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Enhancement of the prediction
of the openness of fresh-cut
roses with an improved YOLOv8s
model validated by an
automatic Grading Machine
Qinghui Lai1, Zhanwei Yang2*, Wei Su2, Chuang Yan2,
Qinghui Zhao2, Yu Tan2, Yu Que2 and Jing Zheng2

1School of Energy and Environmental Science, Yunnan Normal University, Kunming, China, 2Faculty of
Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
Introduction: The openness grading of fresh-cut roses relies heavily on manual

work, which can be inefficient and inconsistent.

Methods: In this study, an improved YOLOv8s model is proposed for openness

grading in conjunction with a newly developed automatic grading machine for

fresh-cut roses. The model identifies unopened inner petals and classifies

openness into five levels: degree 1, degree 2, degree 3, degree 4, and

deformity. To enhance detection accuracy while reducing the model

complexity and computation, the backbone network of YOLOv8s is replaced

by MobileNetV3. Additionally, an Efficient Multi-scale Attention (EMA) module is

introduced to enhance focus on critical features, and a Wise-IoU loss function is

incorporated to accelerate convergence.

Results: Field experiments revealed that the openness predictions made by the

automatic fresh-cut roses grader had errors of 6.9%, 9.1%, 10.0%, 6.5%, and

12.6%, respectively, compared to manual predictions.

Discussion: Therefore, the improved YOLOv8s-F model effectively meets the

requirements of fresh-cut rose openness grading.
KEYWORDS

YOLOv8, fresh-cut roses, openness grading, automatic grading machine,
openness detection
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1 Introduction

As one of the most popular fresh-cut flower varieties, roses play

a significant role in flower cultivation and production. The

production process includes harvesting, grading, packaging, and

refrigeration. Openness is a crucial quality grading standard, as the

accuracy of openness detection directly affects the consistency of

fresh-cut roses after packaging, ultimately impacting their

commercial value. Currently, openness grading predominantly

depends on manual work, which is not only inefficient and costly

but also subject to practitioner bias (Cui et al., 2023). This manual

approach is insufficient to meet the demands of large-scale fresh-cut

flower production. Developing an automatic grading machine for

fresh-cut roses can achieve automatic grading, improve production

efficiency, and increase economic returns. A visual detection system

is a critical component of the grading machine, responsible for

predicting the openness grade of each fresh-cut flower and

providing grading signals to the slave device. The accuracy and

speed of the system directly affect the grading performance.

Therefore, fast and precise automatic openness detection is

essential for improving fresh-cut rose grading and addressing

current industry challenges.

Flower detection methods are broadly classified into two

categories: deep learning-based and traditional image

processing-based methods. Traditional image processing

methods mainly identify and classify flowers based on color,

edge features, and texture. For instance, Soleimanipour et al.

(2019) developed an image-processing framework focused on

detecting the geometric attributes of anthurium flowers. Their

algorithm fitted B-spline curves at various rotation angles and

utilized first- and second-order derivatives to calculate curvature

and other key features by identifying crop boundaries. However,

this approach is limited to 2D images and cannot capture

advanced semantic features such as 3D attributes. Similarly,

Feng et al. (2013) designed key components of an automatic

transplanting machine for flower plug seedlings and assessed

seedling growth using regional target pixel statistics. However,

their algorithm lacked efficiency and robustness, as it did not

focus on individual flower seedlings, leading to frequently missed

detections, especially for smaller ones. Moreover, Aquino et al.

(2015) proposed a method to segment grape inflorescence flowers

in a field environment. Their algorithm applied region of interest

(ROI) extraction and segmentation to HSV-format images,

achieving 83.38% precision and 85.01% recall on 40 test images.

However, as this method relied on pixel-by-pixel feature

extraction, it required high computational power, making it

unsuitable for edge device deployment and rapid detection.

Furthermore, Sethy et al. (2019) introduced an approach for

detecting and counting marigold flowers using HSV color

transformation and circular Hough Transform (CHT),

achieving a 5% detection error. However, this method requires

high image quality when counting in open-field conditions,

and its computational complexity limits its practicality for real-

world production. Although the above traditional image

processing approaches have solved some flower detection
Frontiers in Plant Science 02
challenges, they require manual feature extraction operators,

involve a high computational workload, and suffer from low

computational efficiency.

Deep learning methods have demonstrated superior

performance in detecting agricultural materials with high

variability due to their robustness and ability to automatically

extract semantic features—for instance, Tan et al. (2023)

investigated Center Track, a video frame counting and tracking

method for cotton seedlings and flowers, by improving CenterNet.

Their method achieved AP50 = 0.962 on both seedling and flower

datasets, with average relative errors of 5.5% and 10.8% for cotton

seedling and flower count detection, respectively, compared to

manual counting. However, the technique is limited to detecting

and counting creamy-white immature flowers and cannot identify

and analyze other maturity stages of cotton flowers. Moreover,

Cıbuk et al. (2019) combined AlexNet and VGG16 for feature

extraction and used the minimum redundancy maximum relevance

(mRMR) method to select more effective features before classifying

flowers with an SVM (support vector machine)–RBF (radial basis

function) kernel. Their method achieved 95.7% mAP on the

Flower102 dataset, focusing on flower species classification.

However, it did not address maturity stage differentiation within

a single flower species, limiting its application in plant growth stage

monitoring. Furthermore, Anjani et al. (2021) employed the

VGG16 deep convolutional neural network (CNN) algorithm

with a dropout technique to classify rose flowers, achieving

96.33% mAP on the test set. While effective for low-resolution

images (32 × 32 pixels), its performance decreases significantly for

higher-resolution images, which may cause significant limitations

in practical applications. In addition, Sun et al. (2021) introduced a

rose openness classification method using InceptionV3, achieving

98% mAP by integrating image classification with bud depth

information. However, the algorithm failed to account for the

impact of packaging on detecting outer petal openness in fresh-

cut roses, which could significantly affect the commercial value

assessment of the classified flowers. In addition to that, Hui et al.

(2023) improved the YOLOv5m model by inserting a convolutional

block attention module (CBAM) for a safflower-picking robotic

visual detection system. The improved model achieved a 5.5%

increase in mAP, and in field harvest experiments, the safflower

corolla picking rate exceeded 90% during the peak period. However,

this approach significantly exceeded the metrics of the lightweight

version of YOLOv5 in terms of memory requirements and

computational overhead, making it unsuitable for edge

computation deployment in field-picking robots. Furthermore,

Wang Z. et al. (2022) optimized YOLO-v5 with a pruning

algorithm to detect the apple stem/calyx position for pose

detection. Their approach reduced the model size by 71% while

retaining 88% of THE mAP. However, this technique is designed

solely for ripe apples, excluding immature and green apples,

limiting its application in full-cycle apple growth monitoring and

quality assessment. Moreover, Wu et al. (2020) developed a

channel-pruned YOLOv4 model for real-time apple blossom

detection in natural environments. Their pruning approach

reduced the model parameters by 96.74% and the model size by
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231.51 MB, with only 0.24% mAP, providing a viable reference for

apple flower thinning robots. While these studies have contributed

to floral parameter extraction, target detection, classification, and

counting, they do not directly apply to detecting openness grading

in fresh-cut roses.

This study aims to develop an automatic grading machine for

fresh-cut roses based on image processing. To achieve this goal, we

designed an algorithm based on YOLOv8s to detect openness

levels in fresh-cut roses. The key contributions of this study are

as follows:
Fron
1. Development of an automatic grading machine with a

simple structure and high efficiency for fresh-cut flowers.

2. Introduction of an improved YOLOv8s model, YOLOv8s-

F, based on target detection method to achieve openness

classification of fresh-cut roses.

3. Deployment of the YOLOv8s-F model to the grading

machine for fresh-cut roses and comparison to

manual grading.
2 Materials and methods

2.1 Overall structure and working principle
of the visual classification system

The main structure of the cut-flower visual grading device is

illustrated in Figure 1. The machine is divided into four key

components: transmission system, image acquisition system,
tiers in Plant Science 03
flower-hanging device, and flower-unloading device. Specifically,

this system comprises the following components:
- Light source: RY-MG300400 (OPTMachine Vision Tech Co.,

Ltd., Guangdong, China).

- Industrial camera: OPT-CC200-UM-0402.

- Compact photoelectric sensor: CX-442 (Panasonic,

Osaka, Japan).

- Servo motor: ECMA-C20807RS (Delta Electronics

(Dongguan) Co., Guangdong, China).

- Cylinders and solenoid valves: SDA50X10-B, 4V210-08

(Zhejiang Jorui Pneumatic Technology Co., Ltd.,

Zhejiang, China).

- Diffuse reflective sensors: E3F-DS10C4 (Shanghai

DelixiSwitch Co.).
The host computer system consists of a PC, a programmable

logic controller (PLC) (Siemens S7-1200 and its expansion module,

Siemens PM207, SIEMENS AG, Germany), a switching power

supply, and a servo controller (ASD-132-0721-B, Delta

Electronics (Dongguan) Limited, Guangdong, China). The overall

workflow of the system is defined as follows: after the user initiates

the opening instruction via the PC, the control instruction is driven

by the PLC and the servo motor controller, while the servo motor

synchronizes the movement of the flower-hanging device.

As the flowers are placed in the flower-hanging device and

transported by the synchronous belt, an industrial camera captures

their images. The captured images are then transmitted to the PLC

system after model interference is performed on the PC side. When
FIGURE 1

The whole machine includes (1) light source, (2) industrial camera, (3) compact photoelectric sensor, (4) flower-hanging device, (5) servo motor, (6)
timing belt, (7) cylinders and solenoid valves and flower-pushing mechanism, (8) diffuse reflective sensors, and (9) flower-unloading device channel.
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a flower reaches the corresponding flower-pushing device, the PLC

system controls the solenoid valve, triggering the cylinder to

activate the flower-pushing device, which directs the fresh-cut

flower to the designated unloading channel. In this workflow, the

distance between adjacent flower-hanging devices is a fixed value.

The compact photoelectric sensor (as shown in Figure 1) calculates

the distance between the fresh-cut roses and the unloading channel

by counting the number of flower-hanging devices. To prevent

congestion, when an excessive accumulation of fresh-cut flowers in

a single channel obstructs the diffuse sensor (Figure 1), the system

temporarily suspends further flower placement in that channel. The

control flowchart is presented in Figure 2A, while the schematic

diagram of the control system is shown in Figure 2B.
2.2 Levels of openness

Zhang (2017) encoded the openness of fresh-cut roses on a scale

of 1 to 5 degrees. Guided by Zhang Li’s openness coding method, we

modified the coding system to better align with actual production

needs. Since fresh-cut roses with degrees 4 and 5 have limited
Frontiers in Plant Science 04
storage and transport value in practical production, this study

focuses on fresh-cut roses ranging from degree 1 to 3. To simplify

the classification, we merged degrees 4 and 5 into a single category

(degree 4). In addition, deformed roses, which lack commercial

value, were categorized separately to prevent misclassification

between degree 1 and deformed flowers. Figure 3A provides an

example of the openness classification. According to GB/T 41201-

2021 for the standard of the openness of Chinese roses belonging to

Rosaceae, openness is primarily evaluated based on the position of

the sepals, the degree of expansion of the inner and outer petals, and

the degree of petal flipping. In the Kunming Dounan International

Flowers Industrial Park (Yunnan Province, China), roses prepared

for auction are usually packaged in corrugated cardboard boxes

(Figure 3B) in bundles of 15–20. However, the packaging process

affects the outer petals, sometimes causing an unnatural unfolding

in the package. From a commercial perspective, practitioners

prioritize the expansion and turning of the inner petals over the

outer petals and sepals in the practical grading of fresh-cut roses.

Therefore, we adjusted the openness grading standard to better

reflect real-world production needs. Table 1 shows the

specific adjustments.
FIGURE 2

(A) Whole machine control flow chart: (1) industrial camera, (2) PC, (3) programmable logic controller (PLC), (4) switching power supply, (5) servo
controller, (6) servo motor, (7) solenoid valves, (8) cylinders, (9) diffuse reflective sensors, and (10) compact photoelectric sensor. (B) Schematic
diagram of the whole machine control.
FIGURE 3

(A) Example of openness. (B) Example of packaging for fresh-cut roses.
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2.3 Dataset collection and preprocessing

The image dataset for this study was collected from the National

Flower Breeding Base in Luxi County, Honghe Autonomous

Prefecture, Yunnan Province, China. Luxi County has a

subtropical monsoon climate, with an average annual temperature

of 15.5°C and an annual precipitation of 929 mm. The dataset was

captured with an OPT 200 camera equipped with an FA lens. The

camera lens was positioned 30 cm above the top of the flower.

We selected three main cultivars for this study: White

Avalanche, Sweet Avalanche, and Peach Avalanche. The

boundaries between adjacent openness levels in fresh-cut flowers

under natural conditions are often blurred, and flower

characteristics can vary within the same openness category.

Additionally, the opening degree of fresh-cut roses in natural

environments is affected by temperature; higher temperatures lead

to greater flower opening, causing variations in the same openness

level across different temperatures. To enhance image diversity, we

collected 1,215 freshly cut roses at different growth stages during

three time periods: morning, midday, and evening. To enrich the

training set, improve feature extraction, and enhance the model’s

generalization ability, we applied data augmentation techniques

before network training. These included flipping, adding noise,

optical distortion, scaling, and cropping. The augmentation

parameters were set as follows: image flip ratio set to 0.5, noise

addition ratio set to 0.3, zoom ratio set to 0.35, and crop ratio set to

0.4. After augmentation, 2,031 images were obtained in the final

dataset. Table 2 shows the number of categories. For annotation, we

used lableme to label the tightly inner wrapped petals and their
Frontiers in Plant Science 05
adjacent petal parts and saved them in JSON format. To ensure

quality and accuracy, we conducted manual visual checking. Finally,

the dataset was split into a training and a test set, respectively, with a

ratio of 8:2.
2.4 Model structure

This section first outlines the strategy for data and model

enhancement, followed by a description of the YOLOv8 baseline

model and the proposed YOLOv8s-F model structure and its

improvements. The model significantly enhances both the

accuracy of fresh-cut flower openness detection and the detection

speed of the process.

2.4.1 YOLOV8 model
Building upon the classic single-stage object detection

algorithm YOLO (Redmon et al., 2016), YOLOv8 achieves an

optimal balance between speed and accuracy, making it widely

adopted in both academia and industry. The model architecture

consists of three parts: the backbone, the neck, and the head. The

backbone is used for feature extraction, the neck is employed to fuse

feature maps of different scales and connect the backbone to the

head networks, and the head is used to predict bounding boxes and

their corresponding labels.

Backbone and neck networks: YOLOv8 adopts the CSP-

Darknet53 backbone from YOLOv3 (Redmon and Farhadi,

2018). Compared to YOLOv5 (Glenn, 2022), the C2f module

with a multi-layer fusion residual structure provides a richer

gradient flow while maintaining a lightweight design compared

to the C3 module.

Head network: Unlike YOLOv5, which employs a coupled

head, YOLOv8 adopts a decoupled head (Ge et al., 2021)

(Figure 4). This separation of regression and classification tasks,

along with independent loss calculations, enhances both network

convergence speed and accuracy. Previous YOLO versions relied on

anchor-based methods for allocating prediction boxes. However,

these approaches required predefined hyperparameters (such as size

and aspect ratio) that demanded heuristic tuning and dataset-

specific adjustments, thus lacking generalizability (Zand et al.,

2022). To address this, YOLOv8 employs an anchor-free

allocation of prediction boxes, which increases the number of

positive samples while significantly reducing the training

parameters and computational complexity. Subsequent YOLO

versions (YOLOv10) introduced the one-to-one head, eliminating
TABLE 1 Manual grading standard.

Openness Standard

Degree 1 The outer petals are unopened or slightly open, and the center
of the petal is pointed and has black spots.

Degree 2 The center of the petals opens, the petals begin to loosen, and
the black dots disappear.

Degree 3 The inner petals are further loosened, the opening of the
central part of the petals continues to increase, and the third
petals are not separated.

Degree 4 The third layer of petals separates, and the multi-layer petals
are turned outward.

Malformation The third layer of petals is completely separated and turned
over, the inner layer of petals is compact, and there is a black
spot in the center of the petal.
TABLE 2 Number of categories in the dataset.

Degree 1 Degree 2 Degree 3 Degree 4 Deformity

Avalanche 165 147 120 150 66

Sweet Avalanche 193 150 152 145 50

Peach Avalanche 150 143 172 138 90
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the need for non-maximum suppression (NMS) during the

inference phase. While this approach improves inference

efficiency, it may compromise classification accuracy when

distinguishing between highly similar objects. In summary, the

model structure of YOLOv8 plays a crucial role in the multi-

category detection of fresh-cut roses’ openness in this article.

Loss function: In the YOLOv8 model, the target detection task is

performed using a combination of localization and classification

losses, with the loss function being defined as follows (Equation 1):
Frontiers in Plant Science 06
L = lregLreg + lclsLcls (1)

where lreg and lcls are hyperparameters that control the

regression loss of the bounding boxes as well as the

classification loss.
2.4.2 Introduction to YOLOV8s-F
The YOLOv8s-F model is a lightweight and efficient target

detection model that has been specifically improved for detecting
FIGURE 4

(A) YOLOv5 coupled head. (B) YOLOv8 decoupled head.
FIGURE 5

(A) Structure of the YOLOv8s-F model. (B) Structure of the EMA module. (C) Structure of the MobileNetV3 module.
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the openness of fresh-cut roses across different varieties and

growing conditions. The specific improvements made to

YOLOv8s are shown in Figure 5A:
Fron
1. We replaced the DarKnet53 backbone with the

MobileNetV3 backbone (Howard et al., 2019). Moreover,

we concatenated the feature maps of P4 and P3 with the

upsampling steps in the neck network to reduce the

computational load in the feature extraction part of the

ba ckbone wh i l e e x t r a c t i n g r i ch de t a i l s and

semantic features.

2. We inserted the EMA module (Ouyang et al., 2023) twice

before the concatenation process in the upsampling of the

neck section, enabling the model to fully consider

contextual semantic information while capturing global

information in width and height directions.

3. We replaced the CIoU loss in the bounding box loss

function with Wise-IoU (Tong et al., 2023), which

dynamically adjusts its focus based on the target.
2.4.2.1 MobileNetV3

MobileNetV3 builds upon the inverse residual structure

introduced in MobileNetV2 (Sandler et al., 2018) (Figure 5C).

Unlike traditional residual structures, which first reduce feature

map dimensionality before enhancement, the inverse residual

structure initially expands the dimensionality using a 1 × 1

lightweight dilated convolution, allowing for richer feature

representation and extraction. Then, feature information is

processed through depthwise separable convolutions composed of

a 3 × 3 depth convolution and a 1 × 1 convolution, which separate

spatial filtering from feature generation, maximizing the utilization

of spatially corresponding features across different spaces while

expanding to higher-dimensional feature spaces. Meanwhile, a 1 × 1

convolution can adjust the channel dimension to maintain a

compact input–output structure. Mobilenetv3 also introduces an

optional SE attention module within the residual, to calibrate

channel-level feature responses through squeeze excitation

operations (Hu et al., 2018). At present, MobileNetV3 has various

applications in agricultural product defect detection, agricultural

product testing, and agricultural product quality grading (Li et al.,

2023; Wang L. et al., 2022; Zhu et al., 2023).

2.4.2.2 EMA

Efficient Multi-scale Attention (EMA) represents an

improvement over the CA attention mechanism, and its structure

is shown in Figure 5B. For any input feature map, EMA is divided

into channels. Grouping the input sub-feature maps avoids

dimensionality reduction of the original feature map, significantly

helping in preserving the semantic features of the original feature

map. Similar to CA, the EMA’s 1 × 1 branch is encoded in the

height and width directions by the (H,1) and (1,W) pooling kernels.
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Thus, for channel C, the outputs are computed after two parallel

average pooling calculations. They are expressed as follows

(Equations 2, 3):

zHc (H) =
1
W o

0≤i≤W
xc(H, i) (2)

zWc (W) =
1
H o

0≤j≤H
xc(j,W) (3)

EMA then performs a feature map transformation on zWc and

concatenates it within zHc in the H dimension. Then, the split

operation separates and re-aggregates with the input feature map.

EMA additionally introduces a 3 × 3 branch containing a single 3 × 3

convolution to expand the feature space. Moreover, EMA proposes a

method for aggregating information across space, where the encoded

output of the 1 × 1 branch aggregation is multiplied by the output of

the 3 × 3 branch, namely, R1�C==G
1 � RC==G�HW

3 . Similarly, the global

spatial information encoded in the 3 × 3 branch is multiplied by the 1

× 1 branch, namely, R1�C==G
3 � RC==G�HW

1 . In addition, EMA

aggregates channel attention in three directions to enhance feature

representation. In the 1 × 1 branch, two sub-branches capture global

information along two vertical directions and account for long

distance dependencies in different orientations. Meanwhile, the 3 ×

3 branch, with its larger receptive field, provides richer contextual

information. The cross-space aggregation between the 1 × 1 and 3 × 3

branches ensures effective interaction between spatial features,

allowing the model to integrate high-level semantic features in flowers.

2.4.2.3 Wise-IoU

As a crucial component of visual models, the bounding box loss is

a critical factor of the model. Traditional intersection over union

(IoU) loss (Yu et al., 2016) calculates the difference between the IoU

of the predicted bounding box and the ground truth, with a loss

function defined as 1 - IoU. However, when the predicted and ground

truth boxes do not intersect, the gradient becomes zero, leading to the

gradient vanishing during backpropagation. To address this issue,

Distance-IoU (DIoU) (Zheng et al., 2020) and Complete-IoU (CIoU)

introduced penalty terms based on the distance between the center

points of the predicted and ground truth boxes, as well as aspect ratio,

incorporating them into the IoU loss function in an additive form.

Wise-IoU further improves on this by constructing a distance

attention RWIoU in a multiplicative form, introducing two layers of

attention (as shown in Equation 4). When the prediction box

overlaps well with the ground truth box, RWIoU based on LIoU will

further reduce the gradient gain of that prediction box, preventing the

model from focusing excessively on already well-aligned predictions.

Conversely, when the prediction box coincides with the ground truth

box, RWIoU will increase the gradient gain of that prediction box.

Thus, the prediction box will have the highest gradient gain when its

IoU reaches some specified value (Equation 4).

LWIoUv1 = RWIoULIoU (4)
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where RWIoU is the normalized distance between the prediction

box and the centroid of the ground truth box, and LIoU represents

the IoU loss between the ground truth and prediction boxes.

Based on LWIoUv1, LWIoUv2 and LWIoUv3 are constructed

following a certain sequence to assign a smaller gradient gain to

a high-quality target with a small outlier; thus, the model can

focus on challenging targets and adjusts losses dynamically. In

this way, the classification performance is improved as denoted

below (Equations 5, 6):

LWIoUv2 = (b)g LWIoUv1 (5)

LWIoUv3 = (
b

dab−d )LWIoUv1 (6)

where b denotes the outlier describing the quality of the anchor

box, whereas s and a are hyperparameters.
2.5 Hyperparameters and
evaluation indicators

In this study, the same dataset is employed to train both the

YOLOv8s-F and YOLOv8s models. The PC has the following

configuration: Windows operating system, CPU: i713700k, GPU:

RTX4080, RAM: 32 GB, deep learning framework: Pytorch 2.1.0,

development environment: Python 3.10. The training parameters

are as follows: the input image size is set to 640 × 640 pixels,

backpropagation uses stochastic gradient descent (SGD) to train the

model, the batch size is set to 16, the initial learning rate is set to

0.01, and epoch is set to 300.

In this study, the performance of the YOLOv8s-F model is

assessed based on the following evaluation metrics: precision (P)

(Equation 7), recall (R) (Equation 8), mean average precision

(mAP) (Equation 9), floating point operations per second

(FLOPs), frames per second (FPS), and model size. The

expressions are highlighted in Equations 7–9. Model size reflects

the storage space of the model, FLOPs measure the complexity of

the model, and FPS measure the speed of model inference.

P =
TP

TP + FP
� 100% (7)
Frontiers in Plant Science 08
R =
TP

TP + FN
� 100% (8)

mAP =

Z 1

0
P(R)dR

C
(9)

where TP represents the number of true positive samples

predicted to be positive by the model, FP denotes the number of

false positive samples predicted to be positive by the model, FN

indicates the number of false negative samples predicted to be

negative by the model, and C is the number of classes.
3 Experiment and results

3.1 Model training results

In Figure 6, a represents the variation curve of mAP0.5@ (%)

during training for both models, whereas b and c are the variation

curves of bounding box loss and classification loss during training

for both models. Moreover, in Figure 6a, the mAP@0.5 (%) values

of both models experienced a rapid increase in the first 50 epochs,

reaching a steady state after 200 epochs. Subsequently, the mAP@

0.5 (%) values of both models showed minimal fluctuations, with

YOLOv8s-F exhibiting significantly higher values compared to

YOLOv8s. Referring to Figures 6b, c, the losses of both models in

the first 50 epochs experienced a rapid decrease, and the bounding

box loss values of these models reached a steady state after 200

epochs. As for the classification losses of the two models, they

reached a steady state after 150 epochs. To sum up, YOLOv8s-F

demonstrated faster convergence and lower loss values compared to

YOLOv8s. An analysis of the experimental data suggests that the

YOLOv8s-F model has superior training performance.
3.2 Ablation experiment

Comparative experiments were conducted on model

performance using the same dataset and hyperparameters, and

the results are displayed in Table 3. Introducing the MobileNetV3
FIGURE 6

(a-c) Model training results.
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backbone resulted in a 1.9% increase in mAP@0.5 (%), a 23.9%

reduction in FLOPs, and a 31% decrease in model size, with

improvements in precision and recall values. Moreover, the

introduction of the EMA module led to a 1% increase in mAP@

0.5 (%), with negligible impact on model size and FLOPs. In

addition, we conducted experiments on the three versions of

Wise-IoU, and the results indicated that Wise-IoUV3 had the

most significant impact on model performance. Compared to the

baseline model, it resulted in a 4.5% increase in mAP@0.5 (%), a

11% improvement in precision, a 16.5% reduction in FLOPs, and a

30% decrease in model size. The mAP@0.5 (%) findings for each

category are shown in Table 4. These results demonstrate that our

improvements to YOLOv8s significantly enhanced the model’s

performance in detecting fresh-cut roses’ openness.
3.3 Comparison of the YOLOv8s-F model
with other latest models

YOLOV8s-F was also compared to SSD, Faster R-CNN,

YOLOV3, YOLOV5s, YOLOV7, YOLOV8s, RT-DETR, and the

updated versions of YOLOV10 and YOLOV11 models. All of these

models were trained and tested on the same dataset, and the results

are illustrated in Table 5. Based on the findings, Faster-RCNN

achieved the highest mAP, precision, and recall with values of

95.0%, 93.8%, and 90.9%, respectively. However, with a FLOPs

value of 269.18, it had the highest computational cost among the

models and the lowest FPS at 37, highlighting a slower inference

speed and a larger model size, which may not meet the requirements
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for rapid detection in practical production processes and may hinder

deployment on lighter-weight devices subsequently.

Moreover, the proposed model achieved a mAP value of 94.1%,

only 0.9% lower than Faster R-CNN, with FLOPs being only 8.8%

compared to Faster R-CNN. Therefore, our model is more suitable

for rapid detection requirements. Compared to SSD, YOLOv3,

YOLOv5s, YOLOv7, YOLOv10s, YOLOv11s, RT-DETR, and

YOLOv8s, our model improved mAP@0.5 (%) by 12.9%, 5.2%,

6.2%, 5.9%, 5.1%, 5.6%, 4.8%, and 4.5%, respectively. Our model’s

precision and recall were 89.9% and 87.2%, slightly lower than those

of Faster R-CNN, but it had the greatest advantage compared to other

models. With a model size of 20.8 MB and 23.7 GFLOPs, slightly

higher than YOLOv3 and YOLOv5s, our model maintained the

highest FPS of 188 frames/s. Considering the model’s advantages in

other metrics, the impact of the model size and GFLOPs on the

model can be considered negligible.
3.4 Comparative experiment on
attention mechanisms

Referring to Table 6, we conducted comparative experiments on

YOLOv8s-F by adding EMA along with popular attention

mechanisms: CA (Hou et al., 2021), CBAM (Woo et al., 2018), SE

(Hu et al., 2018), and ECA (Wang et al., 2020). All attention

mechanisms were implemented in the same location. The

experimental results indicate that adding EMA achieves the

highest mAP@0.5 (%) value of 94.1%, 1.8%, 0.6%, 2.3%, and 1%

higher than CA, CBAM, SE, and ECA, respectively. Although

adding EMA slightly increased the model size and FLOPs

compared to other attention mechanisms, its impact on the actual

performance of the model can be considered negligible. In addition,

the experiment results show that the EMA attention mechanism is

particularly well suited for detecting the openness of fresh-cut rose

flowers. This can be attributed to EMA’s 1 × 1 cross-spatial

semantic information aggregation branch and 3 × 3 branch,

which enhance the model’s ability to capture long-distance

dependencies and integrate channel information effectively. By

leveraging these mechanisms, the EMA-enhanced model

demonstrates superior performance.
TABLE 3 Results of the ablation test.

Mobv3 EMA Wiouv1 v2 v3 mAP@0.5 (%) Precision (%) Recall
(%)

FLOPS
(G)

Model size (MB)

89.6 78.9 88.9 28.4 30.0

✓ 91.5 87.7 87.9 21.6 20.7

✓ ✓ 92.5 87.1 86.7 23.7 20.8

✓ ✓ ✓ 93.0 85.1 89.7 23.7 20.8

✓ ✓ ✓ 93.0 85.1 89.7 23.7 20.8

✓ ✓ ✓ 94.1 89.9 87.0 23.7 20.8
Bold font indicates mAP@0.5 %The maximum value.
TABLE 4 YOLOv8s-F mAP@0.5 (%) values for each category.

Category AP@0.5 (%)

Degree 1 97.9

Degree 2 96.0

Degree 3 91.3

Degree 4 97.7

Deformity 87.6
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3.5 Field experiment

In February 2024, we conducted a field experiment on the

grading of the openness of fresh-cut rose flowers at the National

Flower Seedling Base in Luxi County, Honghe Autonomous

Prefecture, Yunnan Province, China, as illustrated in Figure 7. A

total of 813 images of fresh-cut roses were randomly collected,

including White Avalanche, Sweet Avalanche, and Peach

Avalanche. The experimental data is presented in Figure 8. After

identification by on-site technicians, the quantities of flowers

classified as degree 1, degree 2, degree 3, degree 4, and deformed

flowers were 288, 175, 283, 97, and 37, respectively. Consequently,

three experiments were conducted for each category, calculating the

relative error between the algorithm’s predicted results and the

ground truth values. The average relative error for each category

was computed to one decimal place.

The experimental results show that the relative errors for

degrees 1, 2, 3, and 4 and the deformed flowers were 6.9%, 9.1%,

10.0%, 6.5%, and 12.6%, respectively, as illustrated in Figure 8.

The algorithm performed best in detecting the degree 4 category

and worst in identifying the deformed flowers. The recognition of

degree 2 and 3 flowers had relatively large errors with similar

values. Overall, the YOLOv8s-F model can meet the grading

requirements of the automatic grading machine for fresh-

cut roses.
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4 Discussion

Figure 9 illustrates the detection performance of YOLOv8s-F

and other models on the same data. YOLOV8s-F and Faster R-cnn

accurately detect the positions of the unopened inner petals and

predict their categories. YOLOv11s and YOLOv5s have missed

detections for degree 4. YOLOv11s and YOLOv10s has

misclassified the deformed flowers. RT-DETR andYOLOv8s and

YOLOv10s has misclassified the degree 2 flowers. Faster Rcnn

achieved detection results similar to YOLOV8s-F due to its two-

stage algorithm and larger model. However, due to larger models,

larger FLOPs, and slower detection speeds, the deployment

potential of Faster Rcnn on classifiers is inferior to our model. In

the end-to-end model, there are varying degrees of false detections

of second degree flowers, including missed detections of fourth

degree flowers, and false detections of deformity flowers. The

YOLOV8s-F model proposed in this study ensures the quality of

feature extraction while reducing the complexity of the lightweight

backbone network MobileNetV3. The addition of EMA attention

mechanism in the feature fusion stage enhances the model's

attention to advanced semantic features, and Wise-IoU improves

the attention to more difficult categories in model detection and

classification. So YOLOV8s-F shows better performance than other

end-to-end models when facing second and third degree flowers

with similar external features, fourth degree flowers with fully

unfolded inner petals, and deformity flowers with unopened

inner petals.

Through the analysis of on-site experimental results, it was

found that the model has a relatively large relative error in grading

degree 2 and 3 and malformed flowers compared to manual

prediction, and the relative error values are comparable. The

looseness of the inner petals of degree 2 and 3 fresh-cut flowers is

greater in summer, leading to differences in the opening of the inner

petals for flowers detected in field experiments. However, the model

pays more attention to the inner petals, resulting in misclassification

of the model. In the future, we will continue to expand the dataset

seasonally to address potential data imbalance issues, improve the
TABLE 5 Results of the model comparison experiments.

Model mAP@0.5 (%) Precision (%) Recall (%) FLOPS (G) Model size (MB) FPS

SSD 81.2 80.9 83.0 32.58 104 55

Faster-Rcnn 95.0 93.8 90.9 269.18 315 37

YOLOv3 88.9 83.4 87.2 12.9 16.6 97

YOLOv5s 87.9 82.4 85.0 15.8 13.7 186

YOLOv7 88.2 78.9 85.3 105.2 71.3 170

YOLOv8s 89.6 78.9 88.9 28.4 30.0 174

YOLOv10s 89.0 80.1 83.3 30.1 29.4 177

YOLOv11s 88.5 79.4 86.1 29.5 30.1 172

Rt-DETR 89.3 80.2 84.4 110 66.1 139

Ours 94.1 89.9 87.2 23.7 20.8 188
TABLE 6 Comparative experiments on attention mechanisms.

mAP@0.5 (%) Model size (MB) FLOPS (G)

+CA 92.3 20.2 21.7

+CBAM 93.5 20.8 21.3

+SE 91.8 20.2 21.6

+ECA 93.1 20.2 21.6

+EMA 94.1 20.8 23.7
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FIGURE 7

Field experiment.
FIGURE 8

Field experiment results.
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model’s generalization ability, and reduce the relative errors with

manual predictions. Given the small number of malformed flowers

in the dataset compared to other categories, the model’s

classification accuracy for malformed flowers is not high. This is

also clear in the map values of malformed flowers in Table 4.
Frontiers in Plant Science 12
Therefore, we will continue to collect images of malformed flowers

to expand the dataset and improve the algorithm’s ability to

recognize this type of flower. Meanwhile, the model architecture

will be adjusted to adapt to larger-scale data training while ensuring

high computational efficiency and detection speed. Moreover, we
FIGURE 9

Comparison of the detection results between YOLOv8s-F and other models.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1546503
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lai et al. 10.3389/fpls.2025.1546503
will expand the dataset with more rose varieties so that we will be

able to grade the majority of fresh-cut roses on the market for

openness. In addition, an automatic flower-loading mechanism will

be added to the grading machine to achieve fully automatic grading.

Finally, the speed of the classifier operation and experiment will be

accelerated to verify the performance of the vision system and

prepare for the improvement of production efficiency.
5 Conclusion

This study proposes an improved YOLOv8s network model,

YOLOv8s-F, for the classification of the openness of fresh-cut roses.

The core technical contributions are as follows:
Fron
1. The backbone network of YOLOv8s is replaced with

Mobi leNetV3, introducing the EMA attent ion

mechanism module in the Neck part and adopting the

Wise-IoU loss function. These improvements to

YOLOv8s increase the model’s map@0.5 (%) by 4.5%

and the precision by 11% while reducing FLOPs by

16.5% and the model size by 30%.

2. YOLOv8s-F outperforms SSD, Faster R-CNN, YOLOV3,

YOLOV5s, YOLOV7, YOLOV8s, RT-DETR, YOLOV10

and YOLOV11 in terms of comprehensive performance.

It achieves the best performance balance in comparison

with Faster R-CNN, and it is more suitable for the

classification of the openness of fresh-cut roses. When

comparing the EMA attention mechanism to CA,

CBAM, SE, and ECA, EMA generates the highest

map@0.5 (%).

3. YOLOv8s-F is applied to the self-developed automatic

grader for fresh-cut roses and conducted onsite

experiments. The results highlight that the relative

errors between the grading results and manual

predictions are 6.9%, 9.1%, 10.0%, 6.5% and 12.6% for

the five categories of flowers (degrees 1, 2, 3, and 4 and

malformed), indicating that YOLOv8s-F performs well in

practical applications.
In conclusion, the improved model YOLOv8s-F can meet the

requirements for the detection of the openness of fresh-cut roses,

providing technical support for the visual detection system of the

automatic grader for fresh-cut roses.
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