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Estimating photosynthetic
characteristics of forage rape
by fusing the sensitive spectral
bands to combined stresses
of nitrogen and salt
Jingang Wang1,2, Haijiang Wang1,2*, Xin Lv1,2*, Jing Cui1,2,
Xiaoyan Shi1,2, Jianghui Song1,2, Weidi Li1,2 and Wenxu Zhang1,2

1Agricultural College, Shihezi University, Shihezi, Xinjiang, China, 2Key Laboratory of Oasis Ecological
Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
Leaf gas exchange and chlorophyll fluorescence parameters (PGE-CFPs), which

respond significantly and quickly to environmental stresses, have been used to

assess the early responses of crop physiology to stresses. Most spectral

estimations only focus on crop photosynthetic characteristics under a single

environmental stress. Thus, the methods proposed previously are not suitable for

the estimations under combined stresses (i.e., nitrogen and salt). In this research,

the leaf spectral features of forage rape (Brassica napus L.) under nitrogen stress

(NSpe) and salt stress (SSpe) were fused to increase the accuracy of the spectral

estimation of photosynthetic characteristics of forage rape under combined

stresses in arid region of Xinjiang, China. The results showed that PGE-CFPs’

spectral features were extracted with SPA (successive projections algorithm) after

preprocessing. Among the SSpe- and NSpe-based models, the RF (random

forest) models had higher estimation accuracy than the PLSR (partial least

squares regression) and BPNN (backpropagation neural network) models.

Specifically, the RF models had a PGE-CFPs estimation accuracy of 0.597–

0.712, 0.640–0.715, and 0.377–0.461 under nitrogen stress (NS), salt stress

(SS), and NS*SS, respectively. After fusing NSpe and SSpe, the accuracy in

estimating PGE-CFPs of forage rape under NS, SS, and NS*SS were 0.729–

0.755, 0.667–0.768, and 0.621–0.689, respectively. Then, the constructed

models were further validated using field data, and the accuracy obtained was

in the range of 0.585–0.711. Therefore, the feature fusion modeling method

proposed has strong transferability and applicability. This research will offer a

technical reference for crop photosynthesis monitoring at the early stage of

environmental stresses.
KEYWORDS

hyperspectral technology, feature fusion, combined stresses, photosynthetic systems,
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1 Introduction

Lack of forage grass is a main factor limiting China’s animal

husbandry development. Forage rape is a high-quality forage grass

with high crude protein and fat contents and low crude fiber

content, which has been planted in northern China to promote

the animal husbandry development as well as protect the arid

environment (Cotty and Dorin, 2012; Xing and Goldsmith, 2013;

Li and Lin, 2014). However, soil salinization is widespread in

northwest China, especially in Xinjiang province, posing

challenges to forage rape planting (Konapala et al., 2020). Besides,

in recent decades, excessive nitrogen (N) fertilization causes a great

loss of N (N use efficiency is only 30%–35%), causing N pollution in

Xinjiang (Xu et al., 2018). Therefore, at present, nitrogen stress (NS)

and salt stress (SS) are widespread in Xinjiang, seriously impacting

the planting of forage grasses, especially forage rape (Baker and

Rosenqvist, 2004; Zhang et al., 2012).

Leaf gas exchange and chlorophyll fluorescence parameters

(PGE-CFPs) are indicators of crop photosynthesis (Porcar-Castell

et al., 2014). According to previous studies (Huang et al., 2004;

Taras et al., 2010), SS destroys chloroplast ultrastructure and

inhibits the photochemical efficiency of photosystem II (PS II),

reducing crop photosynthetic rate. Nitrogen stress reduces the

concentration of pigments in chloroplasts, causing stomatal

limitation and photoinhibition of PS II. The PGE-CFPs respond

to stresses earlier than other physiological indicators and

morphological damage (Zahra et al., 2014). Especially, under NS

or SS, PGE-CFPs changes of crops predate changes in salt ions and

nitrogen concentrations. Therefore, PGE-CFPs can be used to

evaluate crop photosynthetic performance at the early stage of

stresses (Zarco-Tejada et al., 2000).

Early, non-destructive, and accurate assessment of crop

responses especially photosynthetic performance to external

stresses is of great significance for agricultural production.

Traditionally, PGE-CFPs are non-destructively measured using

portable fluorescence instruments. However, this method requires

shading and other processing, which is complex, time-consuming,

and difficult to realize rapid large-scale monitoring (Li, 2021).

Remote sensing allows quick and accurate crop growth

monitoring (Tirado et al., 2020). Under stress conditions, crop

physiological activities, especially photosynthesis, obviously change,

inducing the responses of leaf spectral reflectance. This provides the

direct basis for spectral estimation. For instance, Zheng et al. (2021)

found that the first-order derivative-based spectral vegetation index

D690/D1320 could accurately estimate the chlorophyll fluorescence

parameter Fv/Fm of salt-stressed Suaeda salsa leaves. Feng et al.

(2015) reported that the chlorophyll fluorescence index NDF12/4

constructed by hyperspectral technique could be used for

diagnosing N status in wheat. Besides, remote sensing techniques

have also been applied in the assessment of photosynthetic

characteristics of barley, wheat, maize, and cotton (Peñuelas et al.,

1997; Zhu et al., 2007; Tan et al., 2012; Xue et al., 2013).

Most spectral estimations focus on crop photosynthetic

characteristics under a single stress. However, crops often face

multiple stresses simultaneously, resulting in low applicability of
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the estimation models constructed based on single stress conditions

(Zandalinas and Mittler, 2022; Hu et al., 2023). Therefore, it is very

urgent to explore the spectral responses of PGE-CFPs of crop leaves

under combined stresses, to further improve the accuracy of

spectral estimation of crop photosynthetic characteristics. This

study hypothesized that fusing the spectral features of PGE-CFPs

of forage rape leaves under NS and SS might improve the estimation

accuracy of photosynthetic performance at the early stage of

combined stresses. The specific objectives were to explore: (1) The

photosynthetic response of forage rape to NS, SS, and NS*SS; (2)

The spectral features of PGE-CFPs of forage rape leaves under the

three types of stress; And (3) the impacts of various modeling

strategies on the accuracy of spectral estimation of forage rape

photosynthetic characteristics under various stresses. This research

will offer a technical reference for improving the estimation

accuracy of forage rape photosynthesis performance under

combined stresses.
2 Materials and methods

2.1 Materials and research site

Forage rape variety Huayouza 62 with low erucic acid and

glucoside content, strong cold and drought resistance, and short

growth cycle was used in this study.

The experiment was conducted from 2021 to 2023 at Shihezi

University Experimental Station in Xinjiang, China (86°3′N, 44°18′
E, a.s.l. 428 m) in a temperate continental climate zone.

Meteorological data were obtained from the Ulaanwusu

Meteorological Station near the study area (Figure 1). The annual

average sunshine hours was 2725 – 2820 h, the annual average

temperature was 6.5 – 7.2°C, the annual average precipitation was

125 – 208 mm, and the annual average evaporation was 1200 – 1500

mm. The average temperatures of the whole growing season of

forage rape in 2021, 2022, and 2023 were 23.6, 23.0, and 23.1 °C,

respectively, and the total precipitations during the growing season

were 32.9, 17.7, and 56.4 mm, respectively. The physicochemical

properties of the experimental-site soil (soil type: gray desert soil)

were as follows: The pH was 7.64, the organic matter content was

12.05 g·kg–1, the total nitrogen content was 0.89 g·kg–1, the available

nitrogen content was 93.6 mg·kg–1, the available phosphorus

content was 18.7 mg·kg–1, and the available potassium content

was 242 mg·kg–1. Strong evaporation leads to a large accumulation

of soluble salt in the soil of the region, severely limiting the growth

of crops.
2.2 Experimental design

In this experiment, a two-factor (soil salt, N application rate)

randomized complete block design was adopted. For the soil salt

factor, there were two levels (S1 and S2). The soil of S1 was sampled

from the local farmlands, with salt type of sulfate chloride and salt

content of 2.1 g·kg–1 (Liu et al., 2024). The soil of S2 was the mixture
frontiersin.org

https://doi.org/10.3389/fpls.2025.1547832
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1547832
of the saline soil collected from surrounding areas (salt type: sulfate

chloride; salt content (0-30 cm soil layer): 22.4 g·kg-1) and the S1

soil. Based on the Classification Criterion for Saline Soils in Xinjiang

(non-salinized soil (0–3 g·kg-1), mildly salinized soil (3–5 g·kg-1),

moderately salinized soil (5–10 g·kg-1), and severely salinized soil

(10–20 g·kg-1)) (Luo, 1985), the salt of the S2 soil was made to 8.75

g·kg-1 (measured by conductivity method) (Luo, 1985; Liu et al.,

2024). For the N application rate factor, there were three levels: 240

kg·ha-1 (N1.2), 200 kg·ha-1 (Nc, N application rate commonly

adopted by local farmers), and 160 kg·ha-1 (N0.8). The organic

form of N, urea (N, 46%), was applied. There were a total of six

treatments, and three replications/plots were made for each

treatment. Each plot (2.0 m × 3.0 m) was surrounded by brick

walls to isolated it from the adjacent plots to avoid interference. The

brick walls were 1.2 m high, of which 0.2 m was above the ground.

There was a cement mortar layer on the brick wall surface.

Impermeable membranes (1 mm thick) were covered on the

surface of brick walls below the ground. Soils were backfilled in

the plots in layers (20 cm per layer), and the bulk density was

consistent with that of the farmland of the Experimental Station.

To clearly clarify the impacts of different stress types on the

photosynthetic characteristics of forage rape, the six treatments were

classified into four groups: Control (CK) group, including S1Nc

treatment; Nitrogen stress (NS) group, including S1N0.8 and S1N1.2

treatments; Salt stress (SS) group, including S2Nc treatment; Combined

stresses (NS*SS) group, including S2N0.8 and S2N1.2 treatments.

The phosphorus and potassium fertilizer application rates

recommended by Zhu et al. (2019) were adopted, i.e., 90 kg·ha–1 of

triple superphosphate (P2O5, 46%–54%), and 75 kg·ha
–1 of potassium

sulfate (K2O, 50%). All P and K fertilizers were applied before sowing.

About 40% of nitrogen fertilizer (N, 46%) were applied before sowing,

and the remaining 60% were topdressed through drip fertigation.

During the growing season, plants were irrigated six times in total,

and the total amount was 4500 m3·ha-1, keeping the field capacity at

70% – 80%. The seeding dates in 2021, 2022, and 2023 were July 13,

July 17, and July 14, respectively (Table 1).
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2.3 Data acquisition

2.3.1 Spectral data acquisition
The hyperspectral data of forage rape leaves was collected with a

portable spectrometer (PSR–3500, Spectral Evolution, USA)

(wavelength range: 350 – 2500 nm). This spectrometer had

following detectors: (i) 512 silicon photodiode array, with a

spectral range of 350 nm – 1000, a resolution of 3.5 nm, and an

interval of 1.5 nm; (ii) 256-element InGaAs array, with a spectral

range of 970 nm – 1910, a resolution of 7 nm, and an interval of

3.8 nm; and (iii) 256 element InGaAs array, with a spectral range of

1900 nm – 2500 nm, a resolution of 10 nm, and an interval of

2.5 nm. After resampling the spectrum to 1 nm, a total of 2151

bands were obtained in the region of 350 – 2500 nm. The

spectrometer was calibrated every ten samples. On a cloudless

day, the clamp connected to the spectrometer was used to

determine different parts (left, middle, and right) of forage rape
FIGURE 1

Daily average air temperature and precipitation during forage rape growing season from 2021 to 2023.
TABLE 1 Nitrogen fertilizer application rate and salt content for
different treatments and stress types.

Type
of stress

Treatment
Salt content

(g·kg-1)

N fertilizer
application

rate (kg·ha-1)

CK (Non
stress

condition)
S1Nc 2.1 200

NS S1N0.8 2.1 160

NS S1N1.2 2.1 240

SS S2Nc 8.75 200

NS*SS S2N0.8 8.75 160

NS*SS S2N1.2 8.75 240
CK, NS, SS, and NS*SS represent control, nitrogen stress, salt stress, and nitrogen-salt
combined stresses groups, respectively; S1, Non-salt stress condition; S2, Salt stress; Nc,
Recommended nitrogen application rate; N0.8, Low-nitrogen stress; N1.2, High-
nitrogen stress.
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leaves at 12:00 – 14:00, and spectral reflectance was obtained after

averaging. Spectral data were acquired on the 10th, 20th, 30th, and

40th day after sowing (20 spectral data for each stress type at each

time). Finally, 240 spectral data were obtained for each type of stress

(80 samples per year), with a total of 960 samples obtained.

2.3.2 Determination of PGEs
The leaf PGEs (Pn (net photosynthetic rate), Ci (intercellular

carbon dioxide concentration), gs (stomatal conductance), and Tr

(transpiration rate)) of the forage rape plants subjected to spectral

data acquisition were determined by a Li-6400 gas exchange

detector at 9:00 – 11:00. The photosynthetically active radiation

of the instrument was 1200 mmoL·m–2·s–1, the CO2 concentration

was 400 mmoL·moL–1, the chamber temperature was 30°C, the air

flow rate was 500 mmoL·s–1, and the relative humidity was 55%.

2.3.3 Determination of CFPs
The leaf CFPs of forage rape plants subjected to spectral data

acquisition were determined with a Chl fluorometer (PAM-2500,

Walz, Germany) and a 2030-B leaf clip. Firstly, under photoreaction,

the steady-state chlorophyll fluorescence (Fs) was determined. After

that, a light of 1200 mmoL·m-2·s-1 was emitted, with a pulse time of 0.8

s, to measure the maximum (Fm′) and minimum (F0′) fluorescence
yield in light-adapted state. After 30-min dark adaption, a strong light

was emitted to measure the maximum (Fm) and minimal (F0)

fluorescence. Then, the photochemical quenching coefficient (qP),

non-photochemical quenching (NPQ), effective quantum yield of PS

II photochemistry (FPS II), maximum photochemical efficiency of

PS II (Fv/Fm), PS II potential activity (Fv/F0), and electron transport

rate (ETR) were computed (Wang et al., 2023).

2.3.4 Statistical analysis of PGEs-CFPs data
The PGE-CFPs data (Figure 2) were partitioned into three ranges

according to the values from high to low, and the values with a large

error were removed. After that, the remaining data were split into two

sets, calibration and verification set (2: 1). It can be seen from Figure 2

that the sample dispersion degree of each parameter is high. This

indicates that the sample selection meets the requirements of

sufficient quantity, wide range, and uniform distribution.

This study aimed to explore the spectral response mechanisms

of photosynthetic parameters of forage rape leaves to different types

of stress, thus only the sample data of stress groups (NS, SS, NS*SS)

were selected to construct the estimation models. The CK group

data was used for comparison in the analysis of stress effects, and its

spectral and physiological parameter data were not included in the

following modelings to avoid interference with the extraction of

spectral features of stress conditions by noises of non-stress

conditions (Okyere et al., 2024).
2.4 Spectral preprocessing

It is easy to generate a large amount of noises during spectral

data acquisition, due to the influences of environmental and

instrumental factors. To remove noises and highlight useful
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information, five preprocessing methods including SG smoothing,

SG-SNV transform, SG-MSC, SG-peak area normalization (PAN),

and SG-CWT were employed to preprocess raw spectral reflectance.

2.4.1 Savitzky-Golay
Polynomial least squares fitting was conducted on the spectral

data in the moving window through polynomials, to achieve the

purpose of smoothing. In SG smoothing, the polynomial degree and

smoothing window width have a decisive influence on the

smoothing performance (Barnes et al., 1993). In this study, after

many attempts, the polynomial degree and smoothing window

width were selected to be 4 and 6, respectively. The smoothed

bands were calculated by following formula (Equation 1):

xasmth = �xa =
1
H o

+w

i=−w
xa+ihi (1)

where x  a is the average of the spectrum at central wavelength a

and the spectrum at the wavelengths with a distance of w before and

after a, hi is the coefficient obtained by least square fitting, and H is

the normalization factor.

2.4.2 Standard normal variate
Standard normal variate processes each spectrum to reduce

errors induced by optical path changes, surface scattering, etc. It

standardizes raw spectra, subtracts the mean of entire spectrum to

eliminate shifts, and divides by the standard deviation, to realize

similar proportions (Equation 2).

xSNV =
x − xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o

p
i=1(xi−x)

p−1

r (2)

where x is raw spectrum, x   is the mean of a sample’s all bands,

and i is the number of bands (i = 1, 2,…, p).

2.4.3 Multivariate scattering correction
Differences in particle size always impact the scattering of near-

infrared light, leading to spectral differences. The MSC can

eliminate the particle size-induced influence and preserve

information related to physiological indices in the raw spectrum

as much as possible. It assumes that scattering is independent of

wavelength and sample concentration. Firstly, the average spectrum

X of the samples of correction set was calculated, and then the

linear regression of the X and the spectrum of sample x(1×m) was

conducted, that is , x = aX + b . Final ly , a and b were

calculated (Equation 3).

xMSC =
x − b
a

(3)

By adjusting the value of a and b, it is possible to reduce spectral
variability while preserving as much information about

physiological indices as possible in the raw spectrum.

2.4.4 Peak area normalization
Peak area normalization is the modification of spectrum when

the path length cannot be determined, or the separation of spectral
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features of a physiological index to smooth spectrum through

computing the area below a sample’s spectral curve.

2.4.5 Continuous wavelet transform
Continuous wavelet transform decomposes signals into multi-

scale wavelets. It highlights weak signals and regional features

(Koger et al., 2003). In this study, the wavelet basis function was
Frontiers in Plant Science 05
employed to decompose the hyperspectral data, and wavelet

coefficients of different scales were generated. The wavelet

coefficients were two-dimensional data (band (j = 1, 2,…, n),

scale (i = 1, 2,…, m)) (Equations 4, 5).

Wf (a, b) =
Z +∞

−∞
f (l)Ya,b(l)dl (4)
FIGURE 2

Statistical analysis of gas exchange and chlorophyll fluorescence parameters (PGE-CFPs) of forage rape leaves (n = 240). The central lines in the
boxplot represent the medians, and the upper and lower boundaries of the extension lines represent the maximum and minimum values,
respectively. CK, NS, SS, and NS*SS are control, nitrogen stress, salt stress, and nitrogen-salt combined stresses, respectively; Pn, Net photosynthetic
rate; Ci, Intercellular carbon dioxide concentration; gs, Stomatal conductance; Tr, Transpiration rate; FPS II, Effective quantum yield of PS II
photochemistry; Fv/Fm, Maximum photochemical efficiency of PS II; Fv/F0, PSII potential activity; qP, Photochemical quenching coefficient; NPQ,
Non-photochemical quenching; ETR, Electron transport rate.
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Y(a,b)(l) =
1ffiffiffi
a

p Y (
l − b
a

) (5)

whereWf (a, b) is wavelet coefficient, f(l) is reflectance, l is 350

– 2500 nm,Ya,b(l) is wavelet basis function converted with a (scale

factor) and b (expansion factor). The Gaus1 wavelet function was

used in this research. The decomposition scales were 21, 22, …, 210,

i.e., scale 1, 2,…, 10.
2.5 Selection of spectral features by
successive projections algorithm

Successive projections algorithm is a forward variable extraction

approach. It eliminates redundancy using vector projection and

extracts spectral features. It can decrease the spectral band number

for modeling, and minimize collinearity among spectral features,

increasing efficiency and accuracy. In this research, when the SPA-

extracted band number was 5 – 30, the RMSE was the smallest.

Specific algorithms are described in Galvo et al. (2007).
2.6 Modeling and evaluation

2.6.1 Partial least squares regression
Partial least squares regression could address the multicollinearity

and small-sample-size issues, and has an obvious advantage in

dealing with data with multiple dependent variables. It can simplify

data structure, and reduce data dimension and noises. The core of

PLSR is to model the relationship between the independent variables

(X) and dependent variables (Y) by extracting latent variables (LVs),

and to select the model with the minimum PRESS value and the least

LVs (avoid overfitting) through leave-one-out cross-validation

(LOOCV) (Inoue et al., 2016) (Equations 6, 7).

Yi = b0 +o
r

k=1

bkTik + ei(i = 1,…, n) (6)

Tik =o
m

j=1
CkjXij(k = 1,…, r) (7)

where Yi and Xij denote dependent and independent variable,

respectively, m denotes wavelength, n denotes the number of

samples of PGE-CFPs, r denotes the latent variable (LV) number,

bk, Tik, Ckj, and ei denote regression coefficient, latent variable,

coefficient of LV, and error, respectively.
2.6.2 Random forest
Random forest is a machine learning algorithm. This modeling

method has a fast training speed and does not require cross-validation.

Besides, the randomness of sampling and feature selection make it

difficult to fall into overfitting (Breiman, 2001). In this research, the RF

modeling procedure was as follows: Firstly, bootstrap resampling was

used to extract multiple samples from the sample set. Then, multiple
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decision trees for estimation were constructed based on the decision

tree for each bootstrap sample. Finally, the classification result was

obtained by majority voting. The core hyperparameters of the model

were the number of decision trees (n_estimators), maximum tree

depth (max_depth), and maximum number of features per tree

(max_features), with initial ranges of [100, 200, 300], [5, 10, 15],

and [√p, p/3] (where p is the number of features), respectively. The

optimal values, i.e., n_estimators = 200, max_depth = 10, and

max_features = √p, were determined through repeated training.

2.6.3 Backpropagation neural network
Backpropagation neural network is a multiple layer network

that can minimize the mean square error of the actual and expected

outputs with the gradient search technique. The BPNN

computation comprises forward and inverse computations. The

forward propagation processes the input, hidden, and output layers

sequentially. The state of a layer’s neurons only affects that of the

next layer. When desired output could not be generated, reverse

propagation is initialized. That is, the erroneous signals are

returned, and minimized by altering neurons’ weights (Wang

et al., 2015). In this research, the key hyperparameters included

the number of hidden-layer nodes, learning rate, and maximum

number of epochs (Epochs). The structure was tested using a trial-

and-error method, evaluating single-layer (5–15 nodes) and double-

layer (5–10–5 nodes) configurations. The learning rate was searched

on a logarithmic scale from 0.001 to 0.1. Early stopping was applied,

i.e., terminating training if the validation set loss did not decrease

for 5 consecutive iterations. Based on the tests, the optimal

configuration was determined, i.e., a hidden layer with 10 nodes,

learning rate = 0.01, and Epochs = 500.

2.6.4 Modeling based on feature fusion
To improve the estimation accuracy of forage rape PGE-CFPs in

the early stage of combined stresses, feature fusion was proposed for

modeling. Firstly, considering the differences in PGE-CFPs under

NS and SS, this study normalized the data of these parameters under

NS and SS, and then took the mean value yi of the two as the input

of model Y (Equation 8). The spectral features of PGE-CFPs under

NS and SS extracted by SPA were connected in series and used as

the inputs of independent variable X for modeling (Figure 3). This

research adopted standard z-score normalization for normalization,

and standardized the data by mean �y and standard deviation S of the

raw data (Equation 9). The data after processing conformed to the

normal distribution (Zeng and Tao, 2023).

yi =
yssi−�ySS
SSS

+ yNs−�yNSi
SNS

2
(8)

S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1o
N

i=1
(yi − �y)2

s
(9)

where yi is the input (dependent variable), yssi, �ySS, and SSS are

sample value, mean, and SD of PGE-CFPs under salt stress,

respectively, and yNsi, �yNS, and SNS are sample value, mean, and

SD of PGE-CFPs under N stress, respectively.
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2.6.5 Model validation
To further validate the transferability and practical applicability

of the constructed feature fusion model, rapeseed sample data was

collected from local conventional farmlands in 2022 and 2023, and

160 samples were randomly selected for independent testing. To

ensure the consistency of solar light during data acquisition, the

planting dates in the pot experiment and the conventional farmland

experiment were consistent. The PLSR, RF, and BPNNmodels were

assessed using R2 (Coefficient of determination) (Equations 10, 11)

and RMSE (Root mean squared error) (Equations 12, 13). The

model with a larger R2 and a smaller RMSE generally had a higher

accuracy (Chen et al., 2016).

R2
c = 1 −o

nc
i=1(yci − ŷ ci)

2

onc
i=1(yci − yc)

2 (10)

R2
p = 1 −o

np
i=1(ypi − ŷ pi)

2

onp
i=1(ypi − yp)

2
(11)

RMSEc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nc
o
nc

i=1
(yci − ŷ ci)

2

s
(12)
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RMSEp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
np
o
np

i=1
(ypi − ŷ pi)

2

s
(13)

Where RMSEc and RMSEp are the RMSE of the calibration set

and the verification set, respectively, Rc
2 and Rp

2 are the R2 of the

calibration set and the verification set, respectively, ŷ ci and ŷ pi are

the prediction of the ith sample of the calibration set and the

verification set, respectively, nc and np are the sample count of

the calibration set and the verification set, respectively, �yc and �yp are

the mean of measured values of the calibration set and the

verification set, respectively, ypi is the measured value of the ith
sample in the verification set, SD is the standard deviation of the

measured values of the verification set, and RMSECV is the RMSE

for cross validation.
2.7 Data analysis

One-way ANOVA was performed in SPSS 21.0 at p < 0.05

according to Clarke and Green (1988). The CWT, SPA, as well as

feature fusion were completed in Matlab 2016a. Modeling was

completed in Unscramber X 10.1. Graphics were made in Origin 2018.
FIGURE 3

Construction of models by fusing the spectral features of gas exchange and chlorophyll fluorescence parameters (PGE-CFPs) of forage rape leaves
under nitrogen and salt stresses.
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3 Results

3.1 Effects of NS, SS, and NS*SS on the
PGEs of forage rape leaves

The NS, SS, and NS*SS all affected the PGEs of forage rape

leaves (NS*SS > SS > NS). The leaf gs, Tr, and Pn of NS, SS, and

NS*SS groups reduced (p < 0.05), while the Ci increased (p < 0.05),

compared with those of CK group. The largest variation was found

on day 10. Specifically, the Pn of NS, SS and NS*SS groups reduced

by 14.6%, 21.6%, and 38.9%, the Tr reduced by 25.7%, 32.3%, and

53.7%, the gs reduced by 15.8%, 22.8%, and 41.4%, and the Ci

increased by 43.3%, 49.8%, and 67.8%, respectively, compared with

those of CK group (p < 0.05). Under NS, SS, and NS*SS conditions,

the Pn, Tr, and gs of forage rape leaves first increased and then

decreased, while Ci gradually increased (Figure 4).
3.2 Effects of NS, SS, and NS*SS on the
CFPs of forage rape leaves

The NS, SS, and NS*SS all affected the CFPs of forage rape

leaves (NS*SS > SS > NS) (Figure 5). The ETR, FPS II, qP, Fv/Fm,

and Fv/F0 of forage rape leaves of NS, SS, and NS*SS groups
Frontiers in Plant Science 08
reduced (p < 0.05), while the NPQ increased (p < 0.05),

compared with those of CK group. The largest variation was

found on day 10. Specifically, the Fv/F0 of forage rape leaves of

the NS, SS and NS*SS groups reduced by 23.4%, 28.7%, and 39.2%,

the Fv/Fm reduced by 23.9%, 27.3%, and 31.1%, the qP reduced by

8.8%, 16.5%, and 18.6%, the FPS II reduced by 19.7%, 39.3%, and

47.2%, the ETR reduced by 27.1%, 39.5%, and 47.8%, and the NPQ

increased by 27.1%, 72.2%, and 85.4%, respectively, compared with

those of CK group (p < 0.05). Under NS, SS, and NS*SS conditions,

the CFPs of forage rape leaves first increased and then reduced

(peaking on day 30).
3.3 Effects of NS, SS, and NS*SS on spectral
reflectance of forage rape leaves

The NS, SS, and NS*SS had a similar impact on the spectral

reflectance of forage rape leaves, but the spectral reflectance were

inconsistent (Figure 6). A reflectance peak was found in 400 –

700 nm (visible region), and the reflectance of NS, SS, and NS*SS

groups decreased compared with that of CK group. Specifically, the

reflectance at 558 nm of NS, SS, and NS*SS groups decreased by

15.48%, 21.79%, and 25.76%, compared with that of CK group. The

reflectance increased sharply in 700 – 900 nm. The trend of spectral
FIGURE 4

Changes in gas exchange parameters (PGEs) of forage rape leaves under nitrogen stress, salt stress, and nitrogen-salt combined stresses. Different
lowercase letters indicate significant differences between treatments (p < 0.05), and the percentages in the same group indicate the changing
amplitude of PGEs of forage rape leaves under NS, SS, and NS*SS compared with those of CK. The same below. CK, NS, SS, and NS*SS are control,
nitrogen stress, salt stress, and nitrogen-salt combined stresses, respectively; Pn, Net photosynthetic rate; Ci, Intercellular carbon dioxide
concentration; gs, Stomatal conductance; Tr, Transpiration rate; 10 d, 20 d, 30 d, and 40 d represent 10, 20, 30, and 40 days after
sowing, respectively.
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reflectance curve in 1100 – 2500 nm (peaking at 1626 nm) was

opposite to that in the visible region. Besides, the reflectance at 1626

nm of NS, SS, and NS*SS groups increased by 3.46%, 5.83%, and

16.26%, respectively, compared with that of CK group.
3.4 Comparison of spectral preprocessing
methods based on PLSR model

The full band was used to construct the PLSR models under NS,

SS, and NS*SS, to determine the optimal spectral preprocessing

method (Table 2). Different preprocessing methods all increased
Frontiers in Plant Science 09
estimation accuracy. Although the optimal preprocessing method

for different parameters varied under NS, SS, and NS*SS, the

optimal preprocessing methods were CWT 4–6. Specifically,

under NS, the optimal preprocessing method for FPS II and Fv/

Fm was CWT6, and that for other parameters was CWT5. Under

SS, the optimal preprocessing method for Pn, FPS II, and ETR was

CWT6, and that for other parameters was CWT5. Under NS*SS, the

optimal preprocessing method for NPQ was CWT5, and that for

other parameters was CWT4. Due to space limitations, four

parameters were selected for each type of stress for follow-up

research, based on the sensitivity of PGE-CFPs to NS, SS, and

NS*SS in Sections 3.1 and 3.2 and the estimation accuracy of the
FIGURE 5

Changes of chlorophyll fluorescence parameters (CFPs) of forage rape leaves under nitrogen stress, salt stress, and nitrogen-salt combined stresses.
CK, NS, SS, and NS*SS are control, nitrogen stress, salt stress, and nitrogen-salt combined stresses, respectively; Fv/F0, PS II potential activity; Fv/Fm,
Maximum photochemical efficiency of PS II; qP, Photochemical quenching coefficient; NPQ, Non-photochemical quenching; FPS II, Effective
quantum yield of PS II photochemistry; ETR, Electron transport rate. 10 d, 20 d, 30 d, and 40 d represent 10, 20, 30, and 40 days after
sowing, respectively.
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models in this section. The CWT5–Ci, CWT6–Fv/Fm, CWT5–

NPQ, and CWT5–ETR, with a R2 of 0.702, 0.670, 0.641, and 0.655,

respectively, were selected for the analysis of NS condition. The

CWT5–Ci, CWT5–Fv/Fm, CWT5–NPQ, and CWT6–ETR, with a

R2 of 0.665, 0.612, 0.629, and 0.639, respectively, were selected for

the analysis of SS condition. The CWT4–Ci, CWT4–Fv/Fm,

CWT5–NPQ, and CWT4–ETR, with a R2 of 0.589, 0.597, 0.254,
Frontiers in Plant Science 10
and 0.511, respectively, were selected for the analysis of

NS*SS condition.
3.5 Spectral feature distribution

The spectral features of the parameters extracted by SPA were

distributed in the red (600 – 800 nm), near-infrared, and blue-green

regions. Besides, the spectral features for a parameter were different

under different stresses. The Ci’s and Fv/Fm’s spectral feature

distribution were similar. Specifically, most spectral features of Ci

and Fv/Fm were found in the visible region under NS, visible (600 –

800 nm) and near-infrared region (1600 – 1800 and 2100 – 2500

nm) under SS, and the whole band under NS*SS. The NPQ’s

spectral feature distribution were similar (800 – 1000 and 1500 –

1800 nm) under NS and SS. The ETR’s spectral features were

mainly found in 500 – 900 and 1100 – 1300 nm under NS, 500 –

600, 1400 – 1700, and 2000 – 2200 nm under SS, and 400-800 and

2100 – 2500 nm under NS*SS (Figure 7).
3.6 Model construction

The SPA-extracted spectral features were used to construct PLSR,

RF, and BPNNmodels (Table 3). The accuracy of the spectral features-

based PLSR model was higher than that of the full band-based PLSR
FIGURE 6

Changes of spectral reflectance of forage rape leaves under
nitrogen stress, salt stress, and nitrogen-salt combined stresses. CK,
NS, SS, and NS*SS are control, nitrogen stress, salt stress, and
nitrogen-salt combined stresses, respectively.
TABLE 2 PLSR models constructed based on different preprocessing methods.

Type of stress Preprocessing Pn Tr gs Ci FpsII Fv/Fm Fv/F0 qP NPQ ETR

NS

R 0.377 0.331 0.354 0.424 0.334 0.376 0.231 0.254 0.350 0.445

SG 0.416 0.355 0.361 0.483 0.354 0.424 0.335 0.374 0.472 0.525

SG-SNV 0.399 0.359 0.37 0.493 0.356 0.423 0.35 0.399 0.494 0.546

SG-MSC 0.393 0.351 0.365 0.518 0.348 0.420 0.344 0.398 0.492 0.545

SG-PAN 0.411 0.352 0.39 0.536 0.339 0.410 0.340 0.395 0.469 0.547

CWT-1 0.376 0.479 0.431 0.510 0.475 0.554 0.475 0.439 0.532 0.556

CWT-2 0.383 0.385 0.473 0.544 0.433 0.521 0.377 0.424 0.557 0.565

CWT-3 0.468 0.492 0.481 0.622 0.452 0.592 0.457 0.437 0.565 0.573

CWT-4 0.476 0.493 0.488 0.676 0.495 0.595 0.471 0.447 0.636 0.639

CWT-5 0.522 0.53 0.498 0.702 0.505 0.639 0.501 0.499 0.641 0.655

CWT-6 0.503 0.511 0.473 0.698 0.516 0.670 0.442 0.463 0.584 0.586

CWT-7 0.330 0.345 0.336 0.497 0.337 0.416 0.304 0.454 0.433 0.532

CWT-8 0.373 0.355 0.285 0.434 0.321 0.368 0.288 0.374 0.302 0.438

CWT-9 0.225 0.217 0.201 0.382 0.216 0.219 0.204 0.216 0.278 0.361

CWT-10 0.208 0.202 0.153 0.302 0.208 0.206 0.173 0.209 0.231 0.361

SS
R 0.428 0.307 0.323 0.444 0.489 0.555 0.401 0.349 0.412 0.429

SG 0.470 0.394 0.499 0.463 0.337 0.477 0.443 0.356 0.484 0.444

(Continued)
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model (Table 2). The accuracy of the spectral feature-based models

were different under different stresses, with the accuracy of the SSpe-

based models being the highest, followed by that of NSpe- and

NSpe*SSpe-based models. Besides, all constructed models generally

had a higher accuracy in ETR estimation than in Ci, NPQ, and Fv/Fm

estimations. By comparing the R2 and RMSE, the RF models had a

higher accuracy than PLSR and BPNN models. The R2c for RF models

for Ci estimation constructed based on NSpe, SSpe, and NSpe*SSpe

were 0.814, 0.848, and 0.571, respectively, and the R2p were 0.725,
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0.717, and 0.369, respectively. The R2c of the NSpe-, SSpe-, and

NSpe*SSpe-based RF models were 0.741, 0.813 and 0.494,

respectively for Fv/Fm estimation, and the R2p were 0.704, 0.647, and

0.221, respectively. The R2c of the RF models for NPQ estimation

constructed based on NSpe, SSpe, and NSpe*SSpe were 0.781, 0.795,

and 0.523, respectively, and the R2p were 0.627, 0.697, and 0.273,

respectively. The R2c of the RF models for ETR estimation constructed

based on NSpe, SSpe, and NSpe*SSpe were 0.844, 0.852, and 0.554,

respectively, and the R2p were 0.707, 0.735, and 0.377, respectively.
TABLE 2 Continued

Type of stress Preprocessing Pn Tr gs Ci FpsII Fv/Fm Fv/F0 qP NPQ ETR

SG-SNV 0.515 0.341 0.509 0.525 0.359 0.482 0.439 0.385 0.412 0.449

SG-MSC 0.448 0.396 0.512 0.526 0.356 0.486 0.439 0.374 0.413 0.445

SG-PAN 0.448 0.477 0.516 0.540 0.335 0.506 0.4391 0.373 0.423 0.436

CWT-1 0.507 0.392 0.495 0.586 0.432 0.543 0.483 0.392 0.49 0.515

CWT-2 0.480 0.346 0.484 0.521 0.438 0.519 0.438 0.447 0.496 0.580

CWT-3 0.541 0.483 0.508 0.626 0.490 0.560 0.518 0.453 0.544 0.586

CWT-4 0.513 0.489 0.545 0.639 0.497 0.573 0.528 0.51 0.589 0.603

CWT-5 0.585 0.582 0.579 0.665 0.527 0.612 0.539 0.559 0.629 0.611

CWT-6 0.591 0.558 0.565 0.613 0.59 0.519 0.506 0.524 0.613 0.639

CWT-7 0.422 0.475 0.435 0.537 0.401 0.440 0.328 0.382 0.424 0.512

CWT-8 0.450 0.490 0.478 0.464 0.345 0.457 0.322 0.377 0.369 0.461

CWT-9 0.375 0.381 0.336 0.453 0.239 0.323 0.278 0.182 0.213 0.434

CWT-10 0.249 0.308 0.206 0.223 0.120 0.297 0.166 0.062 0.188 0.318

NS*SS

R 0.246 0.216 0.110 0.275 0.119 0.192 0.009 0.012 0.163 0.213

SG 0.298 0.27 0.121 0.310 0.193 0.419 0.204 0.012 0.224 0.318

SG-SNV 0.325 0.332 0.28 0.314 0.32 0.388 0.05 0.282 0.452 0.269

SG-MSC 0.455 0.335 0.122 0.441 0.192 0.304 0.175 0.235 0.471 0.329

SG-PAN 0.457 0.342 0.414 0.508 0.340 0.410 0.295 0.302 0.484 0.302

CWT-1 0.472 0.305 0.325 0.324 0.322 0.381 0.176 0.288 0.397 0.246

CWT-2 0.474 0.378 0.359 0.543 0.302 0.412 0.324 0.045 0.454 0.348

CWT-3 0.486 0.404 0.418 0.538 0.435 0.544 0.483 0.05 0.403 0.421

CWT-4 0.492 0.432 0.447 0.589 0.481 0.597 0.494 0.244 0.467 0.511

CWT-5 0.478 0.404 0.443 0.56 0.405 0.536 0.491 0.213 0.524 0.476

CWT-6 0.486 0.343 0.382 0.488 0.432 0.506 0.474 0.221 0.435 0.367

CWT-7 0.378 0.223 0.138 0.315 0.326 0.330 0.319 0.220 0.141 0.309

CWT-8 0.284 0.272 0.111 0.314 0.135 0.334 0.234 0.183 0.201 0.259

CWT-9 0.258 0.262 0.072 0.305 0.117 0.307 0.115 0.189 0.155 0.177

CWT-10 0.209 0.221 0.101 0.299 0.013 0.170 0.099 0.088 0.171 0.020
front
NS, SS, and NS*SS are nitrogen stress, salt stress, and nitrogen-salt combined stress, respectively; R, Raw spectral data; SG, Savitzky-Golay; SNV, Standard normal variate; MSC, Multivariate
scattering correction; PAN, Peak area normalization; CWT, Continuous wavelet transformation. The decomposition scale of CWT was set to 21 (CWT-1), 22 (CWT-2),…, 210 (CWT-10); Pn,
Net photosynthetic rate; Ci, Intercellular carbon dioxide concentration; gs, Stomatal conductance; Tr, Transpiration rate; FPS II, Effective quantum yield of PS II photochemistry; Fv/Fm,
Maximum photochemical efficiency of PS II; Fv/F0, potential activity of PS II; qP, Photochemical quenching coefficient; NPQ, Non-photochemical quenching; ETR, Electron transport rate.
Bold values representing the optimal preprocessing corresponding R2 for different indicators.
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3.7 Modeling based on feature fusion

To improve the PGE-CFPs estimation accuracy under NS*SS,

the NSpe and SSpe were concatenated to construct RF model

(Table 4). The feature fusion model had a higher accuracy than

the NSpe-, SSpe-, and NSpe*SSpe-based models (Table 2). The R2c

of the spectral fusion model for Ci, Fv/Fm, NPQ, and ETR

estimation were 0.878, 0.942, 0.821, and 0.893, respectively, and

the R2p were 0.767, 0.775, 0.714, and 0.786, respectively.
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3.8 Model validation

3.8.1 Pot experiment validation
The validation of NSpe-, SSpe-, and NSpe*SSpe-based RF

models found that the constructed models had a high accuracy.

Besides, the NSpe- (R2: 0.712) and SS-based (R2: 0.715) models had

a higher accuracy than the NSpe*SSpe-based model (R2: 0.377)

(Figure 8). The feature fusion model had a higher accuracy than the

NSpe-, SSpe-, and NSpe*SSpe-based models. The R2 of the feature
FIGURE 7

Distribution of spectral features of gas exchange and chlorophyll fluorescence parameters (PGE-CFPs) of forage rape leaves under nitrogen stress,
salt stress, and nitrogen-salt combined stresses. NS, SS, and NS*SS are nitrogen stress, salt stress, and nitrogen-salt combined stresses, respectively;
Ci, Intercellular carbon dioxide concentration; Fv/Fm, Maximum photochemical efficiency of PS II; NPQ, Non-photochemical quenching; ETR,
Electron transport rate.
TABLE 3 PLSR, RF, and BPNN models constructed based on the spectral features extracted by successive projections algorithm (SPA).

Parameter Stress
PLSR RF BPNN

R2c RMSEc R2p RMSEp R2c RMSEc R2p RMSEp R2c RMSEc R2p RMSEp

Ci

NS 0.585 13.101 0.541 14.054 0.814 10.908 0.717 11.705 0.819 11.121 0.56 15.547

SS 0.773 10.498 0.644 12.471 0.848 9.738 0.725 10.432 0.824 10.841 0.701 13.451

NS*SS 0.361 15.263 0.225 20.807 0.571 13.079 0.369 16.247 0.521 13.247 0.448 17.746

Fv/Fm

NS 0.507 0.035 0.293 0.055 0.741 0.035 0.647 0.029 0.743 0.027 0.575 0.052

SS 0.752 0.018 0.65 0.022 0.813 0.02 0.704 0.023 0.808 0.021 0.415 0.038

NS*SS 0.272 0.054 0.151 0.059 0.494 0.045 0.221 0.05 0.277 0.048 0.197 0.081

NPQ

NS 0.641 0.363 0.399 0.406 0.781 0.368 0.627 0.419 0.625 0.379 0.414 0.413

SS 0.791 0.352 0.666 0.375 0.795 0.359 0.697 0.412 0.725 0.314 0.61 0.371

NS*SS 0.352 0.389 0.154 0.446 0.523 0.411 0.273 0.442 0.429 0.401 0.388 0.454

ETR

NS 0.722 13.825 0.613 14.989 0.844 13.907 0.727 12.705 0.761 14.436 0.688 17.724

SS 0.794 13.306 0.678 14.521 0.852 13.31 0.735 12.407 0.831 13.426 0.774 16.257

NS*SS 0.432 16.399 0.267 20.572 0.554 17.173 0.377 15.273 0.586 16.405 0.474 19.258
fron
NS, SS, and NS*SS are nitrogen stress, salt stress, and nitrogen-salt combined stresses, respectively; Ci, Intercellular carbon dioxide concentration; Fv/Fm, Maximum photochemical efficiency of
PS II; NPQ, Non-photochemical quenching; ETR, Electron transport rate; RF, Random forest; PLSR, Partial least squares regression; BPNN, Backpropagation neural network.
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fusion model for ETR estimation under NS and SS were 0.744 and

0.768, respectively (Figures 9A, B). The R2 of the feature fusion

models for PGE-CFPs estimations under NS*SS were greater than

0.6, among which the ETR estimation accuracy was the highest,

with R2 of 0.689 (Figure 9C).
Frontiers in Plant Science 13
3.8.2 Field validation
To further validate the transferability and practical applicability

of the constructed feature fusion model, independent sample-based

testing was conducted on the model using the rapeseed sample data

collected from local conventional farmlands. The constructed

model had high-level transferability and stability. The R2 of the

fusion models for Ci, Fv/Fm, NPQ, and ETR estimations were

0.679, 0.585, 0.698, and 0.711, respectively, and the RMSE were

234.267, 0.823, 3.936, and 137.510, respectively (Figure 10).
4 Discussion

4.1 Responses of PGE-CFPs of forage rape
leaves to NS, SS, and NS*SS

Crop photosynthesis is always greatly affected by external

stresses, causing growth inhibition (Serbin et al., 2015). The NS
TABLE 4 RF estimation models constructed by fusing the spectral
features of forage rape leaves under nitrogen stress and salt stress.

Index R2c RMSEc R2p RMSEp

NCi 0.878 0.014 0.767 0.020

NFv/Fm 0.942 0.008 0.775 0.011

NNPQ 0.821 0.001 0.714 0.020

NETR 0.893 0.001 0.786 0.002
NCi, Normalized Ci; NFv/Fm, Normalized Fv/Fm; NNPQ, Normalized NPQ; NETR, Normalized
ETR; NS and SS are nitrogen stress and salt stress, respectively; RF, Random forest.
FIGURE 8

Validation of random forest (RF) models for the estimation of gas exchange and chlorophyll fluorescence parameters (PGE-CFPs) of forage rape
leaves under different stresses. (A), Validation of the RF models constructed using the spectral features of PGE-CFPs under nitrogen stress (NS);
(B), Validation of the RF models constructed using the spectral features of PGE-CFPs under salt stress (SS); (C), Validation of the RF models
constructed based on the fusion of spectral features under nitrogen-salt combined stresses (NS*SS). Ci, Intercellular carbon dioxide concentration;
Fv/Fm, Maximum photochemical efficiency of PS II; NPQ, Non-photochemical quenching; ETR, Electron transport rate.
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and SS are currently the main abiotic stresses for crops in northwest

China, and the influence mechanisms on crop photosynthetic

performance are different (Rivero et al., 2014). In this research,

the PGEs’ variations of forage rape leaves were consistent under NS

and SS, i.e., the Pn, gs, and Tr showed a decrease trend, while the Ci

showed an increase trend. However, the changes of PGEs under SS

were significantly greater than that under NS. This is accordant with

the study results of aquatic plants (Kumar et al., 2021) and cotton

(Ibrahim et al., 2019). This may be due to the fact that (1) under SS,

large amounts of Na+ accumulate in forage rape leaf cells, which

results in Na+ toxicity, ion imbalance, and photosynthetic organ

and chloroplast structure damages, reducing the photosynthetic

rate (Farquhar and Sharkey, 1982). (2) Under NS, the concentration

of pigments in chloroplasts is reduced and the stomatal limitation is

increased (Taras et al., 2010), reducing photosynthetic rate. The

decrease in photosynthetic rate further impacts crops’ light

absorption, transformation, as well as transfer (Foyer and Noctor,

2000), in particular, it causes an obvious decrease in

photochemical activities.
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The photosynthetic activity of chloroplasts is easily affected by

NS and SS, resulting in decreased photoenergy conversion efficiency

and potential activity of PS II (Curci et al., 2017). In this research,

NS and SS led to an increase in NPQ and a decrease in other

fluorescence parameters. This indicates that both stresses lead to

photosuppression in leaves. However, the impact mechanisms are

different (Xu et al., 2018). The SS causes ion imbalance, osmotic

stress, and oxidative stress, which disrupt the integrity of the

thylakoid membrane, chloroplast structures, and photosynthetic

electron transport chains, significantly reducing the efficiency of PS

II (Munns and Tester, 2008; Siddiqui et al., 2021; Hendrickson et al.,

2004). Under NS, the synthesis and functioning of cytochrome b6f,

c6, and f are affected, leading to a slowdown in the electron

transport chain. This reduces PS I efficiency, PS II photochemical

efficiency, and finally the crop photosynthetic efficiency (Johnson

et al., 2014; Shi et al., 2019; Klsch et al., 2020; Kamali et al., 2025). It

should be noted that previous researches pay attention to single

stresses’ impacts on crops. However, crops often face multiple

stresses simultaneously, such as SS*NS. The effects of two
FIGURE 9

Validation of random forest (RF) model constructed based on the fusion of spectral features of gas exchange and chlorophyll fluorescence
parameters (PGE-CFPs) of forage rape leaves under nitrogen stress (NS) and salt stress (SS). (A), Validation of the feature fusion model for the
estimation of PGE-CFPs under NS; (B), Validation of the feature fusion model for the estimation of PGE-CFPs under SS; (C), Validation of the feature
fusion model for the estimation of PGE-CFPs under nitrogen-salt combined stresses (NS*SS). Ci, Intercellular carbon dioxide concentration; Fv/Fm,
Maximum photochemical efficiency of PS II; NPQ, Non-photochemical quenching; ETR, Electron transport rate.
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different stresses on crops’ physiological activity are different, and

the stresses jointly affect crops. This study found that compared

with NS and SS, combined stresses had a greater effect on the

photosynthetic performance of forage rape leaves. Under NS*SS, the

insufficient supply of N reduces crops’ ability to synthesize

photosynthetic pigments as well as other products; Besides, the

Na+ toxicity and osmotic stress induced by salt stress further

interfere with photosynthesis (Menezes-Benavente et al., 2004).

Studies have shown that stresses first affect crop photosynthesis,

and PGE-CFPs are prioritized over other physiological indicators

such as chlorophyll to signal stress (Liu et al., 2013). This study

found that changes in PGE-CFPs including NPQ, Fv/Fm, FPS II,

and ETR were large in the early stage of NS, SS, and NS*SS. This is

mainly due to the fact that NPQ, Fv/Fm, FPS II, and ETR are

important fluorescence emission parameters reflecting inhibition of

PS II activity. Stress in crops leads to inhibition of PS II activity in

the early stage, altering the fluorescence emission signals. This
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signal transduction can trigger changes in metabolic activities,

hormone signaling, and gene expression in other organs, leading

to diverse responses throughout the entire system (Granum et al.,

2015; Dbrowski et al., 2021; Shi et al., 2019). It is important to note

that crops’ PGE-CFPs contain rich photosynthesis information, and

hyperspectral remote sensing can quickly detect the change of these

information (Wen et al., 2022).
4.2 Influence of SS, NS, and SS*NS on the
distribution of spectral features of PGE-
CFPs of forage rape leaves

External stresses change the PGE-CFPs of crops and further leaf

spectral reflectance (Dechant et al., 2017). Currently, many studies

have focused on remote sensing detection of crop photosynthesis

under single stresses. For example, El-Hendawy et al. (2019) used an
FIGURE 10

Validation of the feature fusion model using the leaf data of independent forage rape plants (n = 160). Ci, Intercellular carbon dioxide concentration;
Fv/Fm, Maximum photochemical efficiency of PS II; NPQ, Non-photochemical quenching; ETR, Electron transport rate.
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optimized spectral index to evaluate salt-stressed wheat CFPs. Feng

et al. (2015) constructed chlorophyll fluorescence index NDF12/4

for diagnosing wheat N status. However, crops are always subjected

to multiple stresses simultaneously, and the response mechanism of

crop leaf photosynthesis and spectra under combined stresses

differs from that under single stresses (Hu et al., 2023).

Buschmann et al. (2000) found that during photosynthetic

electron transport in PS II, there were two fluorescence emission

peaks at 690 & 740 nm. Zarco-Tejada et al. (2009) pointed out that

PGE-CFPs had a close relationship with crop pigment

concentration, and responded quickly to leaf biochemical

properties (such as the content of proteins and amino acids) and

structure variations. In the present research, the spectral features of

PGE-CFPs of forage rape leaves under NS, SS, and NS*SS were

extracted by SPA. It was found that the spectral features of single

parameters were different under different stresses. Under NS, most

spectral features of Ci and Fv/Fm were in 400 – 450 and 600 – 800
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nm (visible region) (Meroni et al., 2009). The NPQ had multiple

spectral features in the visible region near 987 nm, reflecting the C-

H bonds in the fatty acids of forage rape leaves (Zhao et al., 2021).

The spectral features of ETR were mainly distributed near 500 – 900

and 1700 nm, of which the 1725 nm band could be attributed to the

stretching vibration peak of the C=O bond in macromolecules such

as proteins and nucleic acids (Liang et al., 2012). Under SS, the

spectral feature distribution shifted from visible region to near-

infrared region, and Ci, Fv/Fm, ETR, and NPQ were found to have

aggregation of spectral features at 1453, 1600, and 2250 nm (short-

wave infrared region) with strong water absorption (Wang et al.,

2001). Under NS*SS, spectral features were mainly distributed in

500 – 600, 1400 – 1700, and 2000 – 2200 nm. It was worth noting

that under NS*SS, the spectral features extracted were less

distributed in the vis region concentrated by N’s spectral features

and the short wave near-infrared region concentrated by the

spectral features of salt. This may be due to the fact that the
FIGURE 11

The importance of spectral features in the ETR estimation based on random forest regression under different stresses. (A), The model constructed
based on the spectral features of gas exchange and chlorophyll fluorescence parameters (PGE-CFPs) of forage rape leaves under nitrogen stress
(NS); (B), The model constructed based on the spectral features of PGE-CFPs under salt stress (SS); (C), The model constructed based on the
spectral features of PGE-CFPs under nitrogen-salt combined stresses (NS*SS); (D), The model constructed based on the fusion of spectral features
of PGE-CFPs under NS and SS (NS-SS). ETR, Electron transport rate.
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cumulative effect of N and salt stresses causes significant changes in

forage rape leaf components, leading to drift and other errors when

extracting spectral features and non-representativeness of the

selected spectral features. Of course, the specific reasons need

further exploration (Berger et al., 2022; Ma et al., 2018).
4.3 Influence of modeling methods on
PGE-CFPs estimation under
combined stresses

Modeling variables and methods significantly affect the

accuracy of spectral estimation (El-Hendawy et al., 2019). In the

present research, PLSR, RF, and BPNN modeling were completed

using SPA-extracted features. It was found that RF model had a

higher accuracy than the other two. The reason is that RF regression

can better deal with the bias in data that has a large impact on the

estimation results, and the randomness of sampling and feature

selection makes the model less prone to overfitting (Breiman, 2001).

It was worth noting that in this research, the RF model had a high

accuracy in estimating PGE-CFPs of forage rape leaves under NS

and SS, among which the accuracy in estimating ETR was the

highest (R2: 0.844 and 0.852, respectively). However, the R2 was

only 0.554 in ETR estimation under NS*SS. To find out the reason,

the importance of the features participating in the RF modeling

under different stresses was evaluated. Under NS, pigments’ spectral

features in the visible region contributed significantly to the model

accuracy (Figure 11A) (Meroni et al., 2009). Under SS, the spectral

features of short wave near-infrared region contributed greatly to

the model accuracy (Figure 11B) (Wang et al., 2001). Besides, under

NS*SS, the spectral features with significant contributions to the

model accuracy were at 2107, 368, and 2323 nm, which were

obviously different from those under SS and NS (Figure 11C).

This may explain the low accuracy of the estimation model

under NS*SS.

Under multiple stresses, the cumulative effect of the stresses

often occurs (Cotrozzi and Couture, 2020). The NS inhibits crop

photosynthesis, and the SS reduces crop absorption of nutrients and

water by damaging photosynthetic and defense systems. However,

due to the variability of environmental conditions and the

heterogeneity caused by some duplicate samples, the estimation

accuracy is not ideal (Couture et al., 2016). To increase the accuracy

of forage rape photosynthetic performance estimation under SS*NS,

a new modeling strategy, fusing the spectral features of PGE-CFPs

of forage rape leaves under SS and NS was proposed. It was found

that the feature fusion model had a higher accuracy than the SSpe-,

NSpe-, and SSpe*NSpe-based models, and the contribution to the

model accuracy of SSpe was greater than that of NSpe. This

indicates that in the feature fusion model, the SS plays a more

important role than the NS (Figure 11D). Besides, the validation of

the feature fusion model in estimating PGE-CFPs of forage rape

leaves under SS, NS, and NS*SS (Figure 9) showed that feature

fusion significantly improved the PGE-CFPs estimation accuracy

under SS*NS, and the accuracy of ETR estimation was the
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maximum (R2: 0.689). This may be due to the fact that feature

fusion modeling strategy only considers the influence of SS and NS

on the PGE-CFPs of forage rape leaves under NS*SS, and avoids

other environmental factors’ influences and the two stresses’

cumulative effect. This can significantly limit other factors’

disturbance, increasing the estimation accuracy (Cotrozzi and

Couture, 2020). In general, this study confirms that in the early

stage of stresses, photosynthesis preferentially exhibits stress

symptoms, and forage rape growth status can be evaluated by

hyperspectral remote sensing combined with feature fusion.

However, the obtained study results are based solely on data from

forage rape. The applicability of this model to other crops such as

corn and rice is not clear. Therefore, further verification research

will be conducted on different crops in the future.
5 Conclusion

This study clarified the distribution of the SPA-extracted

spectral features of PGE-CFPs of forage rape leaves under NS, SS,

and NS*SS based on CWT preprocessing, and constructed the

optimal PGE-CFPs estimation model based on random forest.

The proposed method improved the PGE-CFPs estimation

accuracy under NS*SS. Different spectral preprocessing methods

(SG smoothing, SG-SNV transform, SG-MSC, SG-PAN, and SG-

CWT) combined with SPA could effectively extract PGE-CFPs’

spectral features of forage rape leaves under different stresses, and

RF model had a higher accuracy than the PLSR and BPNN models

among the NSpe-, SSpe-, and NSpe*SSpe-based models. However,

the RF model showed a low accuracy in estimating PGE-CFPs

under NS*SS. Therefore, this study constructed the estimation

model by fusing PGE-CFPs’ spectral features of forage rape leaves

under NS and SS, which obviously increased the accuracy of

photosynthesis performance estimation under NS*SS (R2: 0.621 –

0.689). Especially, the feature fusion model had a highest accuracy

in ETR estimation (R2: 0.689). This research results will offer a

reference for improving the accuracy of photosynthetic

performance estimation under salt-nitrogen combined stresses.
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