Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.

Sec. Functional Plant Ecology

Volume 16 - 2025 | doi: 10.3389/fpls.2025.1550306

Bacterial Communities and Soil Functionality in Artificially Remediated Vegetation of the Three Gorges Reservoir Zone

Provisionally accepted
  • 1 School of Life Sciences, Southwest University, Chongqing 400715, China
  • 2 Guilin Tourism University, Guilin, Guangxi Zhuang Region, China
  • 3 Southwest University, Chongqing, Chongqing Municipality, China

The final, formatted version of the article will be published soon.

    Riparian zones maintain biodiversity, cyclic nutrients, and regulate water quality. However, their stability is increasingly threatened by human activities such as dam construction and climate variability. This study focuses on the riparian zones of the Three Gorges Dam Reservoir (TGDR), a region marked by fluctuating water levels and a subtropical southeast monsoon climate. We investigated the seasonal and vegetation-specific dynamics of soil properties and microbial communities in riparian zones dominated by artificially remediated plants (ARPs) in the TGDR. The selected ARP species included the herbaceous Cynodon dactylon (CD) and Hemarthria altissima (HA), known for their capacity for rapid soil stabilization, and the tree species Salix matsudana (SM) and Taxodium distichum (TD), which enhance nutrient cycling through litter inputs and root exudates. These species were evaluated across spring (T1), summer (T2), and autumn (T3). Our analysis of 360 soil samples led to the generation of high-quality sequences that provided insights into microbial diversity. Principal component analysis identified organic matter, ammonium nitrogen, and total nitrogen as the main contributors to soil property variance, explaining 53.68% in T1, 51.52% in T2, and 56.37% in T3 of the variance (p < 0.01). Correlation analysis highlighted a positive relationship between soil pH and Nitrospirae (r = 0.603) and Proteobacteria (r = 0.558). Enzyme activity varied by season, with acid phosphatase activity peaking in T3 and invertase activity highest in T1. This study also made functional predictions and identified pathways pertinent to metabolism, genetic information processing, and environmental signal transduction. There were seasonal shifts in metabolic pathways, such as an increase in carbohydrate metabolism in T3 via TD. In addition, there was a rise in amino acid metabolism in T3 via CD. Our assessment of microbial diversity uncovered 68 bacterial phyla, with Proteobacteria and Acidobacteria emerging as the dominant taxa. The results indicate that ARPs positively influence microbial health, nutrient cycling, and overall ecosystem integrity. These findings hold significant implications for riparian ecosystem restoration in regions experiencing environmental changes.

    Keywords: artificial remediation plant, Riparian ecosystem, Soil microbial diversity, KEGG Pathways, PICRUSt analysis

    Received: 23 Dec 2024; Accepted: 02 Apr 2025.

    Copyright: © 2025 Naz, Arif, Xue, Chen, Khan and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Changxiao Li, School of Life Sciences, Southwest University, Chongqing 400715, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    95% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more