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Probabilistic ranking of plant
cultivars: stability explains
differences from mean rank
Shayan Tohidi* and Sigurdur Olafsson

Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames,
IA, United States
An alternative to ranking cultivars based on mean and stability of phenotype is

evaluating pairs of cultivars and for each pair estimating which cultivar is more

likely to perform better across a random subset of target environments. Such

pairwise probabilistic order can then be translated into probabilistic ranking of all

cultivars that accounts for both mean and stability in a single metric. Mean and

probabilistic order will be the same for most cultivar pairs; but the pairs that differ

reflect differences in stability and should thus be at least partially explained by

existing stability measures. We formulate a classification problem to predict

differences between mean and probabilistic order for a pair of cultivars with

the predictor variables defined as differences in stability. We then apply a feature

selection method to identify the best predictors, that is, the stability measures

that are most predictive of the differences in the two orders. The results from

applying this method to data observed from multiple crops, namely, rapeseed,

sorghum and maize, show that a) existing stability measures explain most of the

differences, b) no stability measure explains all differences for all data, and c)

stability measures that combine mean with specific type of stability perform the

most like probabilistic order. These results support the premise that probabilistic

ranking combines mean and stability; but no existing stability measure can

completely replace estimating the relevant probabilities to identify the cultivars

that are more likely to perform better across their target environments.
KEYWORDS

cultivar selection, environmental uncertainty, G×E effects, probabilistic
comparison, stability
1 Introduction

This paper addresses how probabilistic ranking of cultivars can account for both mean

and stability of phenotypic performance of the crops. Similar ideas have been proposed

before but the literature is sparse. Westcott (1986) is the earliest survey to observe that

applying probabilistic ideas to analyze genotype-byenvironment (G×E) interactions is
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potentially useful for plant breeding. But despite substantial very

early work (Anderson, 1974; Barah et al., 1981; Byth et al., 1976;

Menz, 1980), relatively little has still been done to bring

probabilistic ideas into plant breeding practice. A more common

practice for plant breeders is to consider mean performance, e.g.,

select the cultivar with the highest yield as determined by some

statistical model, and enhance this with G×E analysis based on the

statistical model or other measures of stability or adaptability

(Gauch, 2006; Gauch et al., 2008; Piepho et al., 2008). Combining

mean and some measure of variability in a single measure has also

been proposed in different ways by numerous researchers

(Piepho, 1998).

The environmental effect (E) and the G×E interaction effects are

both major contributors to the phenotype observed for most food

crops. Thus, when comparing different cultivars of those crops with

the goal of differentiating the genetic effect (G) of cultivars, the

uncertainty due to the set of environments observed is substantial.

A probabilistic alternative for plant breeders faced with selecting

one cultivar over another is to view the environments as random

and select cultivars that are most likely to perform best across a set

of target environments rather than select the cultivar with the

highest mean. An approach that accounts for the underlying

probability distribution of the environments combines the mean

performance with the risk due to planting environments and their

interaction with the cultivars being tested. From a utility theory

perspective, this may be considered maximizing the utility for a

risk-averse decision-maker, which is similar to what has been done

in other agricultural applications (DeVuyst and Halvorson, 2004;

Liu et al., 2017; Stanger et al., 2008).

While stochastic dominance has received substantial attention

in agricultural economics (Levy, 1992), such probabilistic

approaches have received much less attention in plant breeding.

Some notable exceptions include work that uses a probabilistic

approach to select low-risk cultivars and compare experimental

cultivars against a check (Eskridge, 1990; Eskridge and Mumm,

1992) and recent work that suggests a more comprehensive

Bayesian approach to accounting for G×E interactions (Dias

et al., 2022) with similar goals. Another related approach is

considering weight for yield and stability measures to find the

genotypes with highest yield and lowest risk (Eskridge et al., 1991).

We will draw directly on similar work that studies probabilistic

orders, where the underlying probabilities are estimated via

bootstrap sampling of planting environments (Bijari, 2022). In

this work the uncertainty that is accounted for is the uncertainty

due to the subset of environments observed, which is the approach

we adopt.

The intuitive reason for why mean and probabilistic order

might differ is that the distribution of phenotype difference may

be skewed when the underlying uncertainty is due to planting

environment (as opposed to the uncertainty within each

environment). For example, a cultivar that does extremely well in

very favorable environments might have a better mean than a

cultivar that performs more evenly across all environments

because a few extreme phenotype values have a large effect on the

mean. But the cultivar with the worse mean may be more likely to
Frontiers in Plant Science 02
perform better in a random environment, or a subset of random

environments, because the very favorable environments occur with

a low probability. This paper aims to explore and explain those

differences in more depth using a comprehensive set of known

stability measures, thus providing a case for why plant breeders may

want to consider a probabilistic approach when ordering and

ranking cultivars based on phenotypic response.

To evaluate the premise that selecting the cultivar that is more

likely to perform better in a set of target environments accounts for

both the stability across environments and mean performance, we

address whether the differences between mean and such

probabilistic order for a pair of cultivars can be explained by one

or more of the many stability measures proposed in the literature.

We hypothesize that such measures partially explain these

differences but that no existing stability measure explains all the

differences in rank. We further hypothesize that some stability

measures explain more of those differences than others. The paper

thus addresses the following questions: Are the differences in mean

versus probabilistic pairwise order completely explained by existing

stability measures? And are there specific types of stability measures

that are the best predictors of those differences?

Using an analysis of plant breeding data of three different crops

(rapeseed, sorghum and maize), the study show that the mean and

probabilistic rank is highly correlated, suggesting that the pairwise

orders are usually the same. Some stability measures are also highly

correlated with probabilistic rank. This is especially true for

measures that directly combine both mean performance and

some type of stability, which supports the assertion that the

probabilistic ranking combines mean performance and stability

into a single metric. When mean and probabilistic order is

different, the results show that those differences are explained by

some stability measure, but depending on the data they are best

explained by different stability measures, and no measure can

simply replace probabilistic comparison and account for all

the differences.
2 Materials and methods

We first set up a classification problem where there is a binary

dependent variable to be predicted based on multiple independent

variables. The dependent variable here is an indicator function that

shows if a pairwise order of two cultivars is the same or not for

mean versus probabilistic order; that is, for that pair, is the cultivar

with the higher mean also the cultivar that is more likely to perform

better? We take the independent variables as a similar pairwise

order using a comprehensive set of known stability measures. If

stability measures explain the differences between mean and

probabilistic order, the dependent variable should be predictable

using the independent variables. We then propose a feature

selection method to identify the best predictors, that is, a method

to determine which stability measures best explain the differences in

order. Finally, we apply this classification formulation and feature

selection method to plant breeding data involving rapeseed,

sorghum and maize.
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2.1 Notation and probabilistic comparison

We assume that there are n cultivars that have been planted in

the same set E of environments. To rank the cultivars we need to be

able to order any pair and then apply arbitrary ranking algorithm to

find a complete rank. We thus focus on a pair (i, j) of cultivars

where i, j ∈ {1, 2,…, n} and i < j. For each of these cultivars we have

a set of phenotype observations yi(e) and yj(e), ∀e ∈ E. Based on the

observations we define two indicator functions:

I(P)(i, j) =

1, if cultivar i is more likely to outperform j in a random subset of E,

0, otherwise;

(

I(M)(i, j) =

1, if cultivar i has better mean performance than j in E,

0, otherwise :

(

The second indicator I(M)(i, j) can be easily estimated from the

observed data as the simple mean difference across all the

environments:

Î (M)(i, j) =
1, if  1

Ej joe∈Eyi(e) − yj(e) >0,

0, otherwise :

(

Obtaining an estimate of I(P)(i, j) requires more work. One

approach that has been proposed is to use bootstrap resampling of

environments to estimate the underlying probabilities, that is, P(Yi

> Yj), where Yi is a random variable describing the phenotype of

cultivar i in a random subset of environments (Bijari, 2022). The

bootstrap estimate P̂ (Yi > Yj) can then be used to estimate the

indicator accordingly:

Î (P)(i, j) =
1, if P̂ (Yi > Yj) >

1
2 ,

0, otherwise :

(

In this paper we simply use this approach, that is, repeatedly

sample environments with replacement to obtain a bootstrap

estimate P̂ (Yi > Yj) of the needed probabilities and then use that

to estimate the indicator as shown above. Bijari (2022) showed that

while Î (P)(i, j) =  Î (M)(i, j) for most cultivar pairs, they differ in

important cases. Specifically, if the difference in the main effect is

small, the G×E structure of the two cultivars differ, and the

magnitude of the G×E effects is large, which makes it more likely

that Î (P)(i, j) ≠  Î (M)(i, j). Thus, it is plausible that at least some of

the differences may be explained by traditional stability measures.
2.2 Stability measures

As predicting the mean and then either complementing or

combining the mean rank with one or more measures of stability is

perhaps a more intuitive, and certainly more familiar, alternative to
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a probabilistic rank, it is of interest to understand if known stability

measures provide sufficient information to supplement mean order;

or in other words, if such measures explain the differences between

mean and probabilistic order. To that end, we will consider a

selection of 39 stability measures proposed in the literature. All

the measures are applied using the metan R package (Olivoto and

Lúcio, 2020), which implements a comprehensive set of stability

measures. Note that these measures include both measures of what

has been termed static and dynamic stability, as well as those that

have elements of both. Specifically, we consider the following

metrics: variance (Var), coefficient of variation (CV), adjusted

coefficient of variation (ACV) (Döring and Reckling, 2018), power

law residuals (POLAR) (Döring et al., 2015), Shukla’s variance

(Shukla) (Shukla, 1972; Kang and Pham, 1991), Annicchiarrico’s

confidence index (Wig, Wif, Wiu) (Annicchiarico, 1992), Wricke’s

ecovalence (Ecoval) (Wricke, 1965), deviations (Sij) and R-squared

(R2) from the joint-regression analysis (Eberhart and Russell, 1966),

AMMI based stability parameter (ASTAB) (Rao and Prabhakaran,

2005), AMMI stability index (ASI) (Jambhulkar et al., 2017), AMMI

stability value (ASV) (Purchase et al., 2000), sum across

environments of absolute values of GEI modeled by AMMI

(AVAMGE) (Zali et al., 2012), Annicchiarico’s D parameter

values (Da) (Annicchiarico, 1997), Zhang’s D parameter (Dz)

(Zhang et al., 1998), sums of the averages of the squared

eigenvector values (EV) (Zobel, 1994), stability measure based of

fitted AMMI model (FA) (Raju, 2002), modified AMMI stability

index (MASI) (Ajay et al., 2018), modified AMMI stability value

(MASV) (Ajay et al., 2019), sums of absolute value of the IPC scores

(SIPC) (Sneller et al., 1997), absolute value of the relative

contribution of IPCs to the interaction (Za) (Zali et al., 2012),

weighted average of absolute scores for BLUP analysis (WAASB)

(Olivoto et al., 2019; Möhring et al., 2015), harmonic mean of the

genotypic value (HMGV), relative performance of the genotypic

value (RPGV), and harmonic mean of the relative performance of

the genotypic value (HMRPGV) (Smith et al., 2005; Alves et al.,

2018; Azevedo Peixoto et al., 2018; Colombari Filho et al., 2013;

Dias et al., 2018), superiority index (Pia, Pif, Piu) (Lin and Binns,

1988), geometric adaptability index (GAI) (Mohammadi and Amri,

2008), Huehn’s stabilities (S1, S2, S3, S6) (Huehn, 1979), and

Thennarasu’s stabilities (N1, N2, N3, N4) (Thennarasu, 1995).
2.3 Correlation of rank

For an overall assessment of if the rank produced by the

probabilistic order is different than rank produced by either just

the simple mean phenotype or the stability according to one of the

39 stability measures considered, we calculate the rank correlation

of different ranks. Specifically, we use Spearman’s rank correlation

and perform a statistical test to determine if this rank correlation

rRank indicates that the ranks are different. The null hypothesis is

thus that the ranks do not have positive correlation, that isH0: rRank

≤ 0 versus the alternative H1: rRank > 0.
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2.4 Predicting the difference between
mean and probabilistic order

The primary goal of this work is to determine the extent to which

one of the 39 existing stability measures considered explain the

differences between mean and probabilistic order. That is, we want

to determine if the probabilistic order could also be captured by the

more familiar approach of consideringmean order supplemented with

one or more stability measures. Our approach to answer this question

is to formulate a classification problem and use this classification

formulation to evaluate the predictability of the differences.

We use pairwise orders to express the differences between

probabilistic and mean order. In this method, instead of directly

contrasting two ranked lists for all cultivars, each cultivar pair is

compared by using their probabilistic and mean pairwise order.

Thus, each pair of cultivars is labeled as having either the same

order or different order using the two methods. This defines the

class or dependent variable as follows:

yij =
0, if Î (P)(i, j) = Î (M)(i, j),

1, otherwise :

(

The predictor or independent variables are given by a

comparison of m = 39 stability measures:

△ s(k)ij = s(k)i − s(k)j  ∀k ∈ 1, 2,…,mf g,

where s(k)i and s(k)j are the results of calculating stability measure

k on cultivars i and j, respectively. Each data point is now given by

(Dgij, s
(1)
ij ,…, s(m)

ij , yij), where gi is the mean phenotype of cultivar i

across all the environments and △gij = gi − gj is their difference

between genotypes i and j. The number of observations in one

dataset depends on the number of cultivars and is given by n(n−1)
2 ,

where n is the number of cultivars. Constructing such data points

for each pair results in a dataset that can be used to predict when

Î (P)(i, j) ≠  Î (M)(i, j), that is, when probabilistic and mean order

result in different pairwise selection.

For demonstration purposes, we illustrate two partial rows of a

constructed training data for this classification problem. This is

constructed using rapeseed data (Shafii and Price, 1998) that will

also be used in the results section below.
The first two partial rows of the training data according to
rapeseed dataset.

(i, j) △gij △ s(1)ij △ s(2)ij
… △ s(m)

ij
yij

(Bienvenu,
Bridger)

118.34 19.63 0.28 … -0.15 1

(Bienvenu,
Cascade)

165.42 10.74 0.14 … -0.15 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
F
rontiers in Plan
t Science
The details of this data are described below, but for the above it

suffices to recognize that Bienvenu and Bridger are two of the

rapeseed cultivars in this data and the phenotype is yield with units

of kg/ha. The first row above shows that for Bienvenu and Bridger
04
the difference in yield is 118.34 kg/ha, so Bienvenu is better

according to mean order; whereas the label yij = 1 implies that

Bridger is more likely to perform better than Bienvenu across the set

of target environments, that is, the mean and probabilistic orders

differ. These and all other labels are obtained by comparing the

mean difference found in the original data with the bootstrap

estimates of the probabilities. Values for the independent

variables are found by calculating the stability measures for each

cultivar using the metan R package (Olivoto and Lúcio, 2020).
2.5 Value of each stability measure

The features or predictive variables in our classification model are

the differences in the stability measures. Thus, if those stability

measures explain the differences in mean versus probabilistic order

(the class variable) then it should be possible to construct an accurate

classification model. As predicting those differences is secondary to

determining which stability measures are the best predictors, we focus

on what is called feature selection, that is, to determine which stability

measure differences are the best predictors of when the probabilistic

order differs from a mean order.

Many standard feature selection methods have been proposed

but we design a method specifically for this problem. The

motivation for an application-specific method is that while

evaluating the stability measures directly as predictor variables is

expected to provide some insights, it is unlikely that any stability

measure is highly predictive on its own because it is expected that

there is a strong relationship between the differences being

predicted and the mean difference. Specifically, if the mean

difference in phenotype is large enough, then the mean and

probabilistic order should always be the same. Thus, combining

mean differences and the stability measure would be more likely to

explain the differences.

The idea is visualized in Figure 1. In each of the plots in this figure

the x-axis shows the mean phenotype difference between two cultivars,

and the y-axis shows the stability measure difference for the same pair.

We define two regions based on the four quadrants in each plot by

combining the diagonal quadrants into one region. The intuitive

motivation for this is that if the stability metric explains all the

differences, then those differences would all be in the same region.

The null hypothesis is thus be that data points are placed in each region

with the same relative frequency, so it can be concluded that the data

points are distributed uniformly in those regions. In other words, it

tests a null hypothesis that the joint distribution in the following

contingency table is the product of its row and column marginals.
The contingency table of the classification problem.

Region 1
(j = 1)

Region 2
(j = 2)

Total

Class: Different (i = 1) x11 x12 n1 = x11 + x12

Class: Same (i = 2) x21 x22 n2 = x21 + x22

Total x11 + x21 x12 + x22 n1 + n2
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Here xij indicates the number of data points of class i falling into

region j, ni = xi1 + xi2 shows the number of data points of class i, and

p̂ j =
x1j+x2j
n1+n2

is the proportion of data points falling into region j. A test

statistic can be defined by looking at the squared differences as

follows:

c2 =o
2

i=1
o
2

j=1

(xij − nip̂ j)
2

nip̂ j
:

This statistic follows a chi-squared distribution, and if the p-

value is less than or equal to the significance level (a = 0.05), we

reject the null hypothesis and conclude that the stability measure is

statistically significant and appears to explain at least some of the

differences between the mean and probabilistic order.
2.6 Data

2.6.1 Rapeseed and sorghum data
We analyze two small datasets used for stability analysis in past

work, one for rapeseed yield and one for sorghum yield, both

obtained from the Agridat R package (Wright, 2024). Analyzing

small datasets allows us to evaluate and explain each instance of

different orders between the two approaches. There are important

differences for both datasets due to large G×E effects; that is, the

differences between the mean-based and probabilistic order are

meaningful. A key difference between the two datasets is that the

rapeseed data has few genotypes (6) versus environments (27),

whereas the sorghum data has relatively many genotypes (18)

versus environments (6). These two datasets thus provide a

reasonable basis for an initial analysis.

The rapeseed data was reported by Shafii and Price (1998) and

describes 6 rapeseed cultivars (Bienvenu, Bridger, Cascade, Dwarf,

Glacier, and Jet) in 27 environments (14 locations and 3 years). The
Frontiers in Plant Science 05
mean yield, mean and probabilistic ranks, and the relative yield of

each cultivar in each environment are shown in Table 1. It is

apparent from the relative performance in each environment that

there are significant G×E effects. From the ranks, we note that the

mean and probabilistic ranks are different for the top three cultivars.

The sorghum data was reported by Omer et al. (2015). This

dataset contains 432 observations of 18 cultivars in 6 environments

(2 locations across 3 years). There are four replications in

randomized complete block design in each environment. Like the

rapeseed data, the mean yield, mean and probabilistic ranks, and the

relative yield of each cultivar in each environment for the sorghum

data are shown in Table 2. Again, we note that significant G×E

effects are apparent from the relative performance. While there are

many similarities between the two ranks (e.g., the bottom seven

cultivars are the same for both ranks), there are large differences in

rank for many cultivars.

2.6.2 Maize datasets
For larger data to validate the results and the insights obtained

on the rapeseed and sorghum data, we utilize datasets constructed

from the Genome to Field (G2F) project (Lawrence-Dill et al.,

2019). These are a rich source of observations for maize crops and

include multi-year, multi-environment phenotypic evaluations. We

take all the phenotypic datasets from 2014 to 2022 as the starting

point and then do cleaning and pre-processing to construct

complete datasets, that is, datasets where each maize hybrid is

observed in all environments with more than one repetition. These

results exist in 43 datasets with the number of environments

between 5 and 48, the number of cultivars between 6 and 84, and

the number of observations between 98 and 1770 in each dataset

and 3590 total observations across 42 locations in 8 years and 738

maize hybrids. A description of the 43 datasets can be found in

Table 3. The original datasets and more information about them are

available at https://github.com/ShayanTohidi/.
FIGURE 1

Illustration of measuring the quality of stability measures. If the stability measure difference explains the differences in order, it is either because the
stability measure is better even though the mean is worse (top-left quadrant), or because less stability outweighs better mean (bottom-right
quadrant). Thus, if different pairwise orders are concentrated in those two quadrants (region 2), then we find this stability measure to be predictive of
the differences.
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TABLE 1 Mean yield, ranks, and relative yield in each environment for the rapeseed data.

Genotypes

Bienvenu Glacier Bridger Cascade Jet Dwarf

Mean
Yield

2487.95 2481.78 2369.61 2322.53 2278.76 2268.98

Mean
Rank

1 2 3 4 5 6

Prob.
Rank

3 1 2 4 5 6

Unit Kh/ha

Yield Relative to
Environmental Mean

GGA87 46.24 284.43 -32.79 108.45 -305.16 -101.16

GGA89 158.47 412.35 -390.77 44.14 -36.85 -187.33

ID87 230.70 99.58 -64.78 -238.17 52.58 -79.90

ID88 1391.21 -17.54 -573.29 -260.04 -388.04 -152.29

ID89 -45.72 163.58 -1238.68 91.13 470.30 559.40

KS88 58.96 148.21 -28.29 -229.04 -38.04 88.21

MS88 251.54 656.89 273.96 -605.89 -338.25 -238.24

MT87 -513.92 176.83 -301.67 -213.67 530.58 321.83

NC87 -120.31 108.07 -56.98 -375.87 552.51 -107.42

NC89 122.98 139.5 359.48 -156.97 -557.41 92.43

NY89 -205.15 162.65 -9.24 -552.63 97.96 506.42

OR87 929.55 558.82 -1096.47 -290.55 -406.84 305.49

OR88 722.65 -199.85 -359.29 -681.55 220.49 297.55

SC87 38.54 256.04 243.79 -342.46 371.54 -567.5

SC88 33.03 490.51 110.67 -120.82 -451.36 -62.04

SC89 2.74 -127.6 1034.33 952.43 -911.74 -950.2

TGA87 -94.41 101.04 515.5 355.64 -398.19 -479.6

TGA88 -1.21 363.92 201.95 314.88 -382.32 -497.2

TGA89 -309.32 -222.17 1006.61 721.06 -439.63 -756.6

TN89 421.08 -278.93 -58.18 -537.15 309.11 144.06

TX87 -160.33 -46.58 70.67 -263.58 409.92 -10.08

TX88 345.34 -166.18 -21.58 201.7 -23.01 -336.3

VA88 -313.17 -63.70 263.72 40.09 44.55 28.51

VA89 -2.24 226.89 -32.29 -221.06 121.07 -92.37

WA87 -41.88 323.13 186.88 47.38 -72.63 -442.88

WA88 1682.38 -149.88 -892.88 163.38 -846.88 43.88

WA89 -1396.25 -335.25 925.75 814.25 -1.00 -7.50
F
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3 Results

3.1 Correlation of stability and
probabilistic rank

Table 4 compares probabilistic rank with both mean rank and

rank according to four stability statistics (Shukla, N2, GAI, and Pia)

for the rapeseed data. Table 5 shows the same comparison for the

sorghum data. We observe that for both data the probabilistic ranks

are highly correlated with mean ranks (rRank is close to 1), while the
correlation with stability metrics ranges from close to -1 to 1; and

most of the time, their correlation is less than that with mean ranks.

This illustrates that the mean yield plays a dominant role in

probabilistic ranking.

We repeat the same calculation for each of the remaining 35

stability metrics and identify the stability metrics where we cannot

reject the null hypothesis that rank correlation equal one at a 95%

confidence level. Out of the 39 stability measures considered, four

stability measures (HMGV, RPGV, HMRPGV, GAI) are found to be

significantly correlated for both datasets. These four measures have

an important commonality. They all address both performance and

specific types of uncertainty. The first three use BLUP analysis, and

GAI uses geometric mean. Based on prior studies, HMGV is useful

when breeders prioritize cultivars that maintain good performance
Frontiers in Plant Science 07
across a range of environmental conditions. RPGV focuses on

selecting cultivars that are generally superior in performance.

HMRPGV selects those that perform consistently relative to other

cultivars, regardless of the overall environmental yield level. GAI

selects cultivars that perform consistently across diverse

environments by penalizing extreme performance fluctuations and

balancing performance in both favorable and unfavorable conditions.

Additional two measures (Wig, Wiu) also have high correlation

for only the rapeseed data, and additional five measures have a high

correlation for only the sorghum data (Wif, Pia, Pif, Piu, S6). TheWi

family are based on relative performance of cultivars in different

environments, while the Pi family measures how close a cultivar’s

performance is to the best-performing cultivar across

environments. The S family on the other hand, executes a rank-

based evaluation and identifies those with less variability in ranks

across different environments. Thus, 13 out of 39 measures correlate

highly with the probabilistic rank for at least one dataset.

To see if these observations generalize to a larger testbed, we do

the same analysis for all 43 maize datasets constructed based on the

G2F data. Figure 2 plots a heat map of the p-values. We observe that

the four stability measures that had high correlation for both the

smaller datasets (HMGV, RPGV, HMRPGV, GAI) also have low p-

value here for all or almost all of the maize datasets. The Pia, Piu, Pif
family of measures also has significantly high correlation with
TABLE 2 Mean yield, ranks, and relative yield in each environment for the sorghum data.

Mean Yield
Rank Yield Relative to Environmental Mean Yield

Mean Prob E1 E2 E3 E4 E5 E6

Unit Kg/ha Kg/ha

G13 619.57 1 2 -47.94 333.23 153.88 115.58 149.54 36.42

G15 591.96 2 4 -121.98 130.67 -24.57 6.01 19.25 565.72

G10 591.06 3 1 142.32 -113.80 67.37 183.67 206.94 83.18

G09 544.85 4 5 91.24 129.42 142.01 -122.35 -76.21 128.29

G14 543.67 5 8 -43.66 13.64 -88.23 -74.00 12.23 465.33

G18 534.36 6 11 30.19 -50.05 358.98 195.42 -113.45 -191.63

G08 522.54 7 3 -21.63 172.27 70.23 -56.25 -60.56 54.47

G11 522.07 8 6 32.77 43.48 56.99 164.98 19.22 -161.70

G17 521.50 9 10 -124.49 -16.73 -385.95 521.04 19.22 139.23

G02 507.85 10 7 38.22 20.65 -155.81 164.46 -33.52 36.42

G12 500.95 11 9 13.02 195.67 -132.17 -179.89 -22.14 154.54

G07 500.37 12 14 -107.71 -121.67 265.91 48.91 -32.35 -27.56

G05 458.27 13 13 12.93 -205.08 -28.24 -18.40 15.94 -4.19

G03 428.72 14 12 15.01 -98.30 133.78 -202.89 29.95 -281.92

G16 403.83 15 15 43.81 -41.64 -66.49 -154.64 -69.32 -265.45

G04 398.81 16 18 41.27 -181.58 78.11 -81.78 -70.06 -369.75

G01 380.50 17 16 -13.72 -67.47 -89.29 -181.20 5.52 -347.49

G06 359.16 18 17 20.31 -142.71 -356.50 -328.68 -0.24 -13.89
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TABLE 3 Description of Maize Datasets constructed from the Genome to Field Data.

Name Hybrids Environments Locations Year(s)

Maize1 84 6 6 2014

Maize2 48 6 6 2014

Maize3 32 7 7 2014

Maize4 8 12 12 2014

Maize5 12 8 8 2014

Maize6 21 27 27 2015

Maize7 7 7 7 2015

Maize8 21 16 16 2016

Maize9 24 13 13 2016

Maize10 22 14 14 2016

Maize11 17 17 17 2016

Maize12 7 15 15 2016

Maize13 47 10 10 2016

Maize14 51 8 8 2016

Maize15 19 28 17 2016, 2017

Maize16 17 29 17 2016, 2017

Maize17 7 33 17 2016, 2017

Maize18 32 21 11 2016, 2017

Maize19 44 18 11 2016, 2017

Maize20 24 23 11 2016, 2017, 2018

Maize21 59 15 15 2017

Maize22 29 16 16 2017

Maize23 7 27 27 2017

Maize24 61 12 12 2017

Maize25 63 11 11 2017

Maize26 9 10 10 2017

Maize27 65 10 10 2017

Maize28 50 17 12 2017, 2018

Maize29 7 16 12 2017, 2018

Maize30 40 13 11 2017, 2018

Maize31 6 12 11 2017, 2018

Maize32 57 6 6 2018

Maize33 68 5 5 2018

Maize34 9 23 23 2020

Maize35 11 7 7 2020

Maize36 8 48 27 2020, 2021

Maize37 8 8 8 2021

Maize38 7 7 7 2021

(Continued)
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probabilistic ranking here for almost all of the datasets, which is

consistent with their high correlation for the sorghum data. Finally,

the Wig, Wif, Wiu family has high correlation for most of the

datasets, similarly supporting their high correlation for the

rapeseed data.

The results presented in Figure 2 reflect the fact that both the

probabilistic rank and those from the stability statistics mentioned

above, are highly correlated with mean rank. Thus, the high

correlation and small p-values might simply reflect the

dominance of mean in the ranking. In order to address this issue,

we next focus on the differences between mean and probabilistic

rankings and investigate whether these stability statistics can

explain them.
3.2 Explaining differences in order

The previous section reports that probabilistic rank has high

correlation with both mean rank and the rank according to certain

stability measures, especially those that combinemean and stability. In

this section we turn to the differences and explore the hypotheses that

some stability measures explain the differences between probabilistic
Frontiers in Plant Science 09
and mean order or pairwise comparisons. For the rapeseed and

sorghum data there are 2 and 19 pairs of cultivars where the

probabilistic order differs from the mean order, respectively.

Recall that the feature selection method that we proposed for

this problem is based on the claim that a combination of mean and

stability explains when differences occur in mean versus

probabilistic order. In particular, for sufficiently large difference in

mean all the probabilistic orders become the same as the mean

order. The exact cut-off depends on the data. For rapeseed cultivars,

the order is the same for all pairs when the absolute value of the

mean yield difference is at least 119 Kg/ha. For the sorghum data,

the same is true if the mean yield difference is at least 72 kg/ha. Such

large yield differences account for 6 out of 15 cultivar pairs for the

rapeseed data and 82 out of 153 for the sorghum data. Thus, many

pairs are accounted for by large mean differences and the key

question is if the stability measures can explain the differences for

those pairs where the mean is relatively close. This was the key

motivation for our method.

For both the rapeseed and sorghum data there are multiple

stability metrics that are found significant predictors of the

differences. For the rapeseed data it includes GAI, HMRPGV, N2,

and RPGV. And for the sorghum data, there are 25 such stability

statistics. Two of the metrics, GAI and HMRPGV, perfectly explain

the differences for the rapeseed data, and this is illustrated in

Figure 3 for the first of those two. We observe that all two of the

pairs with different order are in Region 2, while all other pairs are in

Region 1, resulting in a perfect classification using just mean and the

GAI stability metric (and the corresponding p-value is almost zero).

For the sorghum dataset no stability measure explains all of the

differences, but three explain most of them: HMGV, GAI, and Wig.

This is illustrated in Figure 4.

Finally, considering the larger testbed of maize data, Figure 5

shows a heat map of p-values computed by applying this method for

all 43 maize datasets using all 39 stability metrics. Relative to the

results reported in Figure 2, which shows a clear dominance for

some stability metrics, Figure 5 is more noisy since no stability

metric captures the differences between mean and probabilistic

order well for all 43 datasets. Nonetheless, the same stability metrics

perform better in terms of having small p-values over a larger

number of datasets. In particular, metrics such as GAI, HMGV,

RPGV, HMRPGV, N2, that have low p-values for the smaller

rapeseed and sorghum datasets, also have low p-values, and are

hence significant predictors, for many or most of the maize datasets.
TABLE 4 Comparison of probabilistic rank versus mean rank and ranks
according to four stability measures: Shukla, N2, GAI, and Pia for the
rapeseed data.

Cultivar

Rank

Prob. Mean

Stability Metrics

Shukla N2 GAI pia

Glacier 1 2 1 6 1 2

Bridger 2 3 5 5 2 5

Bienvenu 3 1 6 4 3 1

Cascade 4 4 4 2 4 3

Jet 5 5 3 3 5 6

Dwarf 6 6 2 1 6 4

rRank 0.829 -0.086 -0.943 1 0.429

p-value 0.029 0.599 0.999 0.001 0.209
TABLE 3 Continued

Name Hybrids Environments Locations Year(s)

Maize39 7 7 7 2021

Maize40 16 25 25 2021

Maize41 30 14 14 2022

Maize42 25 8 8 2022

Maize43 7 26 26 2022
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4 Discussion

4.1 Key findings

The results show that the mean and probabilistic rank is highly

correlated, suggesting that the pairwise orders are usually the same.

Some stability measures are also highly correlated with probabilistic

rank, and the results show that those tend to be measures that

directly combine both mean performance and some type of

stability. Specifically, both the harmonic mean and relative

performance of genetic value and their combination (HMGV,

RPGV, HMRPGV) as well as the geometric adaptability index

(GAI) are found to have a significantly high correlation for all the

data; and two older families of measures: the superiority indices Pia,

Piu and Pif of Lin and Binns (1988) on one hand, and the confidence

indicesWig,Wif andWiu of Annicchiarico (1997) on the other, have

significantly high correlation for some data. This supports the
Frontiers in Plant Science 10
assertion that the probabilistic ranking combines mean

performance and stability into a single metric.

When mean and probabilistic order is different, the results show

that those differences are often explained by some stability measure.

For the simplest data considered (rapeseed), the results show that all

of differences could be perfectly explained by a single measure

(either GAI or HMRPGV). This is not the case for the sorghum or

maize data, and the measures that best explain the differences varies

slightly. For example,Wig is one of the three best stability measures

to explain differences for the sorghum data even though it did not

play a similar role for the rapeseed data. This supports the

conclusion that the differences are explained by stability, but

depending on the data and possibly other factors, they are best

explained by different stability measures, and no measure can

simply replace probabilistic comparison and account for all the

differences. Also, there does not appear to be a definite pattern in if

static or dynamic stability metrics better explains the differences.

We speculate that both types of stabilities could be captured

depending on the data.
TABLE 5 Comparison of probabilistic rank versus mean rank and ranks according to four stability measures: Shukla, N2, GAI, and Pia for the
sorghum data.

Cultivar

Rank

Prob. Mean
Stability Metrics

Shukla N2 GAI pia

G10 1 3 6 18 1 3

G13 2 1 8 16 2 1

G08 3 7 2 11 6 6

G15 4 2 17 14 12 2

G09 5 4 7 17 4 5

G11 6 8 4 9 3 8

G02 7 10 3 7 5 7

G14 8 5 16 3 8 4

G12 9 11 11 10 7 12

G17 10 9 18 15 17 11

G18 11 6 15 13 9 10

G03 12 14 12 8 10 14

G05 13 13 1 2 11 13

G07 14 12 10 6 16 9

G16 15 15 5 1 13 15

G01 16 17 9 4 14 17

G06 17 18 14 12 18 18

G04 18 16 13 5 15 16

rRank 0.905 0.230 -0.643 0.820 0.913

p-value 0 0.178 0.998 0 0
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FIGURE 2

The p-value of Spearman’s rank correlation between probabilistic rank and rank according to various stability measures for the maize datasets. The
datasets are ordered based on the number of cultivar pairs and the percent of observations that are classified as different.
FIGURE 3

Visualization of the combined mean value and the GAI stability measure for explaining differences between probabilistic and mean order for the
rapeseed data. Each pair is represented as a data point. Note that all the differences are in one quarter or Region 2, resulting in a p-value of zero.
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4.2 Contributions

This work builds on the work of Bijari (2022) who proposed

using bootstrap resampling to estimate the probability that one

cultivar performs better than another in a pairwise comparison for

random set of target environments. They suggest that this combines

mean and stability, which is supported using synthetic data where

the magnitude of the G×E effect is controlled. Our main

contribution is a systematic evaluation of this claim using real

plant breeding data and a comprehensive set of stability measures.

Specifically, we propose a classification formulation, and then a

feature selection method for this classification problem, that

specifically aims to identify which stability measures explain

differences between probabilistic and mean order. In addition to

these main contributions, we construct new test datasets based on

the genome-to-field data that we believe may be useful for testing

other new methods in the plant breeding domain.
Frontiers in Plant Science 12
4.3 Limitations

While this work suggest that probabilistic order effectively

combines mean and stability based on empirical comparison

using select plant breeding data, it is not clear how general this

conclusion is in practice. A key limitation is thus that the results

reported here do not guarantee that this connection exists for all

plant breeding data or establish criteria that plant breeders could

use to determine if this connection exist for their trials. Thus, while

it suggests that plant breeders may want to consider utilizing

probabilistic ranking, it does not theoretically guarantee that the

observations made hold for any specific plant breeding trial data

and at this point it is thus left to the breeder to determine if this

approach works well for their trial data.

Another possible limitation is that the analysis only uses one

method for estimating the probability of one cultivar outperforming

another, namely an approach based on bootstrap resampling. Other
FIGURE 4

Visualization of the combined mean value and the HMGV, GAI, and Wig stability measures for explaining differences between probabilistic and mean
order for the sorghum data. Each pair is represented as a data point. Most of the differences are in Region 2, with only three points in Region 1.
Further notice that most differences are close to the y-axis, namely the mean difference is small.
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methods could be used, including Bayesian methods, that may

provide a more efficient and possibly more precise estimates of the

relevant probabilities. Further study is needed to determine the best

method(s) for obtaining these probability estimates.
4.4 Future research

One direction for further work is motivated by the observation

that probabilistic order appears to reflect what might be considered

multiple different types of stability (that is, somewhat diverse

stability measures have high correlation and explain the

differences but none do so for all data). It would be of interest for

further investigate how and when different types of phenotype

stability is reflected in the probabilistic order. A related future

research would be to address the limitations stated above from a

plant breeder perspective. Specifically, it would be of significant

practical value to identify how characteristics of a plant breeding

trial relate to how probabilistic order reflects different stability

measures. Finally, this method needs to be tested on many
Frontiers in Plant Science 13
different datasets obtained from a broader variety of crops, with

different phenotypes and different growing conditions.
5 Conclusion

Probabilistic ranking can be defined as preferring a cultivar that

is more likely to perform better in a random set of environments

versus the cultivar that performs better on average. Those rankings

most often agree, but the claim is that the probabilistic rank

combines both mean and stability, so when the mean is

sufficiently close the probabilistic rank may prefer the cultivar

that is more stable over the one that has better mean. This paper

presents a systematic evaluation of this claim using real plant

breeding data and a comprehensive set of stability measures. The

conclusion of the analysis is that based on the results presented

here, differences in mean and probabilistic ranking are in fact

explained by differences in stability, supporting the claim that

probabilistic ranking effectively combines mean and stability into

a single measure. Based on this, plant breeders may consider
FIGURE 5

The p-value of chi-squared uniformity test between probabilistic rank and rank according to various stability measures for the maize datasets. The
datasets are ordered based on the number of cultivar pairs and the percent of observations that are classified as different.
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probabilistic ranking as an alternative to mean-based ranking

supplemented by the use of stability measures.
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Olivoto, T., and Lúcio, A. D. (2020). metan: An r package for multi-environment trial
analysis. Methods Ecol. Evol. 11, 783–789. doi: 10.1111/2041-210X.13384

Olivoto, T., Lucio,´, A. D., da Silva, J. A., Marchioro, V. S., de Souza, V. Q., and Jost,
E. (2019). Mean performance and stability in multi-environment trials i: Combining
features of ammi and blup techniques. Agron. J. 111, 2949–2960. doi: 10.2134/
agronj2019.03.0220

Omer, S. O., Abdalla, A. W. H., Mohammed, M. H., and Singh, M. (2015). Bayesian
estimation of genotype-by-environment interaction in sorghum variety trials.
Commun. Biometry Crop Sci. 10, 82–95.

Piepho, H.-P. (1998). Methods for comparing the yield stability of cropping systems.
J. Agron. Crop Sci. 180, 193–213. doi: 10.1111/j.1439-037X.1998.tb00526.x

Piepho, H., Möhring, J., Melchinger, A., and Büchse, A. (2008). Blup for phenotypic
selection in plant breeding and variety testing. Euphytica 161, 209–228. doi: 10.1007/
s10681-007-9449-8

Purchase, J. L., Hatting, H., and van Deventer, C. S. (2000). Genotype × environment
interaction of winter wheat (triticum aestivum l.) in South Africa: Ii. stability analysis of
yield performance. South Afr. J. Plant Soil 17, 101–107. doi: 10.1080/
02571862.2000.10634878

Raju, B. (2002). A study on ammi model and its biplots. J. Indian Soc. Agric. Stat 55,
297–322.
Frontiers in Plant Science 15
Rao, A., and Prabhakaran, V. (2005). Use of ammi in simultaneous selection of
genotypes for yield and stability. J. Indian Soc. Agric. Stat 59, 76–82.

Shafii, B., and Price, W. J. (1998). Analysis of genotype-by-environment interaction
using the additive main effects and multiplicative interaction model and stability
estimates. J. Agricult. Biol. Environ. Stat. 3, 335–345. doi: 10.2307/1400587

Shukla, G. (1972). Some statistical aspects of partitioning genotype-environmental
components of variability. Heredity 29, 237–245. doi: 10.1038/hdy.1972.87

Smith, A. B., Cullis, B. R., and Thompson, R. (2005). The analysis of crop cultivar
breeding and evaluation trials: an overview of current mixed model approaches. J.
Agric. Sci. 143, 449–462. doi: 10.1017/S0021859605005587

Sneller, C. H., Kilgore-Norquest, L., and Dombek, D. (1997). Repeatability of yield
stability statistics in soybean. Crop Sci. 37, cropsci1997.0011183X003700020013x.
doi: 10.2135/cropsci1997.0011183X003700020013x

Stanger, T. F., Lauer, J. G., and Chavas, J.-P. (2008). The profitability and risk of long-
term cropping systems featuring different rotations and nitrogen rates. Agron. J. 100,
105–113. doi: 10.2134/agronj2006.0322

Thennarasu, K. (1995). On certain non-parametric procedures for studying genotype-
environment interactions and yield stability (New Delhi: IARI, Division of Agricultural
Statistics).

Westcott, B. (1986). Some methods of analysing genotype—environment interaction.
Heredity 56, 243–253. doi: 10.1038/hdy.1986.37

Wricke, G. (1965). Zur berechnung der okovalenz¨ bei sommerweizen und hafer. Z.
Fur. Pflanzenzuchtung¨ 52, 127–138.

Wright, K. (2024). agridat: Agricultural Datasets. R package version 1.23. GitHub.

Zali, H., Farshadfar, E., Sabaghpour, S. H., and Karimizadeh, R. (2012). Evaluation of
genotype× environment interaction in chickpea using measures of stability from ammi
model. Ann. Biol. Res. 3, 3126–3136.

Zhang, Z., Cheng, L., and ZhongHuai, X. (1998). Analysis of variety stability based on
ammi model. Acta Agronomica Sin. 24, 304–309.

Zobel, R. (1994). “Stress resistance and root systems,” in Proceedings of the Workshop on
Adaptation of Plants to Soil Stress (University of Nebraska-Lincoln, Lincoln, NE), 80–99.
frontiersin.org

https://doi.org/10.2134/agronj2016.07.0418
https://doi.org/10.1016/0378-4290(80)90005-2
https://doi.org/10.1007/s10681-007-9600-6
https://doi.org/10.1007/s00122-015-2530-0
https://doi.org/10.1007/s00122-015-2530-0
https://doi.org/10.1111/2041-210X.13384
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.1111/j.1439-037X.1998.tb00526.x
https://doi.org/10.1007/s10681-007-9449-8
https://doi.org/10.1007/s10681-007-9449-8
https://doi.org/10.1080/02571862.2000.10634878
https://doi.org/10.1080/02571862.2000.10634878
https://doi.org/10.2307/1400587
https://doi.org/10.1038/hdy.1972.87
https://doi.org/10.1017/S0021859605005587
https://doi.org/10.2135/cropsci1997.0011183X003700020013x
https://doi.org/10.2134/agronj2006.0322
https://doi.org/10.1038/hdy.1986.37
https://doi.org/10.3389/fpls.2025.1553079
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Probabilistic ranking of plant cultivars: stability explains differences from mean rank
	1 Introduction
	2 Materials and methods
	2.1 Notation and probabilistic comparison
	2.2 Stability measures
	2.3 Correlation of rank
	2.4 Predicting the difference between mean and probabilistic order
	2.5 Value of each stability measure
	2.6 Data
	2.6.1 Rapeseed and sorghum data
	2.6.2 Maize datasets


	3 Results
	3.1 Correlation of stability and probabilistic rank
	3.2 Explaining differences in order

	4 Discussion
	4.1 Key findings
	4.2 Contributions
	4.3 Limitations
	4.4 Future research

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


