The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Abiotic Stress
Volume 16 - 2025 |
doi: 10.3389/fpls.2025.1546572
This article is part of the Research Topic Mechanisms of Stress Tolerance in Horticultural Crops: Physiological and Molecular Insights View all 7 articles
Regulatory mechanism analysis of signal transduction genes during rapeseed (Brassica napus L.) germination under aluminum stress using WGCNA combination with QTL
Provisionally accepted- Southwest University, Chongqing, China
As soil becomes more acidic, aluminum toxicity has emerged as a key issue impacting seed germination and crop productivity in such environments. Therefore, it is urgent to investigate the mechanism of the influence of aluminum stress on germination. In this study, we focused on one of the major bioenergy crops—rapeseed. Seeds of aluminum-sensitive (S) and aluminum-resistant (R) lines screened from the recombinant inbred lines (RILs) population of rapeseed were treated with 80 µg·ml-1 AlCl3 (ST, RT). Purified water served as the control (SC, RC). On the 3rd, 5th, and 7th day after treatment, the root tissue was collected for transcriptome sequencing. Utilizing MapMan software, the genes showing differential expression in S and R lines were assigned to the aluminum stress signaling pathway, resulting in the identification of 1036 genes. By weighted gene co-expression network analysis (WGCNA), five co-expressed gene modules associated with aluminum stress were discovered. A total of 332 candidate genes were screened by combining the genes related to aluminum stress signal transduction pathways with the module hub genes. Among them, 26 key genes were located in quantitative trait loci (QTL) with confidence intervals for germination-related traits of rapeseed under aluminum stress, and primarily distributed in 11 QTL regions, such as qRDW-A09-1, qRDW-A10-1 and qRGV-A01-2, they were associated with relative root length (RRL), relative root dry weight (RDW), relative germination vigor (RGV) and relative bud length (RBL). The roles included transcription regulation, stress protein production, redox processes, hormone signaling, cell wall alteration, and calcium-based signal transmission. Compared with the R line, the S line exhibited quicker and stronger activation of genes related to aluminum stress signal transduction, suggesting that the S line was more responsive to aluminum stress. This research offers an empirical basis for identifying aluminum-resistant rapeseed varieties and investigating the molecular regulation of aluminum tolerance during germination.
Keywords: Brassica napus L., Aluminum stress, RNA-Seq, WGCNA, QTL
Received: 17 Dec 2024; Accepted: 07 Jan 2025.
Copyright: © 2025 Li, Wang, Li, Zhou and Cui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Cui Cui, Southwest University, Chongqing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.