
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Abiotic Stress
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1549854
This article is part of the Research Topic Managing Metal Toxicity in Plants and Soil: Strategies for Stress Mitigation and Remediation View all 8 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Boron (B) is an essential micronutrient critical for crop growth and productivity. However, excessive boron concentrations can impair plant development, and detoxification remains a significant challenge. Understanding genetic variability and identifying tolerance mechanisms are crucial for developing boron-resistant cultivars. This study explores the physiological and molecular responses of two Actinidia species, namely kiwifruit (A.chinensis) and kiwiberry (A.arguta), to varying levels of excess B. Under excessive B conditions, B accumulation followed the order roots < stems < leaves, with maximum concentrations of 68.6 mg/kg, 105 mg/kg, and 160.7 mg/kg in AC, and 68.2 mg/kg, 107 mg/kg, and 196.9 mg/kg in AA, respectively. B toxicity symptoms appeared in AA when B levels exceeded 50 mg/kg, leading to a 15-20% reduction in dry weight across roots, stems, and leaves. AC exhibited greater sensitivity, with a 20-30% reduction in dry biomass. Both species showed significant declines in chlorophyll a and b content under B stress, with alterations in the chlorophyll a/b ratio and increased oxidative stress. Additionally, stress-responsive genes, including 1-aminocyclopropane-1-carboxylate synthase (Actinidia10066) and xyloglucan endotransglucosylase/hydrolase (Actinidia11948), were downregulated in response to B stress, suggesting potential disruptions in growth and development.These findings provide valuable insights into the differential physiological and molecular responses to excess boron in Actinidia species, laying a foundation for functional genomics research and the development of boron-tolerant kiwifruit cultivars.
Keywords: Kiwifruit, B function, Boron stress, physiological response, gene regulation
Received: 22 Dec 2024; Accepted: 24 Feb 2025.
Copyright: © 2025 Dawei, Chalchisa, Muzahid, Mollah, Xie, Liu, Lv, Tian and Zhong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
LI Dawei, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, China
Caihong Zhong, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.