the nonlinear relationship between the image features of

cigar leaves during the air-curing process and their moisture
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content becomes more complex, making it challenging for a

single model to provide an accurate fit. Ensemble learning

models, which aggregate predictions from multiple base models,

are particularly effective at handling high-dimensional nonlinear

data (Dong et al., 2020). The commonly used ensemble learning

methods include parallelized average bagging (Salam and Islam,

2020), serialized weighted boosting (Tao et al., 2024) and multi-

model combination stacking (Singh et al., 2020). Unlike

homogeneous ensemble methods based on tree models such as

bagging and boosting, heterogeneous ensemble methods synthesize

predictions from diverse base learners, achieving higher accuracy

and reducing the risk of overfitting. Unlike the simple nonlinear

model, whose interpretation method can be directly derived from

the model formula itself, the stacking ensemble learning model has

achieved excellent performance with multisource data due to the

heterogeneity of the base model (Al Shamsi and Abdallah, 2023).

However, this diversity also results in a more complex structure and

reduced interpretability. For an ensemble learning algorithm with

many variable parameters, the objective is not to decipher the ‘black

box’ logic but to present viable solutions for predicting specific

sample outcomes (Li, 2022). Shapley Additive exPlanations (SHAP)

is a method proposed by Lundberg and Lee (2017) for

postinterpretation of machine learning models. This method is

applied to enhance the interpretability of the decision-making

process of the model by analyzing the average change in the

prediction results in the presence or absence of each characteristic

variable (Cakiroglu et al., 2024). This method has been proven to be

effective in the fields of animal husbandry and agricultural product

processing (Fang et al., 2024; Yan et al., 2024).

To solve the above issue, our study aims to non-destructively

detect the moisture content in tobacco leaves by capturing images of

their front and rear surfaces while naturally being suspended during

the air-curing process on the basis of a stacking ensemble learning

model. In addition, to overcome the shortcomings of the stacking

ensemble learning model in terms of interpretability and explore

the contribution of different characteristics to the prediction of

moisture content, we introduce the SHAP method to identify key

feature variables that significantly influence the decision-making

process. This approach provides a theoretical foundation for the

intelligent air-curing of cigar leaves. The results also provide a new

perspective for the estimation of moisture content in drying

processes such as agricultural products and food.
2 Methodology

The workflow of this study is shown in Figure 1. First, a digital

camera was used to capture images of the suspended cigar leaves.

The region of interest (ROI) in the images were subsequently

extracted to obtain color and texture features. In order to avoid

the impact of collinearity on the model, the filtering method was

used to select the optimized feature subset (Hou et al., 2023).

Simultaneously, nine machine learning algorithms were employed

as candidate base learners, comprising three single machine
frontiersin.org
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learning algorithms: LR, multi-layer perceptron (MLP), SVR, two

Bagging algorithms: RF, extra tree (ET) regression, four boosting

algorithms: gradient boosting decision tree (GBDT), extreme

gradient boosting (XGBoost), adaptive boosting (AdaBoost), and

light gradient boosting machine (LightGBM). The entropy

weighting algorithm was used to compute the composite score

from a 5-fold cross-validation of each candidate base learner, to

construct the stacking ensemble learning model, which was then

used to predict the test set. Finally, the SHAPmethod was applied to

analyze how each input feature contributes to the model’s output.
2.1 Datasets

In this experiment, the images of cigar leaves under natural

suspension during the whole air-curing process of the cigar variety

‘Yunxue-2’ were collected in Mayang, Huaihua City, Hunan

Province. From the day of fresh cigar leaves harvest to the end of

the air-curing process, the cigar leaves in the air-curing process were

sampled every other day, and 20 cigar leaves in the same batch

during the air-curing process were selected each time for image

acquisition and moisture content determination. A total of 880

images of both the front and rear surfaces of cigar leaves image were

collected. According to the difference of leaf position, the collected

tobacco leaves included 280 lower leaves, 320 middle leaves, and
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280 upper leaves. In addition, referring to the appearance factors

such as the color and shape of the front and back of cigar leaves, and

combining with the expert opinions on air-curing, the collected

cigar leaves were divided into wilting period, yellowing period,

browning period, fixation period and dry tendon period. Front and

rear surface images of the cigar leaf during each air-curing period

are displayed in Table 1. The image acquisition device is shown in

Supplementary Figure S1, the size was 80 cm3 and features a white

background board. Two 40 W white light tubes mounted on top of

the dark box serve as the light source. A load-bearing rod with a clip

attached to the vertical light tube was used to secure the leaf. The

load-bearing rod is positioned 1.5 cm from the white background

board to minimize light and shadow interference on the images. A

digital camera (Canon company, Tokyo, Japan) was used for image

acquisition. The resolution of all images was 2080×3120 and saved

in the form of JPG.

The method of measuring the moisture content of cigar leaves

refers to the method of (Xu et al., 2018) The tobacco leaf is weighed

once before the image acquisition, immediately after imaging, the

tobacco leaves were placed in an oven and dried to constant weight,

and the moisture content of tobacco leaves was calculated using

Equation 1.

Moisture content ( % )  
(Mleaf�M0)� (Mdry�M0)

(Mleaf�M0)
(1)
FIGURE 1

Flowchart of the cigar leaf moisture content prediction.
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Where, Mleaf represents the weight of tobacco leaves before

drying, Mdry represents the weight of tobacco leaves after drying,

and M0 represents the weight of the container.
2.2 Image preprocessing and
feature extraction

Before extracting features from the collected cigar leaf images, it is

essential to preprocess the images to isolate ROI. Current mainstream

image segmentation methods include deep learning-based

approaches, clustering-based methods, grayscale thresholding

segmentation, and color space-based segmentation. Deep learning

methods exhibit strong feature learning capabilities, making them

suitable for segmenting complex backgrounds and targets. However,

they require large amounts of labeled data and are computationally

intensive (Li et al., 2024). Clustering algorithms, as unsupervised
Frontiers in Plant Science 04
methods, can automatically classify different regions within an

image, but they have high computational complexity and struggle to

accurately extract regions of interest (ROI) when leaf color

distribution is uneven (Tian et al., 2019). In contrast, grayscale

thresholding and color space-based segmentation methods have

lower computational complexity and are well-suited for images with

simple backgrounds (Xie et al., 2022; Sari and Gofuku, 2023).

However, during the curing process of cigar leaves, significant

morphological changes occur, which may limit the robustness of a

single segmentation approach (Zhao et al., 2024b). To address this

issue, this study, both color threshold segmentation and Otsu’s

algorithm are employed for image segmentation (Figure 2). Initially,

the RGB images of the front and rear surfaces of the cigar leaves are

adjusted to meet the minimum and maximum color thresholds, Tmin

and Tmax, respectively. Subsequently, using Equation 2, a binary

image, BIHSV, is generated via the color threshold segmentation

method. The original RGB image is subsequently transformed into a
FIGURE 2

ROI extraction from cigar leaf images.
TABLE 1 Cigar leaf shapes in the natural suspended state during different air-curing periods.

Wilting period Yellowing period Browning period Fixation period
Dry

tendon period

Front surface of cigar leaf

Rear surface of cigar leaf
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grayscale image, which is then smoothed via median filtering. The

grayscale image is further processed via Otsu’s algorithm to generate

BIOTSU. Finally, a complete binary image mask, BI, is created by

performing logical ‘or’ operations on BIHSV and BIOTSU. This mask is

then combined with the original RGB image to define the ROI in the

tobacco leaf image.

grayscale ¼
255, Tmin ≤ ½H; S;V� ≤ Tmax

0,  others

(
(2)

where Tmin=[Hmin, Smin, Vmin]=[15, 20, 15] and Tmax=[Hmax,

Smax, Vmax]=[175, 255, 255].

For the ROI of the cigar leaves’ front and rear surfaces obtained

previously, color and texture features are extracted via the grey level

cooccurrence matrix (GLCM) (Wang et al., 2012; Orka et al., 2024).
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Cigar leaves from various air-curing periods and leaf positions are

converted into discrete variables through label encoding. The 36

extracted features and their descriptive statistics are presented in

Table 2 and Supplementary Table S1.
2.3 Image feature selection and
data processing

2.3.1 Image feature selection
Effective image features are essential for accurately predicting

the moisture content of cigar leaves. Removing feature variables

with low correlation and redundancy relative to the target variables

reduces computational costs and improves the model’s
TABLE 2 Characteristic variables and their abbreviations.

Feature name
Front surface

feature (abbreviation)
Rear surface

feature (abbreviation)

Color features

mean value of
B component

Bf Br

mean value of
G component

Gf Gr

mean value of
R component

Rf Rr

standard deviation of
B component

StdBf StdBr

standard deviation of
G component

StdGf StdGr

standard deviation of
R component

StdRf StdRr

mean value of
L* component

Lf* Lr*

mean value of
a* component

af* ar*

mean value of
b* component

bf* br*

standard deviation of
L* component

StdLf* StdLr*

standard deviation of
a* component

Stdaf* Stdar*

standard deviation of
b* component

Stdbf* Stdbr*

Texture
features

angular second moment ASMf ASMr

contrast CONf CONr

correlation Corrf Corrr

entropy Entrf Entrr

inverse difference moment IDMf IDMr

Leaf
features

leaf position LP

airing period AP
The image features of the front and rear surfaces of the cigar leaf are represented by subscripts f and r, respectively.
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generalizability (Zhao et al., 2022a). Embedding, packing and

filtering are typical feature selection techniques (Xu et al., 2024).

Unlike the first two methods, the filter method is a commonly used

feature selection approach that is independent of specific machine

learning algorithms and can identify key features before model

training (Li et al., 2023). Given the large number of features in cigar

leaf images from both two orientations and the strong collinearity

among them, this study employs PCC for a two-step feature

selection process on both front and back images of the cigar

leaves. First, the correlation between image features of cigar

leaves’ front and rear surfaces and their moisture content, and the

results were ranked by the absolute values of the coefficients.

Second, the correlations among the remaining features were

subsequently analyzed, and those with high autocorrelation, as

indicated by their coefficients with the moisture content, were

selected. The PCC was calculated using Equation 3.

PCC = on
i=1(xi − xi)(yi − yi)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − xi)

2(yi − yi)
2

q (3)

where xi and yi are both one-dimensional feature vectors, which

represent the ith element in vectors x and y. xi and yi represent the

mean values of two vectors.

2.3.2 Data partition
To ensure data distribution consistency between the training

and testing sets, the samples are divided into 5 airing periods. For

each air-curing period, 35 samples are allocated to the test set, while
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the remainder constitute the training set. Descriptive statistics for

the moisture content of the tobacco leaves in the training and

testing sets are presented in Table 3. The small differences in the

means and standard deviations between the training and testing

sets, along with their similar data distributions, indicate effective

data segmentation.
2.3.3 Data processing
Since the range and distribution of feature indices vary,

standardizing data to eliminate dimensional influence can

enhance the model’s prediction accuracy (Behera et al., 2021). In

this study, the data were standardized to a normal distribution with

a mean of 0 and a standard deviation of 1 using Equation 4.

z =
xi − �x
std

(4)

where xi and �x  represent the original value and mean value of

feature x, respectively, and where std represents the standard

deviation of feature x.
2.3.4 Leaf feature transformation
As a high-stalk crop, the top leaves of tobacco plants receive

more sunlight and nutrient during growth (Tian et al., 2023),

leading to varying differences in quality across leaf positions.

Moreover, the apparent morphology and moisture content of

cigar leaves vary significantly across different air-curing periods

(Tables 1, 3). Consequently, the discrete variables ‘leaf position’ and
TABLE 3 Descriptive statistics of cigar leaves moisture content during the air-curing process.

Data set Number Max (%) Min (%) Ave (%) Std (%)

Wilting period

total 164 92.87 81.70 86.73 2.80

train set 129 92.87 81.70 86.65 2.73

test set 35 92.47 82.25 87.05 3.04

Yellowing period

total 172 81.64 60.23 73.54 6.31

train set 137 81.64 61.26 73.84 6.05

test set 35 81.22 60.23 72.36 7.20

Browning period

total 177 60.14 27.78 42.78 10.27

train set 142 60.14 27.78 42.80 10.32

test set 35 59.13 27.91 42.69 10.19

Fixation period

total 211 27.72 18.03 21.91 2.79

train set 176 27.72 18.03 21.92 2.75

test set 35 27.47 18.18 21.90 3.03

Dry
tendon period

total 156 18.00 15.15 16.59 0.79

train set 121 18.00 15.15 16.62 0.78

test set 35 17.86 15.15 16.47 0.83
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‘airing period’ are encoded and combined with image features for

use as model inputs (Hou et al., 2021).
2.4 Model design

Since a single model may capture only limited data insights,

stacking ensemble learning combines multiple model predictions to

achieve a more comprehensive view, thereby increasing the overall

prediction accuracy (Liu et al., 2024). The steps for constructing the

stacking ensemble learning model in this study, as illustrated in

Supplementary Figure S2, are as follows: 1) The stacking ensemble

learning model features a two-layer structure. The first layer

comprises n machine learning algorithms optimized by a genetic

algorithm, with training for the training set completed via 5-fold

cross-validation. 2) The outputs from the nth base learner’s cross-

validation, denoted by vn-1 to vn-5, create a new feature set. 3) This

feature set serves as the training input, with the moisture content of

the cigar leaves as the output for training the second-layer meta-

learner. 4) The testing process mirrors the training process. Test set

data are input into the first layer for prediction, yielding features t1
to tn. These features are then input into the second layer to finalize

the moisture content prediction of the cigar leaves.

In this study, we evaluated the performance of the stacking

ensemble learning model via five evaluation indicators of the

regression model: determination coefficient (R2), mean square

error (MSE), mean absolute error (MAE), mean absolute

percentage error (MAPE), and explained variance score (EVS).

The specific calculation formulas are as follows Equations 5–9.

R2 = 1 −o
n
i=1(ŷ i − yi)

2

on
i=1(�y − yi)

2 (5)

MSE ¼ 1
no

n
i=1(byi�yi)

2 (6)

MAE ¼ 1
no

n
i=1 byi�yij j (7)

MAPE ¼ 1
no

n
i=1

byi�yi
yi

���� ���� (8)

EVS = 1 −o
n
i=1(ŷ i − �y)2

on
i=1(yi − �y)2

(9)

Where n represents the number of samples. i, yi represents the

prediction result of the model for the ith sample and its true value

and represents the mean value of the prediction variable.

Additionally, to assess the model’s generalizability and

complexity during cross-validation, we calculated the standard

deviation (Std), coefficient of variation (cv), and running time for

the five metrics across 5-fold cross-validation. Given the multitude

of evaluation metrics, an entropy weighting algorithm was

employed to derive a comprehensive score for the model, using

the mean, standard deviation (Std), and coefficient of variation (cv)
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of each metric as evaluation variables. The calculation method is

detailed in reference (Yang et al., 2023a).
2.5 SHAP

The SHAP method, which is based on cooperative game theory,

is an additive interpretation framework for quantifying the positive

and negative impacts of each input variable on model predictions

via Shapley values, providing both global and local explanations of

the model’s decision-making process (El Bilali et al., 2023).

Assuming that m samples each contain n features, the jth feature

of the ith sample is represented by xij, and its marginal contribution

to the prediction result is denoted by cij. The global contribution of a

feature is represented by its weight, wj. The degree of contribution

of xij to the model’s prediction, f(xij), is calculated as Equation 10.

f (xij) =on
j cijwj (10)

f(xij) is the contribution of xij to the prediction result yi of the i
th

sample relative to the target output mean f(xij), and the expression is

as Equation 11.

yi = �y +om
i=1f (xij) (11)

When f(xij) ≥ 0, the impact on the model’s predictions is

positive, whereas when f(xij)< 0, the impact is negative. In this

study, feature contributions to samples are visualized via a bee

swarm plot. Given that feature influences can vary across samples,

we employ the relative average absolute Shapley value, RVj. The

calculation formula is as Equation 12.

RVj = (
1
mo

m
i=1 f (xij)
�� ��=on

j=1
1
mo

m
i=1 f (xij)
�� ��)� 100% (12)
3 Results

3.1 Image feature selection

The correlations between the extracted image features of cigar

leaves and their moisture content are calculated and ranked. These

variables are categorized into three groups according to the absolute

value of the Pearson correlation coefficient (|PCC|) between the

feature variables and moisture content. The feature variables with |

PCC|>0.75 are defined as ‘important features’, the feature variables

with 0.75>|PCC|>0.45 are defined as ‘relatively important features’,

and the feature variables with 0.45>|PCC| are defined as

‘unimportant features ’ (Figure 3A). To reduce feature

redundancy, ‘unimportant features’ (Rr, StdBr, Stdbr*, Corrf, StdGf,

Corrr, StdGr, StdRf, StdLf*, StdRr, and StdLf*) are removed. Only

‘important features’ and ‘relatively important features’ are retained

for further analysis.

To avoid the influence of the autocorrelation between image

features on the model performance, the |PCC| calculated according

to Figure 3A is sorted, and the autocorrelation between features is
frontiersin.org
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calculated (Figure 3B). As the correlation with moisture content

decreases, the autocorrelation among image features similarly

diminishes, moving from the upper left to the lower right in the

figure. Among the ‘important features’ (ar*, Gf, af*, Gr, Lf*, bf*, and
ASMf), ar*, Lf*, and bf* are strongly correlated with other features

and are therefore removed. For the texture features, ASMf is the

only ‘important feature’. This feature is highly correlated with other

texture features but weakly correlated with color features.

Consequently, ASMf, which has a high correlation with moisture

content, and IDMf, which has the weakest correlation with other

features, are retained. The remaining features are retained because

of their low intercorrelation. Ultimately, the optimal feature subset

retained includes Bf, Gf, Rf, StdBf, af*, Stdaf*, Stdbf*, ASMf, IDMf, Br,

Gr, br*, Stdar*, LP, and AP.
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3.2 Model selection

Three single models (LR, SVR, and MLP), two bagging models

(RF and ET), and four boosting models (GBDT, XGBoost,

AdaBoost, and LightGBM) are selected as candidate machine

learning models. The genetic algorithm (Abba et al., 2023) was

employed for optimize the hyperparameters of 9 machine learning

models. The optimized hyperparameters for each model are

provided in Supplementary Table S2, The optimal image feature

subset subsequently serves as the input for each candidate model,

which is evaluated via 5-fold cross-validation. Model prediction

performance is assessed via the mean values of the five-evaluation

metrics (R2
mean, MSEmean, MAEmean, MAPEmean, EVSmean).

Additionally, the standard deviation (R2
Std, MSEStd, MAEStd,
FIGURE 3

Image feature and cigar leaves moisture content correlation analysis (A) Correlation between image features and moisture content of cigar leaves.
(B) The autocorrelation between image features.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1553110
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xing et al. 10.3389/fpls.2025.1553110
MAPEStd, EVSStd) and coefficient of variation (R2
cv, MSEcv, MAEcv,

MAPEcv, EVScv) for each of the evaluation indicators are calculated

via 5-fold cross-validation to assess each model’s generalizability

(Supplementary Table S3), resulting in a total of 15 indicators.

Given the large number of evaluation metrics, R2
mean and EVSmean

are designated positive indicators, whereas the remaining 13 are

considered negative indicators. The comprehensive score for each

model is calculated via the entropy weight method (Cao et al.,

2024), with the 5-fold cross-validation running time reflecting the

model complexity. The results are shown in Figure 4. For the

stacking ensemble learning model, the base learner should be as

diverse as possible to enhance the model performance (Jiang et al.,

2023); thus, MLP, RF, and GBDT are selected as the best base

learners. For the meta-learner, a less complex model with relatively

superior performance is preferred. Hence, among the single models,

LR is selected as the meta-learner because it has the shortest cross-

validation time.
3.3 Prediction of moisture content during
cigar leaf air-curing

To explore each model’s ability to predict the moisture content

of cigar leaves during the air-curing process, the testing and training

sets were analyzed separately. Additionally, to validate the

performance of the stacking ensemble learning model developed

in this study for predicting the cigar leaf moisture content, the
Frontiers in Plant Science 09
prediction results of each base models were compared, Figure 5 and

Supplementary Figure S3 shows the prediction results of different

models. It can be seen that among the three models, MLP, RF and

GBDT have the best prediction effect, achieving R2test values of

0.980~0.982. The stacking ensemble model constructed in this

study has the best prediction effect on the test set, achieving R2test
values of 0.989. Further observation revealed that when the

moisture content of cigar leaf ranged between 30% and 60%, the

prediction performance of each base model for the test set is poor,

while the stacking ensemble learning model overcomes this

weakness. After entering the browning period, until the cigar

leaves enter the dry tendon period, the moisture of cigar leaves is

not evenly lost, which leads to differences in the changes of color

and texture features of different leaves. It is difficult to fully capture

the complex and non-linear pattern changes of the image only by a

single model. However, the stacking ensemble learning model can

learn the non-linear relationship between the prediction results of

the base model, so as to better capture the complex feature changes

of the apparent morphology of cigar leaves in this interval.
3.4 Feature importance analysis

To explore the key characteristics of moisture content

prediction during the cigar leaf air-curing process, the SHAP

method is employed to elucidate the prediction results of the

stacking ensemble learning model. The input variables are
FIGURE 4

Entropy-weighted scores and running time of 5-fold cross-validation of each candidate base model.
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categorized into three groups on the basis of feature type: front

surface features, rear surface features, and leaf features. The relative

contribution of each feature to the prediction results is calculated on

the basis of its average absolute SHAP value (Figure 6A). The

relative contribution of each feature category to the prediction of

the cigar leaf moisture content is generally as follows: front surface

features (45.5%), leaf features (38.5%), and rear surface features
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(17.0%). Input variables such as AP, af*, Gf, Stdar*, bf*, and ASMf

significantly contribute to the model’s prediction accuracy. In order

to deeply analyze the decision-making mechanism of the model for

predicting the moisture content of tobacco leaves, we use the bee

colony diagram to show the SHAP value distribution of different

input features, in which the features are sorted by importance. The

bee swarm plot illustrates how different feature values from the test
FIGURE 5

Prediction results of the moisture content of cigar leaves during the air-curing process by different model. (A) MLP. (B) SVR. (C) LR. (D) RF. (E) ET.
(F) GBDT. (G) XGBoost. (H) AdaBoost. (I) LightGBM. (J) stacking ensemble model. The black dashed line represents a 1:1 relationship, where red
indicates the train set and blue indicates the test set.
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set contribute to the model’s prediction results (Figure 6B). For each

input features, AP positively influences model predictions during

the wilting and yellowing periods but negatively influences them

during the fixation period. Additionally, the green component (Gf,

Gr) and the standard deviation of the a* component (Stdaf*, Stdar*)
influence the prediction results similarly to the AP, in contrast to

the a* and b* components and the angular second moment (af*, bf*,
and ASMf) of the front surface images. This occurs as the cigar

leaves undergo air-curing, transitioning from green to brown.

During the fixation period, the leaf color becomes more uniform,

and the grey distribution stabilizes.
3.5 Interaction between the airing period
and image features

The discrete variable AP represents the five periods experienced

by the cigar leaves during the air-curing process. With the change of

the air-curing period, the apparent morphology of the tobacco leaves

also changes. The feature importance ranking revealed that AP had

the greatest impact on predicting the moisture content of cigar leaves.

Interestingly, the influence of this feature on the model predictions

shifted from positive to negative as the air-curing process progressed

(Figure 6). To further investigate the interactions between input

features, Figure 7 illustrates the SHAP interaction effects between the

discrete variable AP (airing period) and various leaf image features.
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When AP changes, if two features exhibit a similar trend in their

SHAP values, it suggests that they have a synergistic contribution to

the model’s predictive outcome. As observed in the figure, with the

progression of the air-curing process, the contributions of af*, Gf,

ASMf, and Gr to the model gradually decrease, whereas bf* and Rf
exhibit an opposite pattern. Additionally, although Stdar* and Stdaf*
demonstrate relatively weak interaction effects with AP, their SHAP

values follow a similar trend across different airing period, indicating

that they may have a consistent influence on model predictions at

specific phases.
4 Discussion

4.1 Prediction results under different
feature combinations

As the cigar leaves lose moisture while hanging in the drying

room, they gradually shrunk (Zhao et al., 2022b). In previous

studies, only the front images of flattened cigar leaves were

captured. Thus, their real shape during the air-curing process was

not accurately represented. A significant contribution of this study

is the development of a method that predicts the moisture content

of cigar leaves during air-curing by utilizing image information

from two orientations and characteristics of the leaves in their

natural suspended state. To demonstrate the superiority of the
FIGURE 6

Analysis of feature importance. (A) contribution of the three types of features. (B) Bee swarm plot of each feature. AP and LP are discrete variables,
and blue to red represents cigar leaves from the wilting period to the dry tendon period and from the lower leaves to the upper leaves, respectively.
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preferred feature subset constructed in this study, we considered

three types of features: front surface features, rear surface features,

and leaf features. Seven feature combination schemes were

developed: Scheme 1: front surface features; Scheme 2: rear

surface features; Scheme 3: front and rear surface features;

Scheme 4: front surface features and leaf features; Scheme 5: rear

surface features and leaf features; Scheme 6: original features; and

Scheme 7: optimized feature subset. The prediction results for each

of the seven schemes are displayed in Figure 8 Model performance

under different feature combinations. The model has lower

prediction accuracy when only image features are used as input

(Schemes 1-3). Combining image and leaf features (Schemes 4-6)

significantly improves the model’s prediction accuracy. However,

compared with that using Scheme 7, the model’s generalizability is

worse with the other schemes. An increase in the number of input

variables can degrade the model performance due to collinearity

among features. The image features of the front and rear surfaces of

the cigar leaves, as extracted in this study, exhibit a strong

correlation with the target variables and weak autocorrelation.
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Using all the features as model inputs leads to overfitting due to

feature redundancy.
4.2 Further analysis of the stacking strategy

Machine learning models vary in performance across different

feature spaces. The stacking ensemble learning model enhances

prediction accuracy and reduces errors and deviations by

synthesizing the outputs of each base learner and leveraging their

advantages. In this study, the entropy weight method is used to assess

the performance and generalizability of candidate base learners

during 5-fold cross-validation. The highest-scoring models from

three categories (single, bagging, and boosting models) are chosen

as the base learners for constructing the stacking ensemble learning

model. To demonstrate the superiority of our constructed model,

nine candidate base models were utilized to create various stacking

ensemble learning model configurations. To assess each

configuration’s performance and robustness, five metrics (EVS, R2,
FIGURE 7

Partial dependence plot (PDP) of input image features and the AP.
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MSE, MAE, and MAPE) were used to evaluate the prediction

outcomes and their variance between the train and test sets. The

comprehensive scores for each metric were computed via the entropy

weight method (Figure 9, Supplementary Table S4). Overall, across all

configurations, the stacking ensemble model developed in this study,

with RF, MLP, and GBDT as the base learners and LR as the meta-

learner, achieved the highest comprehensive score. Among the

candidate base learners, MLP scored the highest at 0.774. For the

three types of ensemble model schemes composed of different meta-

learners, significant performance variability was noted when LR and

SVR served as meta-learners. In contrast, there were minimal

performance differences when using configurations with MLP as

the meta-learner. During the construction of the stacking ensemble

model, meta-learners primarily fit the predictions from base learners.

Complex meta-learners, however, increase both the computational

cost and the risk of overfitting (van der Laan et al., 2007).
4.3 Comparison with related studies

To comprehensively evaluate the superiority of the model

proposed in this study, we compared its prediction results with those

from other studies onmoisture content prediction during cigar leaf air-

curing process. Specifically, we compared our results with those of

Yang et al. (2023b) and our previous study (Xing et al., 2024), as

presented in Table 4, the results indicate that our model outperforms

both studies, demonstrating that the proposed stacking ensemble

model effectively leverages image information from both the front

and rear surfaces of cigar leaves during air-curing stage. Moreover, in

the aforementioned studies, images of the cigar leaves were captured
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after manually flattening them, a process that is relatively complex and

fails to accurately reflect the actual state of the leaves during curing. In

contrast, our approach eliminates this limitation, further enhancing the

reliability of moisture content predictions. In summary, the proposed

method has been proven effective for predicting the moisture content

of cigar tobacco leaves during the curing process.
4.4 Limitations and future work

Although the stacking ensemble model constructed in this study

can accurately predict the moisture content of cigar leaves during

air-curing process, there are still some limitations in this study.

First, the data source is single, covering only a single producing area

and variety. However, in actual production, factors such as climatic

conditions in different areas and the variety characteristics of

different cigar leaves will affect the water loss rate and

morphological changes of cigar leaves during the air-curing

process. Future research needs to collect samples under various

production conditions to ensure the wide applicability of the model.

Second, In the process of image acquisition, the change of external

illumination and leaf positioning error will still affect the stability of

the image feature extraction, which will affect the final output of the

model. In future research, deep learning methods of adaptive

feature learning, such as residual network (ResNet) and vision

Transformer (ViT), should be introduced and data sets should be

expanded through data enhancement methods to improve the

robustness of the model and reduce the impact of external

environment on feature extraction. Third, in the actual air-curing

process, the change of environmental light and the limitation of
FIGURE 8

Model performance under different feature combinations. (A) MSE. (B) MAE. (C) MAPE. (D) EVS. (E) R2. Scheme 1: front surface features; Scheme 2:
rear surface features; Scheme 3: front and rear surface features; Scheme 4: front surface features and leaf features; Scheme 5: rear surface features
and leaf features; Scheme 6: original features; and Scheme 7: optimized feature subset.
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equipment conditions may bring some challenges to the wide

application of this research method in large-scale production

environment. Therefore, future research can explore optimization

strategies based on smart mobile terminals and combine lightweight

deep learning models to improve the robustness and applicability of

the method, so as to better meet the actual production needs.
5 Conclusion

Accurate monitoring of moisture content during the cigar leaves

air-curing process can help technicians better grasp the status of cigar

leaves to make corresponding adjustments to the airing technology in

a timely manner. In this study, a moisture content prediction model
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was constructed for air-cured cigar leaves via a stacking ensemble

learning model, which incorporates images of leaves in their natural

suspended state and data on the leaf position and airing period. The

SHAP method was employed to interpret the model’s prediction

results. The main results are as follows:
1. Compared with each base learner alone, the stacking ensemble

learning model constructed in this study can achieve higher

prediction accuracy and better generalization performance

(R2train=0.990, R
2
test=0.989).

2. By integrating the SHAP method, the contribution of each

input feature to the model’s predictions was quantified and

potential feature interactions was uncover. The results

show that AP, af*, Gf, Stdar*, bf*, and ASMf have a
TABLE 4 Evaluation indicators for cigar leaf moisture content prediction.

Related studies Image type Model R2 MSE

Xing et al. (2024) RGB image of cigar leaves in flat state RF 0.980 0.001

Yang et al. (2023b) RGB image of cigar leaves in flat state Convolutional neural networks (CNN) 0.904 0.006

This study Front and back image of cigar leaves in suspend state Stacking ensemble model 0.986 0.001
FIGURE 9

Comprehensive scores of different stacking strategy.
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Fron
significant impact on model performance. Additionally, af*,
Gf, ASMf, Gr exhibited a synergistic relationship, as do bf*

and Rf, and Stdar* and Stdaf*.
3. The morphological changes in cigar leaves vividly reflect

the internal water loss they undergo. Based on the image

features of cigar leaves, the moisture content of the leaves

can be accurately predicted. In summary, this research

offers new insights into achieving enhanced intelligence

in the air-curing process for cigar leaves.
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