
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Nutrition
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1547821
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The objective of this study was to investigate the effects of single and combined inoculations of A. brasilense, B. subtilis and P. fluorescens on lettuce and arugula grown in a hydroponic system. The study was carried out in a greenhouse and was designed in randomized blocks with five replications. The treatments consisted of inoculation with A. brasilense, B. subtilis and P. fluorescens and coinoculation with A. brasilense + B. subtilis, A. brasilense + P. fluorescens, B. subtilis + P. fluorescens and A. brasilense + B. subtilis + P. fluorescens via nutrient solution. An increase in the length and fresh mass of the shoot and leaf chlorophyll concentrations of arugula and lettuce was observed under co-inoculations of A. brasilense + P. fluorescens and B. subtilis + P. fluorescens. Greater length, fresh mass and volume of the lettuce root system were observed under the co-inoculations of A. brasilense + B. subtilis, A. brasilense + P. fluorescens and B. subtilis + P. fluorescens in arugula under the inoculations of A. brasilense and A. brasilense + P. fluorescens. Greater nitrate reductase activity was detected in leaves, and lower nitrate accumulation was detected in lettuce and arugula under inoculations with A. brasilense, P. fluorescens and B. subtilis + P. fluorescens. The greatest accumulation of N, P, K, Ca and Mg in the lettuce shoot was obtained under inoculation with P. fluorescens, A. brasilense + P. fluorescens and B. subtilis + P. fluorescens. Co-inoculation with A. brasilense + P. fluorescens and B. subtilis + P. fluorescens was the most efficient combination for increasing the growth, nutrient acquisition and functioning of nitrogen metabolism in arugula lettuce plants.
Keywords: Amino acid content, Carbohydrate content, Carbon assimilation, Chlorophyll, Nitrate Reductase, plant growth-promoting bacteria, photosynthetic efficiency
Received: 18 Dec 2024; Accepted: 31 Mar 2025.
Copyright: © 2025 Oliveira, Sena Oliveira, Jalal, Fernandes, Bastos, da Silva, Sant'Ana, Aguilar, De Camargos, Zoz and Teixeira Filho. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Carlos Eduardo Da Silva Oliveira, Agronomy, State University of Mato Grosso do Sul, Dourados, Brazil
Marcelo Carvalho Minhoto Teixeira Filho, Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University, Ilha Solteira, 15385-000, Brazil
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.