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In situ flexible wearable tomato
growth sensor: monitoring of
leaf physiological characteristics
Longjie Li1,2, Junxian Guo1,2*, Shuai Wang1,2, Wei Zhou1,2,
Yanjun Huo1,2, Gongyong Wei1,2, Yong Shi1,2 and Lingyu Li1,2

1College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, China,
2Key Laboratory of Xinjiang Intelligent Agricultural Equipment, Xinjiang Agricultural University,
Urumqi, China
In situ real-timemonitoring of physiological information during crop growth (such

as leaf chlorophyll values and water content) is crucial for enhancing agricultural

production efficiency and crop management practices. In traditional agricultural

monitoring, commonly used measurement methods, such as chemical analysis

for determining leaf chlorophyll values and drying methods for measuring water

content, are all non-in situmeasurement techniques. These methods not only risk

damaging the plants but may also impact plant growth and health. Furthermore,

the complex setup of traditional spectrometers complicates the data collection

process, which limits their practical application in plant monitoring. Therefore,

there is an urgent need to develop a novel, user friendly, and plant-safe

monitoring technology to improve agricultural management efficiency. To this

end, this study proposes a novel wearable flexible sensor designed for in situ real-

time monitoring of leaf chlorophyll values and water content. This sensor is

lightweight, portable, and allows for flexible placement, enabling continuous

monitoring by conforming to plant surfaces. Its spectral response covers

multiple bands from near ultraviolet to near infrared, and it is equipped with an

active light source ranging from ultraviolet to infrared to enable efficient

measurements under various environmental conditions. In addition, the sensor

is securely attached to the underside of the leaf using a magnetic suctionmethod,

ensuring long-term stable in situ monitoring, thus continuously collecting

important physiological information throughout the crop growth cycle. Analysis

of the sensor-collected data reveals that for leaf chlorophyll, Gaussian process

regression shows the best prediction performance during multi-spectral

scattering correction, with Rc
2 of 0.8261 and RMSEc of 1.7444 on the training

set; the performance on the test set is Rp² of 0.7155 and RMSEp of 2.0374.

Meanwhile, for leaf water content, across various data preprocessing scenarios,

gradient boosting regression can effectively predict it, yielding Rc² of 0.9401 and

RMSEc of 0.0028 on the training set; the performance on the test set is Rc
2 of

0.6667 and RMSEp of 0.0067.
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1 Introduction

With the rapid growth of the global population and the severe

challenges posed by climate change, agriculture is facing

unprecedented pressure (Sivakumar, 2021). In this context,

enhancing crop production efficiency, ensuring food security, and

achieving sustainable development have become urgent tasks

worldwide (Gil et al., 2019). According to the Food and Agriculture

Organization (FAO), global food demand is projected to increase by

more than 70% by 2050 compared to 2010 (Dawson et al., 2016). To

address this trend, precision agriculture has increasingly become a

key strategy for achieving sustainable agricultural production (Trivelli

et al., 2019). In precision agriculture, the physiological information of

crops (such as photosynthesis, transpiration, and nutrient uptake)

forms the basis for optimizing management decisions. These

physiological traits directly impact crop growth and yield, making

real-time monitoring of the physiological status of crops particularly

important. The development of modern sensor technology provides

new solutions for such monitoring, especially with the emergence of

wearable flexible sensors, which makes it possible to track their

physiological traits in situ within the natural environment of

crop growth.

In agricultural production, crop growth status is closely

associated with physiological characteristics, particularly leaf-

derived physiological information such as SPAD values (Soil

Plant Analysis Development index, indicating relative chlorophyll

content) and water content, which are crucial for improving crop

yield and quality (Latifinia and Eisvand, 2022). Effectively

monitoring these physiological features and implementing

appropriate management practices can not only support crop

photosynthesis and transpiration but also optimize overall growth

and development (Kang et al., 2021). However, traditional

measurement methods, such as extracting leaf chlorophyll

through chemical methods using organic solvents like ethanol,

methanol, and acetone (Ngcobo et al., 2024), or calculating the

water content by drying fresh plant leaves in an oven (Zhou et al.,

2021), present numerous limitations. These methods are complex in

operation process, time-consuming, and can easily damage plants,

which may interfere with the normal growth of crops and directly

affect the efficiency and effectiveness of agricultural management

(Muñoz-Huerta et al., 2013).

To address the limitations of traditional measurement methods,

researchers are continuously exploring more efficient, portable, and

non-destructive monitoring approaches. Spectral analysis

technology has recently gained prominence in detecting plant

physiological characteristics due to its high speed, non-destructive

nature, and real-time monitoring capabilities (Zahir et al., 2022).

Through non-contact measurements in the near-infrared, visible,

and ultraviolet spectral regions, researchers can rapidly obtain

information on crop chlorophyll content, water content, and

other physiological indicators, which provides timely feedback on

crop health and supports informed decision-making (Tripodi et al.,

2018). However, existing measurement methods using traditional

spectral instruments, for example, when using a portable ground
Frontiers in Plant Science 02
object spectrometer to invert and predict the leaf chlorophyll

concentration, the collection of leaf spectral reflection data

outdoors requires a computer to complete (Sun et al., 2021);

when using hyperspectral remote sensing technology to predict

the leaf water content, it is necessary to obtain hyperspectral image

data of the growth status of plants with the help of drones (Guo

et al., 2024). These methods generally have the problems of large

volume and complex operation, making it difficult to apply them

conveniently and quickly on site. Moreover, restricted by the

operation requirements of the equipment, they often cannot meet

the needs of long-term monitoring of crops (Yang et al., 2021).

In light of this situation, wearable sensors have emerged as next-

generation monitoring tools with significant development potential.

Their lightweight and flexible characteristics allow sensors to

conform to plant surfaces, thus minimizing the impact on plant

growth and ensuring stable monitoring results across varying

environmental conditions (Yin et al., 2021). For example, a highly

stretchable wearable sensor inspired by origami, which is pasted on

the front side of the plant leaf, can monitor the microclimate

information such as the temperature and humidity of the leaf in

situ (Zhang et al., 2024); a wearable Au@PET electrode made by

magnetron sputtering of gold nanoparticles on a PET film, which is

attached to both sides of the plant leaf, can complete the in situ

monitoring of the leaf humidity (Peng et al., 2024). Therefore,

developing an innovative wearable spectral sensor will provide a

novel solution for in situ monitoring of the physiological

characteristics of crop leaves.

The goal of this study is to design a new type of wearable flexible

spectral sensor aimed at achieving long-term in situ monitoring of

key physiological information during crop growth, particularly

chlorophyll content and leaf water content. The design of this

sensor uses flexible polyimide (PI) material and copper foil circuit

material, combined with an adhesive, to create a thin flexible circuit

board with a thickness of only 0.11 mm. The active area of this

circuit board is 1.2 cm × 1.1 cm, which can accommodate the

application needs of leaf samples from plants of various sizes,

ensuring flexibility in monitoring crop growth conditions. Using

tomato leaves as experimental samples, this study employs random

sampling methods from different positions of various plants to

perform SPAD measurements, collect spectral data, and gather

water content data. Combining multiple denoising preprocessing

techniques and utilizing various machine learning regression

algorithms, we verify the predictive capacity of the spectral data

collected by the sensor for leaf SPAD and water content, further

assessing the feasibility of wearable measurements.

The innovation of this study lies in the application of a

wearable, flexible spectral sensor for monitoring crop

physiological characteristics, effectively addressing the limitations

of traditional agricultural monitoring technologies in long-term

observation. This non-destructive, real-time monitoring approach

provides farmers with timely feedback, facilitating more scientific

and effective crop management. Moreover, lightweight design of the

sensor minimizes its impact on plant growth, promoting its

suitability for large-scale agricultural applications in the future.
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2 Materials and methods

2.1 Overview of experimental methods

This study aims to develop an integrated, flexible, wearable

spectral sensor for leaves to achieve real-time monitoring of key

physiological data during crop growth. As shown in Figure 1, the

research methodology can be summarized into five main steps:

sensor design, sample collection, data preprocessing, machine

learning modeling, and result analysis with model prediction.

During the sensor design phase, the circuit schematic

(Figure 2a–e), circuit layout diagram (Figure 2f–h), and physical

implementation (Figure 2i) selected lightweight and durable
Frontiers in Plant Science 03
materials to achieve an ultra-thin, flexible FPC leaf spectral sensor

design, maximizing both wearing comfort and long-term stability of

the sensor. The sensor integrates multiple LED lights across various

spectral ranges as active light sources, allowing it to capture the

spectral characteristics of crops at different growth stages, thus

providing rich spectral data for subsequent analysis.

During the sample collection phase, tomatoes (Solanum

lycopersicum) were chosen as the study subject due to their high

sensitivity to factors such as temperature, humidity, light, and soil

conditions. This sensitivity makes them excellent candidates for

sensor-based monitoring systems that can help maintain ideal

growing conditions and enhance crop quality. Key physiological

indicators, including photosynthetic chlorophyll content, leaf
FIGURE 1

General flow of the experimental program.
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reflectance spectral data, and leaf water content, were quantitatively

measured using equipment such as a SPAD meter, spectral sensor,

and drying oven.

In the data preprocessing stage, the sensor’s Clear band was used

to calibrate the raw spectral data, extracting the relative spectral data

from the sensor. Additionally, various denoising techniques were

employed to improve the signal-to-noise ratio of the spectral data,

specifically including Multiplicative Scatter Correction, Standard

Normal Variate, and Wavelet Denoising. These techniques

effectively remove environmental noise and instrument errors,

enhancing the accuracy and reliability of subsequent analyses.

During the machine learning modeling phase, the spectral data

were randomly divided at a ratio of 7:3 to construct multiple

regression models, including Gradient Boosting Regression

(GBR), Gaussian Process Regression (GPR), and Support Vector

Regression (SVR). To further improve the accuracy of physiological

parameter predictions, ensemble methods such as Voting Regressor

and Stacking Regressor were employed. These techniques enhance

overall predictive performance by combining the predictive

capabilities of different models.

Finally, in the result analysis and optimization phase, a

comprehensive evaluation of the model’s performance was

conducted, including metrics such as Root Mean Square Error

(RMSE) and the coefficient of determination (R²), ensuring that the

constructed models possess good generalization capabilities. Based

on the evaluation results, the data processing workflow was

continually optimized to improve the system’s adaptability and
Frontiers in Plant Science 04
application potential, providing a scientific basis for future crop

growth monitoring.
2.2 Design of wearable spectral sensor

To achieve long-term in situ monitoring of the physiological

characteristics of crop growth, this study designed an innovative

wearable flexible spectral sensor. The sensor aims to minimize its

impact on crop growth while ensuring stable long-term monitoring

capabilities. Figure 3a shows the core structure of the sensor, which

consists of two layers of flexible polyimide (PI) substrate material. It

is tightly bonded to copper (Cu) wires using acrylic (AD) adhesive,

forming a thin single-layer flexible circuit board (FPC) with a

thickness of only 0.11 mm and an active area measuring 1.2 cm ×

1.1 cm. This design can adapt to plants with leaves of different sizes,

meeting the crop monitoring needs throughout various

growth stages.

To cover the spectral monitoring bands of the sensor, a

combination of infrared, ultraviolet, and visible light LED sources

was employed. As shown in Figure 3b, spectral data of the combined

light sources were collected using a spectrometer (monitoring

bandwidth 200-1200 nm). The data indicate that this

combination of light sources can provide a full spectrum from

near-ultraviolet to visible light and into near-infrared. This

combination satisfies the monitoring requirements for the AS7343

spectral sensor within the 405-855 nm spectral width, thereby
FIGURE 2

Sensor circuit design. (a) AS7343; (b) White LED; (c) Infrared LED; (d) UV LED; (e) Gold Finger; (f) FPC Pad; (g) FPC Gold Finger; (h) FPC Circuit;
(i) Spectral Sensor.
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ensuring effective capture of diverse spectral information during the

plant growth process.

As shown in Figure 3c, the overall weight of the sensor measured

using a high-precision scale is only 0.1894 g. This lightweight design

significantly enhances wearability, minimizes interference with plant

growth, and ensures reliable and accurate long-term monitoring.

Owing to its non-invasive characteristics, the sensor offers important

advantages for field applications, providing a reliable solution for real-

time, dynamic monitoring of physiological features and enabling

researchers to gain a comprehensive and accurate understanding of

crop growth conditions.
2.3 Sample preparation

The tomato experimental samples in this study were seeded on

June 7, 2024, in Weifang City, Shandong Province, China. After

sufficient growth and management, the samples were transplanted

on July 18 to Room 4-27 at the Key Laboratory of Intelligent

Agricultural Equipment at Xinjiang Agricultural University for

further growth. At the end of the growth period, samples were

collected from August 16 to August 17. To ensure the

representativeness of the samples, multiple leaf collections were

randomly taken from different parts of various plants. During the

sampling process, the chlorophyll content of the leaves was first
Frontiers in Plant Science 05
measured using a SPAD meter, followed by spectral data collection

to obtain the spectral characteristics of the samples. After sampling,

fresh weight measurements of the samples were taken immediately,

followed by drying until a constant weight was reached for dry weight

measurement to calculate the moisture content and component

composition of each sample. The entire experimental process was

completed in the laboratory, with no transfer time for the samples,

ensuring stable operating conditions and reliability of the data.
2.4 Chlorophyll
concentration measurement

A total of 80 pots of tomato plants with different growth

conditions were selected for SPAD measurement of chlorophyll

content, resulting in the collection of 200 samples. During the

measurement process, as shown in Figures 4a, a leaf without

significant pest or disease damage was randomly selected. Care

was taken to avoid large veins in the leaf during measurement to

prevent measurement errors (Brown et al., 2022). Using the Konica

Minolta Chlorophyll Content Meter SPAD-502, as shown in

Figure 4b, five consecutive measurements were taken at the

sampling points indicated in Figure 4c, with the average value

taken as the final SPAD value for that leaf sampling location, shown

in Figure 4d.
FIGURE 3

Spectral sensor design. (a) Core structure of the sensor; (b) Spectrum of the combined light sources; (c) Weight of the sensor.
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2.5 Leaf spectral data collection

After the chlorophyll measurement of the leaves was completed, for

the leaves measured by SPAD in Figure 5a, the spectral data at the same

position as shown in Figure 5a, e were collected. The spectral sensor in

Figure 5d was connected to the small cylindrical powerful magnet in

Figure 5c through PDMS transparent highly elastic adhesive, and was

baked in an oven at a temperature of 80°C for 4 hours to ensure a firm

connection. The spectral sensor in Figure 5b was placed on the back

side of the leaf and fixed in place by using the magnet to complete the

installation of the equipment. The spectral data of each sample was

collected 10 times, and the average value of each wavelength band was

taken as the final spectral data shown in Figure 5f.
Frontiers in Plant Science 06
2.6 Leaf water content measurement

After completing the spectral data collection, the leaves were

placed on the balance shown in Figure 6a (accuracy 0.0001g) for

fresh weight measurement; at this point, the weight was recorded as

fresh weight (FW). After recording the fresh weight, the leaves were

immediately placed in the drying oven depicted in Figure 6b for

drying treatment. The leaves were first blanched in the oven at 105°

C for 30 minutes, followed by drying at 80°C. The dry weight (DW)

was recorded once three measurements showed no further changes

in weight (Han et al., 2022). The formula for calculating leaf water

content (LWC) is shown in Equation 1-1, and the distribution of

water content for all leaf samples is illustrated in Figure 6c.
FIGURE 4

Chlorophyll SPAD measurements. (a) Sample selection; (b) Chlorophyll measurement; (c) Data collection points; (d) SPAD data curve.
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LWC =
FW − DW

FW
(1� 1)
2.7 Data processing methods

2.7.1 Data denoising preprocessing
During the collection of spectral data, various noises may arise

due to improper equipment installation or environmental lighting

conditions. To enhance the accuracy of subsequent modeling and

analysis, several preprocessing techniques were employed,

including Multiplicative Scatter Correction (MSC), which aims to
Frontiers in Plant Science 07
eliminate scattering effects, making the spectral data of the samples

more representative of their true characteristics (Golhani et al.,

2019). Standard Normal Variate (SNV) can eliminate the impact of

spectral scattering, thereby improving the comparability between

different samples (Bao et al., 2012). Wavelet Denoising (WD)

utilizes wavelet transformation to decompose and process spectral

data, effectively removing noise components through the

adjustment of wavelet coefficients (Liu et al., 2024). Smoothing

(SMT) reduces random fluctuations in the spectral data to enhance

signal stability (Zhang et al., 2022). Normalization (NORM) is

applied to standardize the data for easier comparison between

different datasets (Shen et al., 2022). Continuum Removal (CR) is
FIGURE 5

Leaf blade spectral data acquisition. (a) Sensor deployment; (b) Spectral data collection; (c) Magnet; (d) Spectral sensor; (e) Data collection points; (f) Spectral
data curve.
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used to eliminate baseline drift in the spectral data, thereby

improving the accuracy of subsequent analyses (Li et al., 2023b).

Derivative Spectroscopy (DS) enhances the discernibility of

characteristic signals by calculating the first derivative of the

spectrum (Lu et al., 2020). Detrending (DT) is used to remove

trend components from the spectral data to ensure the purity of the

data signal (Li et al., 2024). Various effective denoising techniques

were applied to preprocess the spectral data.

2.7.2 Machine learning ensemble algorithms
In the analysis of spectral data for predicting leaf SPAD values

and water content, this study employed fourteen regression

algorithms for comprehensive evaluation. These algorithms

include Linear Regression (LR), which is suitable for linear

relationships and can quickly yield predictive results that are easy

to interpret (Zhai et al., 2024); Ridge Regression (RR), which

effectively handles multicollinearity and reduces model
Frontiers in Plant Science 08
complexity, particularly suited for high-dimensional data (Li

et al., 2023c); Huber Regression (HR), known for its robustness

against outliers, making it appropriate for datasets with a few

outliers (Wu et al., 2023); K-Nearest Neighbors Regression

(KNN), whose simple and intuitive nature does not require

assumptions about data distribution, allowing it to capture

complex nonlinear relationships (Hou et al., 2022); Random

Forest Regression (RFR), which adapts to the analysis of complex

nonlinear relationships by processing high-dimensional data and

reducing overfitting (Yuan et al., 2021); AdaBoost Regression

(ABR), which improves prediction accuracy by combining

multiple weak learners through weighting, demonstrating high

robustness (Wang et al., 2021a); Gradient Boosting Regression

(GBR), which effectively captures complex nonlinear relationships

with good predictive performance, suitable for handling large-scale

data (Wu et al., 2023); Bagging Regression (BR), which enhances

robustness by reducing model variance, appropriate for irregular
FIGURE 6

Leaf water content measurement. (a) Sample weighing; (b) Sample drying treatment; (c) Water content data curve.
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data distributions (Li et al., 2023a); Gaussian Process Regression

(GPR), which provides uncertainty estimates and is particularly

suitable for small sample data while being adaptable to different

function shapes (Adeluyi et al., 2021); Partial Least Squares

Regression (PLSR), which effectively extracts information when

faced with highly correlated independent variables, particularly

suited for high-dimensional data (Zhang et al., 2023); Support

Vector Regression (SVR), capable of handling complex nonlinear

relationships by finding the best hyperplane (Wang et al., 2021b);

Transformed Target Regression (TTR), which improves the model’s

linear characteristics by transforming the target variable to enhance

predictive performance; Lasso Regression (LAR), which uses L1

regularization to select features and reduce model complexity,

suitable for producing sparse solutions (Yang et al., 2023); and

ElasticNet Regression (ENR), which combines L1 and L2

regularization to provide effective predictions in scenarios with

multicollinearity (Fei et al., 2023). In the context of predicting leaf

SPAD values and water content, these algorithms each have their

strengths, offering diverse options for achieving precise predictions.
3 Results

3.1 Analysis of raw spectral data

Different model frameworks applied to measured data may

yield varying predictive results. To achieve the best predictive

model, multiple distinct model frameworks were selected for
Frontiers in Plant Science 09
comparative analysis. The data was divided with 70% allocated to

the training set and 30% to the prediction set. Ultimately, the model

with the best performance was determined based on the coefficient

of determination and root mean square error, selected as the final

predictive model. Machine learning was utilized to perform

regression analysis on the SPAD values and water content of

tomato leaves using the raw spectral data. The results are shown

in Table 1. The analysis found that for chlorophyll across all spectral

wavelength combinations, LAR, GBR, and BR regression algorithms

all performed well in predicting SPAD, with GBR demonstrating

the best predictive capability. In the training set, GBR had an Rc² of

0.9741 and RMSEc of 0.6526; in the testing set, GBR’s Rp² was

0.6128 and RMSEp was 2.5606. For water content across all spectral

wavelength combinations, RR, GBR, and TTR regression

algorithms also performed well in predicting water content, with

GBR again yielding the best results. In the training set, GBR had an

Rc² of 0.9850 and RMSEc of 0.0014; in the testing set, GBR’s Rp² was

0.4946 and RMSEp was 0.0087. The predictive models for leaf water

content and chlorophyll are illustrated in Figure 7.

The Clear band of the AS7343 spectral sensor positively impacts

measurement accuracy and data comparability, helping to

accurately identify background light and enhancing the signal-to-

noise ratio. It can serve as a calibration baseline for other bands,

effectively compensating for variations in ambient light, sensor

characteristics, and object reflectance, while measuring the overall

intensity of incident light. By dividing the intensity of the Clear

band by the intensity of other bands, the original relative intensity

spectrum is obtained. This method effectively standardizes the data,
TABLE 1 Raw spectral analysis.

Target Prediction method Wavelength (nm)
Training set Test set

Rc
2 RMSEc Rp

2 RMSEp

SPAD

KNN 640 0.6318 2.4590 0.5240 2.8390

RR All 0.6917 2.2504 0.5662 2.7103

LAR All 0.6882 2.2630 0.5909 2.6318

RFR All 0.9388 1.0025 0.5630 2.7201

ABR All 0.8252 1.6945 0.5321 2.8147

GBR All 0.9741 0.6526 0.6128 2.5606

BR All 0.9234 1.1215 0.5881 2.6410

TTR All 0.6917 2.2504 0.5662 2.7103

LWC

KNN All 0.7656 0.0054 0.3624 0.0097

RR All 0.6725 0.0064 0.4857 0.0087

RFR All 0.9594 0.0023 0.4644 0.0089

ABR All 0.8706 0.0040 0.4033 0.0094

GBR All 0.9850 0.0014 0.4946 0.0087

BR All 0.9450 0.0026 0.4514 0.0090

ENR All 0.6038 0.0070 0.4153 0.0093

TTR All 0.6320 0.0066 0.5728 0.0084
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mitigating the influence of different lighting conditions on

measurement results, thereby enhancing consistency. Machine

learning was applied to the original relative spectral data to

perform regression analysis on the SPAD values and water

content of tomato leaves, as shown in Table 2. The analysis found

that for chlorophyll at 640 nm, ABR, HR, and GPR regression

algorithms all performed well in predicting SPAD, with GPR

demonstrating the best performance. In the training set, GPR had

an Rc² of 0.8027 and RMSEc of 1.8176; in the testing set, GPR’s Rp²

was 0.7784 and RMSEp was 1.9038. For water content at the spectral

855 nm band, RFR, GBR, and BR regression algorithms also

performed well in predicting water content, with GBR again

yielding the best results. In the training set, GBR had an Rc² of

0.9401 and RMSEc of 0.0028; in the testing set, GBR’s Rp² was

0.6667 and RMSEp was 0.0067. The predictive models for leaf water

content and chlorophyll based on the original relative spectral data

are shown in Figure 8.
3.2 Analysis of spectral data denoising

To effectively extract information from spectral data, various

spectral preprocessing methods were employed to achieve data

denoising. Spectral data is often affected by noise due to factors

such as improper equipment installation and ambient light, which

reduces the clarity and interpretability of the signals. Therefore,

implementing diverse denoising strategies is crucial for improving

spectral quality. Through systematic denoising treatment,

interference signals were suppressed, leading to enhanced signal
Frontiers in Plant Science 10
strength and interpretative capability of the denoised raw spectral

and original relative spectral data. This allowed the effective

information within the spectra to become more prominent, aiding

in the enhancement of spectral features’ significance and reliability,

while demonstrating good stability and robustness under multiple

experimental conditions. As shown in Figures 9A, B, the spectral

plots of the raw spectral data and original relative spectral data

exhibit differences in clarity and detail retention before and

after denoising.

To assess the effectiveness of the denoising preprocessing

methods applied to the raw spectral data, three regression

algorithms that exhibited the highest accuracy in predicting

SPAD values were selected: LAR, GBR, and BR. Additionally, for

predicting leaf water content, the best-performing three regression

algorithms were RR, GBR, and TTR. The study will conduct a

detailed analysis and prediction for each wavelength and all

wavelength combinations to systematically evaluate the impact of

the preprocessed spectral data on the predictive models. The

analysis results are shown in Table 3. In the SPAD prediction

section, it was observed that four denoising methods MSC, NORM,

CR, and DS all showed a trend of improved prediction accuracy.

Notably, MSC and NORM had the most significant effects, with

determination coefficients Rp² of 0.6782, 0.7070, and 0.6832 on the

test set, demonstrating the positive impact of preprocessing on

SPAD data. However, under the NORM denoising condition, Lasso

regression failed to successfully predict SPAD values. In the

prediction analysis of leaf water content, the four denoising

methods SNV, WD, NORM, and DS also exhibited a trend of

enhanced prediction accuracy. Among them, the improvements
FIGURE 7

Measured and predicted values of different models of raw spectra. (a) LAR-SPAD; (b) GBR-SPAD; (c) BR-SPAD; (d) RR-LWC; (e) GBR-LWC; (f) TTR-LWC.
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from WD and NORM were particularly noticeable, with

determination coefficients Rp² of 0.5456, 0.5780, and 0.6227 on

the test set, indicating that denoising treatment played a decisive

role in enhancing model performance. The predictive models for

leaf SPAD and leaf water content based on the original denoised

spectral data are shown in Figure 10.

To evaluate the effectiveness of the denoising preprocessing

methods applied to the original relative spectral data, three

regression algorithms that exhibited the highest accuracy in

predicting SPAD values in the original relative spectral data were

selected: ABR, HR, and GPR; at the same time, the three best-

performing regression algorithms for predicting leaf water content:

RFR, GBR, and BR. The study will conduct detailed analyses and

predictions for each wavelength and all wavelength combinations to

systematically assess the impact of the preprocessed spectral data on

the predictive models. The analysis results are shown in Table 4. In

the SPAD prediction section, it was observed that the two denoising

methods, MSC and CR, both demonstrated a trend of improving

prediction accuracy. Their determination coefficients Rp
2 on the test
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set were 0.7113, 0.7155, and 0.7128, indicating a positive impact of

preprocessing on SPAD data. In the prediction analysis of leaf water

content, the best prediction effect was the same as the prediction

performance of the original relative spectral data, with

determination coefficients Rp
2 of 0.6604, 0.6667, and 0.6554 on

the test set. The effect of the leaf SPAD prediction model based on

the original relative denoised spectral data is shown in Figure 11.
3.3 Multi-model fusion analysis

A multi-model fusion analysis method was employed to

enhance the prediction accuracy of leaf water content and

chlorophyll content. Two fusion models, VotingRegressor and

StackingRegressor, were selected to combine the original spectral

data, original relative spectral data, and the denoised spectral data

that had high correlations with leaf water content and chlorophyll

through relevant regression models, aiming for a more accurate

prediction of the target variables. VotingRegressor combines the
TABLE 2 Analysis of raw relative spectral data.

Target Prediction method Wavelength (nm)
Training set Test set

Rc
2 RMSEc Rp

2 RMSEp

SPAD

LR 640 0.8057 1.8435 0.6730 2.1840

KNN 640 0.8346 1.7012 0.6441 2.2785

SVR 640 0.7408 2.1294 0.6415 2.2869

RFR All 0.9665 0.7652 0.6627 2.2181

ABR 640 0.8547 1.5941 0.6755 2.1756

GBR All 0.9897 0.4252 0.6504 2.2583

BR All 0.9567 0.8705 0.6637 2.2148

PLSR 640 0.8057 1.8435 0.6730 2.1840

HR 640 0.8041 1.8514 0.6762 2.1734

GPR 640 0.8027 1.8176 0.7784 1.9038

TTR 640 0.8057 1.8435 0.6730 2.1840

LWC

LR All 0.7913 0.0052 0.5881 0.0075

KNN 855 0.8208 0.0048 0.6345 0.0070

RR All 0.7087 0.0062 0.5801 0.0075

RFR 855 0.9518 0.0025 0.6604 0.0068

ABR 855 0.8450 0.0045 0.6177 0.0072

GBR 855 0.9401 0.0028 0.6667 0.0067

BR 855 0.9440 0.0027 0.6554 0.0068

PLSR 855 0.7614 0.0056 0.5868 0.0075

HR All 0.7750 0.0054 0.6130 0.0072

GPR 855 0.7790 0.0054 0.6122 0.0073

TTR All 0.7913 0.0052 0.5881 0.0075
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advantages of various models by performing weighted voting on the

outputs of multiple base regression models, reducing potential

biases from individual models and enhancing the overall model’s

robustness. StackingRegressor, on the other hand, constructs a

multi-layer model where the prediction results of different

regression models are used as new feature inputs to a higher-level

model, thus achieving more complex feature combinations and

more accurate regression predictions. The analysis results are

shown in Table 5. For the original spectral data, in the prediction

of SPAD, the VR and SR fusion methods used LAR, GBR, and BR as

base learning models, effectively predicting SPAD through all

combinations of spectra, leading to an improvement in the best

prediction performance of the original spectrum, with

determination coefficients Rp
2 of 0.6590 and 0.6399 on the test

set, respectively. Simultaneously, the VR and SR fusion methods

used RR, GBR, and TTR as base learning models, effectively

predicting leaf water content through all combinations of spectra

and the 855 nm spectral band, leading to an improvement in the

best prediction performance of the original spectrum, with

determination coefficients Rp
2 of 0.5254 and 0.5246 on the test

set, respectively. Regarding the original denoised spectral data,

under NORM denoising, the SR fusion method used RR and TTR

as base learning models, effectively predicting leaf water content

through spectral data from the 855 nm band, with an improvement

in the best prediction performance of the original denoised

spectrum, resulting in a determination coefficient Rp
2 of 0.6286

on the test set. For the relative spectral data, the SR fusion method

used ABR, HR, and GPR as base learning models, effectively

predicting leaf SPAD through spectral data from the 640 nm

band, with an improvement in the best prediction performance of
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the relative spectrum, leading to a determination coefficient Rp
2 of

0.7114 on the test set. The use of relative spectral denoised data did

not show significant improvement in the prediction results for leaf

water content and SPAD. The effects of the multi-model fusion

method for spectral data on the prediction models of leaf water

content and SPAD are shown in Figure 12.
4 Discussion

The flexible wearable spectral sensor developed in this study

offers significant advantages for monitoring the physiological

characteristics of plant leaves, particularly through non-

destructive and real-time in situ monitoring. The sensor

effectively measures SPAD values and water content, providing

superior long-term monitoring outcomes compared to traditional

monitoring methods. The results indicate that this sensor is well-

suited for real-time acquisition of plant physiological information,

providing new technical support for agricultural management.

The design of the sensor features lightweight construction, ease

of operation, and flexible arrangement, enabling non-invasively

attachment to the underside of plant leaves. This characteristic

significantly reduces the impact on plant growth, especially during

critical physiological processes such as photosynthesis and

transpiration. By fixing the sensor with a magnetic attachment,

the stability and reliability of long-term data collection are ensured.

Experimental results indicate significant performance differences

among various regression models for predicting SPAD values and

water content, with GRP and GBR performing particularly well,

especially after data preprocessing, which greatly enhanced their
FIGURE 8

Measured and predicted values of different models of the original relative spectra. (a) ABR-SPAD; (b) HR-SPAD; (c) GPR-SPAD; (d) RFR-LWC; (e) GBR-LWC;
(f) BR-LWC.
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prediction accuracy. These results demonstrate the effectiveness of

the integrated sensor design and lay a solid foundation for

advancing field agriculture monitoring.

In terms of data processing, this study employed various

denoising preprocessing methods on the collected spectral data to

enhance data quality. Traditional spectral analysis is often affected

by improper equipment installation and environmental

interference, severely impacting data accuracy. By introducing
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noise reduction strategies such as multivariate scatter correction

and standard normal variate transformation, the model’s predictive

capability was significantly enhanced. This not only improved data

reliability but also provided necessary adaptability for data

collection in complex environments.

In selecting machine learning models, this study conducted

extensive analyses of various regression algorithms, including LR,

RF, and GBR. The use of multi-model fusion methods further
FIGURE 9

Noise reduction processing of spectral data. (A, B): (a) raw; (b) MSC; (c) SNV; (d) WD; (e) SMT; (f) NORM; (g) CR; (h) DS; (i) DT.
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TABLE 3 Noise reduction analysis of raw spectral data.

Noise reduction methods Prediction method Target
Wavelength (nm) Training set Test set

Rc
2 RMSEc Rp

2 RMSEp

MSC

LAR

SPAD

All 0.6867 2.2683 0.5954 2.6176

GBR All 0.9722 0.6760 0.6782 2.3342

BR All 0.9282 1.0862 0.6026 2.5940

RR

LWC

All 0.6725 0.0064 0.4857 0.0087

GBR All 0.9814 0.0015 0.4808 0.0088

TTR All 0.6725 0.0064 0.4857 0.0087

SNV

LAR

SPAD

640 0.3567 3.2506 0.3445 303317

GBR All 0.9741 0.6526 0.6128 2.5606

BR All 0.9234 1.1215 0.5881 2.6410

RR

LWC

All 0.6459 0.0067 0.5073 0.0085

GBR All 0.9850 0.0014 0.4946 0.0087

TTR All 0.6725 0.0064 0.4857 0.0087

WD

LAR

SPAD

All 0.6355 2.4468 0.5727 2.6898

GBR All 0.9679 0.7266 0.5472 2.7689

BR All 0.9050 1.2489 0.5543 2.7471

RR

LWC

All 0.6810 0.0063 0.5456 0.0082

GBR All 0.9819 0.0015 0.4397 0.0091

TTR All 0.6810 0.0063 0.5456 0.0082

SMT

LAR

SPAD

All 0.6831 2.2815 0.6125 2.5614

GBR All 0.9789 0.5888 0.5618 2.7241

BR All 0.9078 1.2304 0.5350 2.8059

RR

LWC

All 0.6725 0.0064 0.4857 0.0087

GBR All 0.9852 0.0014 0.4610 0.0089

TTR All 0.6725 0.0064 0.4857 0.0087

NORM

LAR

SPAD

– – – – –

GBR All 0.9863 0.4743 0.7070 2.2275

BR All 0.9466 0.9364 0.6832 2.3160

RR

LWC

855 0.6892 0.0061 0.5630 0.0083

GBR 855 0.9256 0.0030 0.4772 0.0088

TTR 855 0.7045 0.0061 0.6227 0.0075

CR

LAR

SPAD

All 0.6517 2.3916 0.5053 2.8944

GBR All 0.9838 0.5163 0.5991 2.6055

BR All 0.9424 0.9729 0.5680 2.7047

RR

LWC

All 0.6282 0.0068 0.3979 0.0094

GBR 555 0.8962 0.0036 0.4075 0.0094

TTR All 0.6410 0.0067 0.3890 0.0095

DS LAR SPAD All 0.6447 2.4156 0.5209 2.8483

(Continued)
F
rontiers in Plant Science
 14
 fron
tiersin.org

https://doi.org/10.3389/fpls.2025.1546373
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1546373
enhanced the predictive performance of leaf SPAD values and water

content. Particularly when employing the VR and SR fusion models,

the prediction accuracy for leaf physiological indicators was

effectively enhanced. The comprehensive use of these algorithms

not only improved predictive capability but also reduced

dependency on a single dataset, enabling better performance

across a wider range of application scenarios.
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The in situ tracking technology of wearable flexible spectral

sensors offers a new pathway for precision management in modern

agriculture. By monitoring the physiological characteristics of plant

leaves in real-time, agricultural producers can promptly acquire the

growth status of crops, enabling the formulating of scientific and

effective management strategies. In the face of challenges such as

climate change and resource limitations, the promotion of this
TABLE 3 Continued

Noise reduction methods Prediction method Target
Wavelength (nm) Training set Test set

Rc
2 RMSEc Rp

2 RMSEp

GBR All 0.9833 0.5241 0.6369 2.4796

BR All 0.9278 1.0892 0.5806 2.6648

RR

LWC

855 0.6010 0.0071 0.4932 0.0087

GBR All 0.9799 0.0016 0.5115 0.0085

TTR 855 0.6010 0.0071 0.4932 0.0087

DT

LAR

SPAD

All 0.6882 2.2630 0.5909 2.6318

GBR All 0.9741 0.6526 0.6128 2.5606

BR All 0.9234 1.1215 0.5881 2.6410

RR

LWC

All 0.6725 0.0064 0.4857 0.0087

GBR All 0.9850 0.0014 0.4946 0.0087

TTR All 0.6725 0.0064 0.4857 0.0087
fron
FIGURE 10

Measured and predicted values for different models of the original noise reduction spectra. (a) MSC-GBR-SPAD; (b) NORM-GBR-SPAD; (c) NORM-
BR-SPAD; (d) WD-TTR-LWC; (e) NORM-RR-LWC; (f) NORM-TTR-LWC.
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TABLE 4 Noise reduction analysis of raw relative spectral data.

Noise reduction methods
Prediction
method

Target
Wavelength

(nm)
Training set Test set

Rc
2 RMSEc Rp

2 RMSEp

MSC

ABR

SPAD

640 0.8462 1.6403 0.7113 2.0524

HR 640 0.8034 1.8544 0.6817 2.1548

GPR 640 0.8261 1.7444 0.7155 2.0374

RFR

LWC

855 0.9509 0.0025 0.6116 0.0073

GBR 855 0.9383 0.0028 0.6216 0.0072

BR 855 0.9430 0.0027 0.6100 0.0073

SNV

ABR

SPAD

640 0.8547 1.5941 0.6755 2.1756

HR 640 0.8041 1.8512 0.6762 2.1734

GPR 640 0.8371 1.6881 0.7083 2.0629

RFR

LWC

855 0.9518 0.0025 0.6604 0.0068

GBR 855 0.9401 0.0028 0.6667 0.0067

BR 855 0.9440 0.0027 0.6554 0.0068

WD

ABR

SPAD

All 0.8475 1.6334 0.4615 2.8027

HR All 0.7322 2.1645 0.5348 2.6051

GPR 855 0.5128 2.9194 0.4249 2.8964

RFR

LWC

855 0.9470 0.0026 0.5808 0.0075

GBR 855 0.9394 0.0028 0.6125 0.0072

BR 855 0.9322 0.0030 0.5519 0.0078

SMT

ABR

SPAD

All 0.8996 1.3254 0.6288 2.3272

HR All 0.8060 1.8420 0.6646 2.2121

GPR 745 0.6601 2.4386 0.5583 2.5384

RFR

LWC

855 0.9566 0.0024 0.5369 0.0079

GBR 855 0.9483 0.0026 0.5731 0.0076

BR 855 0.9474 0.0026 0.5243 0.0080

NORM

ABR

SPAD

All 0.8937 1.3638 0.5590 2.5364

HR All 0.7692 2.0093 0.6130 2.3761

GPR 640 0.6767 2.3784 0.4456 2.8439

RFR

LWC

All 0.9602 0.0023 0.5201 0.0081

GBR All 0.9844 0.0014 0.5202 0.0081

BR All 0.9502 0.0025 0.5019 0.0082

CR

ABR

SPAD

640 0.8245 1.7521 0.6829 2.1508

HR 640 0.7604 2.0474 0.6835 2.1486

GPR 640 0.7868 1.9312 0.7128 2.0468

RFR

LWC

All 0.9573 0.0024 0.5575 0.0077

GBR All 0.9909 0.0011 0.5346 0.0079

BR All 0.9426 0.0027 0.5669 0.0077

DS ABR SPAD All 0.9032 1.3016 0.6137 2.3740

(Continued)
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TABLE 4 Continued

Noise reduction methods
Prediction
method

Target
Wavelength

(nm)
Training set Test set

Rc
2 RMSEc Rp

2 RMSEp

HR All 0.8030 1.8566 0.6688 2.1981

GPR 690 0.7417 2.1259 0.5423 2.5840

RFR

LWC

All 0.9610 0.0023 0.5219 0.0081

GBR All 0.9876 0.0013 0.5492 0.0078

BR All 0.9503 0.0025 0.4928 0.0083

DT

ABR

SPAD

640 0.8547 1.5941 0.6755 2.1756

HR 640 0.8041 1.8514 0.6762 2.1734

GPR 640 0.8260 1.7445 0.7112 2.0525

RFR

LWC

855 0.9518 0.0025 0.6604 0.0068

GBR 855 0.9401 0.0028 0.6667 0.0067

BR 855 0.9440 0.0027 0.6554 0.0068
F
rontiers in Plant Science
 17
 fr
FIGURE 11

Measured and predicted values for different models of the original relative noise reduction spectra. (a) MSC-ABR-SPAD; (b) MSC-GPR-SPAD; (c) CR-
GPR-SPAD.
TABLE 5 Multi-model fusion analysis of spectral data.

Spectral
type

Fusion
method

Regression
model

Target Wavelength
(nm)

Training set Test set

Rc
2 RMSEc Rp

2 RMSEp

Raw

VR
LAR-GBR-BR SPAD All

0.9161 1.1742 0.6590 2.4030

SR 0.8201 1.7188 0.6399 2.4694

VR
RR-GBR-TTR LWC All

0.8335 0.0046 0.5254 0.0084

SR 0.9336 0.0029 0.5264 0.0084

Raw-MSC
VR

LAR-GBR-BR SPAD All

0.9152 1.1802 0.6873 2.3009

SR 0.8230 1.7048 0.6690 2.3675

Raw-NORM
VR 0.8455 1.5927 0.6304 2.5016

SR 0.9603 0.8078 0.7010 2.2502

Raw-WD VR RR-TTR LWC All 0.6810 0.0063 0.5456 0.0082

(Continued)
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technology is of significant importance to the sustainable

development of agriculture.

Further optimization remains a crucial research direction.

Considering the diversity of crops and the complexity of growing
Frontiers in Plant Science 18
environments, the adaptability, durability, and data collection

capabilities of the sensor need to be improved, particularly in

meeting the demands of different crops and growth stages.

Additionally, integrating Internet of Things (IoT) and big data
TABLE 5 Continued

Spectral
type

Fusion
method

Regression
model

Target Wavelength
(nm)

Training set Test set

Rc
2 RMSEc Rp

2 RMSEp

SR 0.6757 0.0064 0.5352 0.0083

Raw-NORM
VR

855
0.6990 0.0061 0.6039 0.0077

SR 0.7032 0.0061 0.6286 0.0074

Relative

VR
ABR-HR-GPR SPAD 640

0.8392 1.6773 0.6966 2.1038

SR 0.7972 1.8837 0.7114 2.0518

VR
RFR-GBR-BR LWC 855

0.9524 0.0025 0.6647 0.0067

SR 0.9272 0.0031 0.6601 0.0068

Relative-MSC
VR

ABR-HR-GPR SPAD 640

0.8354 1.6968 0.7120 2.0498

SR 0.8035 1.8541 0.7048 2.0751

Relative-CR
VR 0.8021 1.8608 0.7050 2.0747

SR 0.7848 1.9403 0.7145 2.0409

Relative-SNV
VR

FRF-GBR-BR LWC 855

0.9524 0.0025 0.6647 0.0067

SR 0.9272 0.0031 0.6601 0.0068

Relative-DT
VR 0.9524 0.0025 0.6647 0.0067

SR 0.9272 0.0031 0.6601 0.0068
fron
FIGURE 12

Measured and predicted values of multi-model fusion analysis of spectral data. (a) Raw-VR-LAR-GBR-BR-SPAD; (b) Raw-SR-LAR-GBR-BR-SPAD;
(c) Relative-SR-ABR-HR-GPR-SPAD; (d) Raw-VR-RR-GBR-TTR-LWC; (e) Raw-SR-RR-GBR-TTR-LWC; (f) Raw-NORM-SR-RR-TTR-LWC.
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technologies will expand the application of wearable sensors in

agricultural supply chains, promoting the comprehensive

development of smart agriculture.
5 Conclusions

This study verifies the feasibility of the designed flexible spectral

sensor for plant leaves, especially in its application for monitoring

plant physiological characteristics. By integrating the light source

with the AS7343 spectral sensor, an active multi-wavelength

solution for near-ultraviolet, visible, and near-infrared light was

achieved. This design not only improves the sensor’s flexibility but

also enhances its adaptability across different spectral ranges.

During the experimental process, the spectral sensor was installed

on the underside of the leaf using a magnetic connection,

minimizing the impact on leaf photosynthesis and respiration

during long-term data collection. The original spectral reflection

data of the leaves, collected through the AS7343 spectral sensor, was

combined with information from the Clear band to compute the

original relative spectral data. Various processing methods,

including machine learning, denoising preprocessing, and multi-

model fusion, were employed for the original spectral data and

original relative spectral data to complete the regression prediction

analyses of leaf water content and chlorophyll concentration.

Notably, for the leaf chlorophyll in the original relative spectrum,

the Gaussian Process Regression achieved the best prediction result

during multivariate scatter correction, with a Rc² of 0.8261 and

RMSEc of 1.7444 on the training set; on the test set, Rp² was 0.7155,

with RMSEp of 2.0374. Meanwhile, for leaf water content, under

various preprocessing conditions of the relative spectrum, Gradient

Boosting Regression was able to make effective predictions, with Rc²

of 0.9401 and RMSEc of 0.0028 on the training set; on the test set,

Rp² was 0.6667, with RMSEp of 0.0067.
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