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spruce, silver fir and Scots
pine under dry and nutrient-
poor conditions
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Climate change is expected to significantly alter forest ecosystems, reducing the

suitability of the key economic tree species Norway spruce (Picea abies) and

European beech (Fagus sylvatica) in low- and mid-elevation forests of Central

Europe. As these species face increasing pressures from drought, storms, and

pests, it is crucial to identify alternative tree species that are economically viable

and capable of maintaining primary ecosystem services. This study investigated

the potential of Douglas fir (Pseudotsuga menziesii), a non-native conifer, to

establish from seed and compete with native broadleaf and conifer species

during the early regeneration stage under differing resource availabilities. We

assessed the growth performance and phenotypic plasticity of Douglas fir

seedlings over three years in a controlled common-garden experiment.

Seedlings of Douglas fir, along with seven native species — Norway spruce,

silver fir (Abies alba), Scots pine (Pinus sylvestris), European beech, pedunculate

oak (Quercus robur), sessile oak (Q. petraea), and sycamore (Acer

pseudoplatanus) — were grown for three years under factorial combinations of

high and low availabilities of light, nutrients, and water. Seedling height, biomass

allocation to shoots and roots and phenotypic plasticity of these traits were

measured to evaluate the competitive ability of individual species and their

potential to adapt to changing environmental conditions. While Douglas fir

seedlings exhibited strong growth performance compared to the conifers

Norway spruce and silver fir, their biomass production and height growth was

considerably lower than that of the broadleaved sycamore and beech. However,

Douglas fir’s height growth rate in the third year exceeded all species except

sycamore. This was particularly pronounced under dry and/or nutrient-poor

conditions, indicating a potential competitive advantage under expected future

climatic conditions. In agreement with field studies, our results indicate that non-

native Douglas fir may sustainably establish in dry, nutrient poor European

lowland forests due to its superior early growth performance under these
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conditions and the high phenotypic plasticity, of its root system. This holds

especially in situations where the species competes with other conifers, while its

ability to successfully compete with broadleaves appears to be largely restricted

to nutrient-poor sites.
KEYWORDS

climate change, common garden experiment, drought tolerance, European beech,
nonnative species, nutrients
1 Introduction

Climate warming, combined with increasing frequencies of

extreme events and disturbances (Seidl et al., 2014, 2017a), will

alter species distributions (Lenoir et al., 2008; Dyderski et al., 2018)

and shift the dominance of individual species in forest communities

(Fensham et al., 2015; Scherrer et al., 2022). Currently, over 60% of

the standing wood biomass in Swiss forests is comprised of just two

species: Norway spruce (43%; Picea abies (L.) H. Karst.) and

European beech (18%; Fagus sylvatica L.; Cioldi et al., 2020). For

both species, the area with suitable growing conditions is expected

to decline in the future, especially at low- and mid-elevation (400 –

1000 m a.s.l.), where most timber is currently produced (Gessler

et al., 2024). Therefore, potential tree species that could replace

these species and maintain the ecosystem services they provide in

the long term should be carefully evaluated.

European beech is the naturally dominant broadleaf species at

lower elevations in Switzerland (Scherrer et al., 2021), while Norway

spruce was actively planted in these areas for timber production

(Bürgi and Schuler, 2003). Although outside of its natural

distribution range, Norway spruce grows very fast on these sites,

which are warmer with respect to the species’ natural range. At the

same time, the higher temperatures increase the species’

susceptibility to winter storms (Schütz et al., 2006; Scherrer et al.,

2022), drought (Lévesque et al., 2013; Vitasse et al., 2019a), and bark

beetle attacks (Obladen et al., 2021; Scherrer et al., 2023). More

frequent summer droughts and repeated bark beetle infestations

have already started to turn Norway spruce from a bread-and-

butter tree to an ultimate loser, not only in the Swiss lowland forests

but in many regions of Central Europe (Seidl et al., 2017b; Scherrer

et al., 2022). European beech is also getting under increasing

pressure, already showing early signs of maladaptation on sites at

the drier end of its distribution in Northeastern Switzerland

(Schuldt et al., 2020; Frei et al., 2022a). Consequently, alternative

tree species are being sought to substitute the economically

important Norway spruce in production forests at low elevations

and potentially, in the longer term, also European beech at drier

sites. From the pool of native species, potential candidates are

almost exclusively broadleaf species (Frehner et al., 2019) such as

European beech as a substitute for Norway spruce on moist sites

and at high elevations, and oaks (Quercus petraea Liebl.,Q. robur L.,
02
Q. pubescens Willd.), limes (Tilia cordata Mill., T. platyphyllos

Scop.), or maples (Acer pseudoplatanus L., A. campestre L., A.

platanoides L.) to replace European beech on drier lowland sites.

However, sawmills and related cascade uses of wood products are

primarily adapted for coniferous wood, with over 75% of broadleaf

wood being used solely for energy production (Swiss Federal

Statistical Office, 2024). Consequently, the wood industry would

prefer to replace Norway spruce with other conifer species so that

the existing processing chains can be maintained (Vor et al., 2015;

Pluess et al., 2016).

One of the most promising candidates in Central Europe is the

non-native Douglas fir (Pseudotsuga menziesii (Mirb.) Franco),

which can adapt to a wide range of site conditions, including

mesic sites currently stocked with Norway spruce or dry sites

populated by oak. Douglas fir is expected to cope well with

projected climate conditions in this part of Europe due to its

superior drought tolerance compared to native species like

Norway spruce and silver fir (Abies alba Mill.; e.g., Eilmann and

Rigling, 2012; Lévesque et al., 2014; Vitali et al., 2017, 2018; Gazol

et al., 2022). Its drought resistance is attributed to several

physiological and anatomical adaptations including a higher

water use efficiency achieved through effective stomatal

regulation, which minimizes water loss while maintaining

photosynthetic activity during periods of drought (Smit and van

den Driessche, 1992; Jassal et al., 2009), a more resilient xylem

structure that reduces the risk of cavitation (Sperry and Ikeda,

1997), as well as osmotic adjustments to maintain cell turgor and

metabolic function during drought stress (Kavanagh et al., 1999; Du

et al., 2015). These mechanisms collectively contribute to the robust

performance and expected resilience of adult trees under the

increasingly dry summer conditions anticipated for Central

Europe due to climate change. This contrasts with scarce

regeneration in the introduced range (Neophytou et al., 2019; Frei

et al., 2022b) suggesting that the species has difficulties to establish

and to compete with native species during the seedling phase

(Moser et al., 2016).

Since its introduction from North America to Europe in the

19th century (Kohnle et al., 2021), Douglas fir has been planted for

its high productivity and wood quality (González-Garcıá et al.,

2013), primarily on productive sites, where its natural regeneration

potential is limited and the seedlings are outnumbered by rapidly
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growing broadleaves such as European beech, ash (Fraxinus

excelsior L.) or sycamore (Frei et al., 2022b). Only recently has it

been shown that adult Douglas fir is more drought tolerant than

Norway spruce (Lévesque et al., 2014; Vitali et al., 2017) and might

therefore also grow successfully on drier sites. Since plantations

with older, seed-producing Douglas firs are still rare on dry sites

(Frei et al., 2022b), it remains an open question how competitive

Douglas fir performs under drier conditions and different soil

fertility levels (Moser et al., 2016; Frei et al., 2022b; Gazol et al.,

2022). Evidence from Southern Germany suggests that Douglas fir

saplings are able to outcompete native tree species on dry, nutrient

poor sites (Knoerzer and Reif, 1996; Essl, 2005; Bindewald and

Michiels, 2018), which could be linked to the extensive root system

of Douglas fir seedlings in the upper soil layers (Moser et al., 2016)

where most of the nutrients are located.

Despite the advantages in productivity and wood quality, there

are also concerns about ecological impacts of Douglas fir. Pure

Douglas fir stands negatively affect the abundance of several species

groups (Wohlgemuth et al., 2021) such as fungi (Buée et al., 2011;

Schmid et al., 2014), birds (Utschick, 2006), and insects (Gossner

and Simon, 2002; Gossner and Utschick, 2004). However, as a

potential candidate for future low- and mid-elevation timber

production, and provider of other ecosystem services, Douglas

fir’s competitive strength under a wide range of environmental

conditions needs to be assessed.

We investigated the potential of Douglas fir to fill the gaps left

by declining growth performance of Norway spruce and European

beech suffering from drought in Central European lowland forests

both under current and expected future conditions (Schuldt et al.,
Frontiers in Plant Science 03
2020). For this, we tested the performance (i.e., height growth rate

and biomass production) of Douglas fir seedlings growing in

competition with native conifer and broadleaf tree seedlings

under varying combinations of light, nutrient and water

availability during three years after emergence from seeds. In

particular, we analyzed how the species’ phenotypic plasticity

with respect to tree height and biomass partitioning between

shoot and roots affects its competitive ability under varying

environmental conditions compared to the conifers Norway

spruce, silver fir and Scots pine (Pinus sylvestris L.), and the

broadleaves European beech, pedunculate oak, sessile oak

and sycamore.
2 Methods

2.1 Study location and species

To simulate natural regeneration in a mixed temperate forest,

we sowed seeds of Douglas fir (Pseudotsuga menziesii (Mirb.)

Franco) and seven principal tree species of temperate Central

European lowland forests in mesocosms (1 m × 1 m surface, 0.5

m depth; Figure 1A) in a common garden at the Swiss Federal

Research Institute WSL (47°21’38.3”N, 8°27’16.6” E, 550 m a.s.l.) in

April 2016. The site experiences a temperate climate with a mean

annual temperature of 9.3°C and an average annual precipitation of

1134 mm. In addition to our focal species Douglas fir, the

experiment included the three native conifers silver fir (Abies alba

Mill.), Norway spruce (Picea abies (L.) H. Karst.), and Scots pine
FIGURE 1

(A) Experimental setup with three blocks (rows), each containing all factorial combinations of water availability (ambient precipitation, drought
treatment), light availability (low and high shading), and nutrient availability (three levels of fertilization, nested within water × light availability). (B) An
example single mesocosm (split-plot) separated into 48 squares (split-split plots) each containing one of our eight study species (i.e. six replicates
per species per mesocosm). (C) Example of a harvested three-year-old sycamore and Douglas fir including their root network.
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(Pinus sylvestris L.) as well as the four native broadleaf species

sycamore (Acer pseudoplatanus L.), European beech (Fagus

sylvatica L.), pedunculate oak (Quercus robur L.), and sessile oak

(Quercus petraea Liebl.; seed sources see Supplementary Table S1).
2.2 Experimental setup

The experimental design was a split-split-plot replicated 3 times

(blocks), with precipitation and light as whole-plot factors,

nutrients as the split-plot factor (mesocosm), and species as the

split-split-plot factor (Zhang et al., 2020). Each mesocosm was

divided into 48 sowing quadrats of 10 cm × 10 cm, with 3 – 10 seeds

sown per quadrat in April of year 1 (six quadrats per species in each

mesocosm; Figure 1B). Due to extremely low seedling emergence in

European beech, additional seedlings from the same seed lot but

grown in the nursery were planted in empty quadrats in September

of year 1. The number of seedlings was reduced to equal numbers

(three for conifers, two for broadleaves) after leaf-out in spring of

year 2, and to one seedling per quadrat in October of year 2 by

randomly removing the surplus.

Water availability was manipulated from May to October using

throughfall reduction shelters, allowing for either 100% (ambient

precipitation) or 50% (drought treatment) of ambient precipitation.

To ensure consistent germination and seedling establishment, all

mesocosms were regularly watered from April to mid-July and no

drought treatment has been applied in year 1. The total

precipitation from May to October was 729 mm (ambient) and

607 mm (drought) in year 1, 619 mm and 294 mm in year 2, and

672 mm and 340 mm in year 3. During dry periods, mesocosms

were manually watered to match the long-term average May to

October precipitation for the region.

Light availability was manipulated from May (leaf out of beech

in the neighboring forest) to October (leaf fall) by means of shade

cloth with differing light transmittance and different shading of the

throughfall reduction channels (Figure 1A; for more details see

Zhang et al., 2020). In the medium shade treatment, the mesocosms

received 38.8 ± 0.021% (mean ± SE) of photosynthetically active

radiation (PAR; measured on three days in August and September

2018), which corresponds to a medium size canopy gap of 20 – 25

m. In the light shade treatment, PAR reached 58.0 ± 0.022%,

roughly equaling a canopy gap of 35 – 40 m (Gálhidy et al., 2006).

The soil substrate, consisting of 40% quartz sand, 20% fibric

peat, 20% expanded schist, 16% pumice, and 4% clay, was

composed to have a neutral pH (7.3 CaCl) to accommodate all

eight tree species, and low nutrient content (0.0014/<0.001/0.018 g

N/P/K m²) to allow nutrient manipulation. Nutrient manipulations

were done by adding Gesal Floranid slow-release lawn fertilizer

twice a year in April and August. Total nutrient additions were 4.1/

1.3/3.7, 8.7/2.9/8.6, and 17.3/5.7/17.1 g N/P/K m² in the low,

medium, and high nutrient treatments, respectively, in year 1,

and 6/1.5/2.4, 12/3/4.8, and 24.0/6.0/9.6 g N/P/K m² in years 2

and 3. The medium nutrient treatment was designed to provide

sufficient nutrients for tree seedling growth, simulating the nutrient

levels typically found in mesic beech forests (e.g. Galio odorati-
Frontiers in Plant Science 04
Fagetum) across Switzerland (Meier et al., 2005). In contrast, the

low nutrient treatment deprives plants of essential nutrients, while

the high nutrient treatment offers a luxuriant supply of nutrients.

Fertilizer additions were increased in the second and third growing

seasons to account for growing plant biomass and nutrient demand.
2.3 Measurements after three years

The height of the seedlings was measured at the end of the

growing seasons in year 1, 2 and 3, while above ground biomass (dry

weight) was assessed after harvest in autumn in year 3. For a

random subset of 10 plants per species and treatment combination,

the roots were carefully excavated and their biomass measured

(Figure 1C). To calculate fine root biomass fraction, the roots of one

block (4 individuals per treatment combination, only high and low

nutrient mesocosms) were separated into fine (< 1mm root

diameter) and coarse (> 1mm root diameter) root biomass.
2.4 Data analysis

Seedling height and 3rd year height growth increment were

considered proxies for the competitive ability of a seedling

individual. In forest ecosystems, light is one of the key limited

resources and fast height growth is essential for seedlings to

compete with surrounding vegetation (Bachofen et al., 2019). The

fraction of below ground biomass with respect to total biomass

(root biomass fraction) and the fraction of fine roots with respect to

total root biomass (fine root biomass fraction) are characteristics of

a species’ resource investment strategy. Their variation across

treatments, i.e. phenotypic plasticity, shows the degree, to which a

species is able to adapt to different environments.

Linear Mixed Effects Models (LMEs) were employed to evaluate

the influence of species identity (8 levels), light (2 levels), water (2

levels), and nutrient (3 levels), as well as their interactions, on tree

seedling height, biomass allocation to shoot (above-ground) and

roots (below-ground), root biomass fraction, and fine root biomass

fraction. Since all overall models with species as fixed factor showed

significant species × environment interactions, we also run LMEs for

individual species. These analyses were conducted using the R

package `lme4` (Pinheiro and Bates, 2006; Pinheiro et al., 2023).

All models incorporatedmesocosms nested within blocks as random

factors to account for the spatial arrangement of the experimental

setup (Figure 1A). Response variables were log-transformed when

necessary to ensure normal distribution and homogeneity of

variance. In addition, species-specific phenotypic plasticity was

estimated for different traits using the Relative Distance Plasticity

Index (RDPI; Valladares et al., 2006), which takes into account the

variation of a given trait among treatment combinations.

Our analysis focused on the performance of Douglas fir in

comparison to the seven native species, rather than a complete

pairwise comparison of all species. To achieve this, we compared for

each species the individual plant measurement to the mean value of

Douglas fir within the same treatment combination (i.e., log
frontiersin.org
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response ratio). We calculated the log response ratio of the seven

native species for tree height, above and below ground biomass, root

biomass fraction, and fine root biomass fraction for all factorial

combinations of light, water, and nutrient availability. To identify

significant differences between each native species and Douglas fir

within each treatment combination, we used one-sample t-tests,

corrected for multiple-testing according to Benjamini and

Hochberg (1995).
3 Results

3.1 Effects of light, water and nutrient
availability on tree seedlings

After three years of growth, plant height, 3rd year height growth

increment, total biomass, above ground biomass, below ground

biomass, and the root biomass fraction, were most and foremost

determined by species identity (Supplementary Table S2). As a result,

variation among species was high, with sycamore outperforming all

other species (Supplementary Figures S1-S6). Treatment effects (i.e.,

light, water and nutrient availability) were much smaller and differed

among species, with significant species × nutrients and species × water

interactions for all traits (Table 1; Supplementary Material). The

addition of fertilizer resulted in a smaller root biomass fraction in all

species, i.e. the seedlings allocated less biomass to roots under

conditions of medium to high nutrient content compared to low

nutrient content (Supplementary Figure S7; Table 1). Sycamore

showed the most consistent reaction to nutrient addition, producing

taller shoots along with more above and below ground biomass in the

medium and high fertilizer treatments (Table 1). Similar to sycamore,

Scots pine and pedunculate oak grew taller in the high fertilizer

treatment but had comparable biomass in all fertilizer treatments,

while silver fir produced more shoot biomass but not taller shoots. By

contrast, high nutrient content led to lower height growth increments

in the 3rd year in sycamore, Scots pine, and Douglas fir. Water

availability mainly affected sessile oak and Scots pine, with high
Frontiers in Plant Science 05
precipitation leading to shorter shoots and, in the case of sessile oak,

also lower above and below ground biomass (Table 1). In most species,

light did neither affect seedling height nor biomass allocation. Only

sycamore and beech produced higher root biomass in large canopy

gaps (58% light availability), while beech also produced more above

ground biomass (Table 1).
3.2 Competitive ability of Douglas fir

After three years of seedling growth, Douglas fir outperformed

native silver fir and Norway spruce in total biomass, above ground

biomass, below ground biomass, and fine root biomass under limiting

conditions—such as low nutrient availability, smaller canopy gaps,

and drought treatments (Supplementary Figures S9-S12). The

difference between species was particularly pronounced when

multiple stressors were combined. The third native conifer, Scots

pine, however, had higher total biomass and shoot biomass than

Douglas fir, while root and fine root biomass were similar between

the two species (Supplementary Figures S9-S12). In comparison with

broadleaved natives, Douglas fir exhibited lower total biomass, above

ground biomass (with the exception of sessile oak), root biomass, and

fine root biomass (Supplementary Figures S9-S12).

The 3rd year height growth increment of Douglas fir, Norway

spruce and Scots pine exceeded that of the oaks and beech in most

treatment combinations (Figure 2). Notably, Douglas fir had the

highest 3rd year height growth increment among these species when

all resources were limited (medium gap × drought × low nutrients;

Figure 2). Consequently, after three years it achieved the highest

plant height of all conifers, surpassing even sessile oak (Figure 3).
3.3 Biomass partitioning and
phenotypic plasticity

The conifers exhibited substantially higher fine root biomass

fractions than broadleaf species (Figure 4). While Douglas fir
TABLE 1 The influence of nutrient, water and light availability on diverse plant traits after 3 years of seedling growth based on individual species
Linear Mixed Effects models (LMEs).

Plant height Height growth Shoot biomass Root biomass Total biomass Root biomass fraction

Species N W L N W L N W L N W L N W L N W L

Douglas fir - - - ↓ - - - - - - - - - - - ↓ - -

Norway spruce - - - - - - - - - - - - - - - ↓ ↑ -

Scots pine ↑ ↓ - ↓ - - - - - - - - - - - ↓ - -

Silver fir - - - - - - ↑ - - - - - - - - ↓ - -

Sycamore ↑ - - ↓ - - ↑ - - ↑ - ↑ ↑ - - ↓ - ↑

European beech - - - - - - - - ↑ - - ↑ - - ↑ ↓ - -

Sessile oak - ↓ - - - - - ↓ - - ↓ - - ↓ - ↓ - -

Pedunculate oak ↑ - - - - - - - - - - - - - - ↓ - -
front
N, Nutrients (low [reference level], medium, high); W, Water (50% of ambient [reference], ambient); L, Light (38% [reference], 50%). All the underlaying LMEs can be found in
Supplementary Material.
↑↓ Significant increase or decrease (p < 0.05).
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FIGURE 2

Plant height growth increment in the 3rd year of the experiment for the seven native plant species compared to Douglas fir across all possible light,
water, and nutrient treatments. The values of all native plant species were standardized by the corresponding value of Douglas fir in the same
treatment combination. Low, medium, and high indicate the three nutrient levels. Aa = Silver fir, Pa = Norway spruce, Ps = Scots pine, Pm = Douglas
fir, Qp = Sessile oak, Qr = Pedunculate oak, Fs = European beech, Ap = Sycamore. *p < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 3

Plant height after three years of the experiment for the seven native plant species compared to Douglas fir across all possible light, water, and
nutrient treatments. The values of all native plant species were standardized by the corresponding value of Douglas fir in the same treatment
combination. Low, medium, and high indicate the three nutrient levels. Aa = Silver fir, Pa = Norway spruce, Ps = Scots pine, Pm = Douglas fir, Qp =
Sessile oak, Qr = Pedunculate oak, Fs = European beech, Ap = Sycamore. *p < 0.05, **p < 0.01, ***p < 0.001.
Frontiers in Plant Science frontiersin.org06
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generally had the highest below ground biomass among conifers, it

displayed significantly lower below ground biomass compared to

broadleaf species (Supplementary Figure S11). However, this

difference is largely due to broadleaf species developing

substantial taproots, whereas Douglas fir primarily invests in

fine roots.

Broadleaf species demonstrated greater plasticity in above

ground biomass compared to conifers, while variations in below

ground biomass and fine roots were similar in both species groups,

with the notable exception of silver fir, which exhibited very low

plasticity across all traits (Figure 5). Conifers, including Douglas fir,

adjusted to the environment with a highly plastic root biomass

fraction, whereas broadleaves adapted their fine root biomass

fraction, instead (Figure 5). Nutrient addition triggered the largest

phenotypic adaptations in terms of shoot and root biomass, and

root biomass fraction, surpassing those induced by drought or light

conditions (Figure 5). In the conifers, this was also true for fine root

biomass, while water availability was the more important driver of

fine root biomass allocation in broadleaves.
4 Discussion

After its introduction to Europe, Douglas fir was mainly planted

on productive sites, so that today’s seed-producing stands only cover

a small environmental gradient in Switzerland (Frei et al., 2022b).

With our experimental set-up, we aimed to test the competitive
Frontiers in Plant Science 07
ability of Douglas fir compared to key native tree species also on less

fertile sites and under different canopy gap sizes. Our results show

that the performance of Douglas fir, compared to native tree species,

is highly dependent on resource availability, indicating that its ability

to regenerate in a competitive environment might differ among sites.

While sycamore, beech, and sessile oak consistently grew taller and

produced more biomass than Douglas fir across all treatment

combinations, Douglas fir consistently outperformed silver fir,

which exhibited the smallest stature and lowest biomass. This

difference in growth rates is well-documented, as silver fir generally

shows very slow growth during its early years. Silver fir compensates

for its slow start with exceptional shade tolerance (Niinemets and

Valladares, 2006), allowing it to thrive for extended periods under

closed canopies (Dobrowolska et al., 2017). This adaptability enables

silver fir to eventually reach the canopy even in dense forest stands, as

it can persist in the understory longer than many other species.

Consequently, silver fir may outperform Douglas fir under very low

light conditions, such as those found under a closed canopy —

conditions that were not tested in this study. Additionally, long-term

observations have revealed that silver fir possesses a high degree of

drought resistance and exhibits better recovery and growth after

drought compared to Norway spruce (Vitasse et al., 2019b), not being

as robust as Douglas fir, though (Vitali et al., 2017).

The competitive outcome between Douglas fir and pedunculate

oak, Scots pine and Norway spruce was, in contrast, more complex

and differed among traits and resource availability. While

pedunculate oak accumulated similar amounts of biomass as
FIGURE 4

Fine root biomass fraction (fine root biomass/below ground biomass) after three years of the experiment for the seven native plant species compared to
Douglas fir across all possible light, water, and nutrient treatments. The values of all native plant species were standardized by the corresponding value of
Douglas fir in the same treatment combination. Low, medium, and high indicate the three nutrient levels. Aa = Silver fir, Pa = Norway spruce, Ps = Scots
pine, Pm = Douglas fir, Qp = Sessile oak, Qr = Pedunculate oak, Fs = European beech, Ap = Sycamore. *p < 0.05, **p < 0.01, ***p < 0.001.
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Douglas fir in the first three years, Scots pine produced more, and

Norway spruce less biomass. In terms of tree height, however,

Douglas fir seedlings outcompeted all three species, especially under

low nutrient conditions. To gain height quickly is important for tree

seedlings in order to escape competition for light from

accompanying vegetation and browsing pressure by deer

(Bachofen et al., 2019). The exceptional height growth increments

of Douglas fir in the 3rd year, which exceeded those of all other

species except sycamore, indicate that Douglas fir would catch up in

height with beech or sessile oak in the following years, and

outperform pedunculate oak, Scots pine, Norway spruce and

silver fir even more. The fact that height growth increments of

Douglas fir were particularly increased compared to most other tree

species under conditions of low resource availability (low nutrients

combined with low water and/or lower light) suggests that its

competitive ability is particularly pronounced on dry, nutrient

poor sites. Even though these findings are based on a common

garden experiment, they align very well with several studies in forest

ecosystems in Austria and southern Germany, where natural

regeneration of Douglas fir was particularly abundant in dry,

resource poor oak forests (Knoerzer and Reif, 1996; Essl, 2005;

Bindewald and Michiels, 2018). These results might raise some

concern because oak forests harbor a particularly high level of

biodiversity and might be affected by the spread of Douglas fir.

The success of Douglas fir in resource poor environments might

be related to its capability to adjust its root morphology to local

conditions. All species increased the fraction of fine root biomass in

response to low nutrient availability, but Douglas fir, along with

Norway spruce, had the highest fine root fractions when all

resources were limited. A high fraction of fine roots allows these

two species to more efficiently capture nutrients and water in an

environment with highly fluctuating water availability, as for

instance in dry regions or on soils with low water retention

capacity (Davis et al., 2000). Douglas fir has a higher proportion

of fine roots in the topsoil compared to broadleaf species, which

generally concentrate their root biomass in a large taproot necessary

for the stability of the plants. Although the absence of deep roots in

the early life stages may pose a disadvantage during prolonged

droughts (Moser et al., 2016), it allows Douglas fir seedlings to
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efficiently capture nutrients that are concentrated in the organic

upper layers of the soil. This likely provides Douglas fir with a

distinct advantage under dry and nutrient-poor conditions.
4.1 Competitive ability of Douglas fir
compared to native conifers

Norway spruce is currently the most important timber species

in Switzerland, but it increasingly suffers from bark beetle

infestation at low- and mid-elevations, where most commercial

timber production occurs (Hlásny et al., 2021). Norway spruce is

highly susceptible to destructive disturbances such as winter storms,

bark beetle outbreaks, and summer droughts, leading to significant

diebacks (e.g., Lévesque et al., 2013, 2014; Obladen et al., 2021;

Scherrer et al., 2023). In recent years, the volume of Norway spruce

wood from sanitation harvests after dieback events has far exceeded

that from scheduled harvests (Wohlgemuth et al., 2023).

Consequently, there is a pressing need for an alternative and

more drought-resistant coniferous timber species at lower

elevations to ensure sustainable wood production under climate

warming. Adult Douglas fir is much less affected by bark beetle

outbreaks than Norway spruce, ultimately limiting the risk of large

dieback (Dubach et al., 2020).

Nevertheless, it is important to thoroughly test the behavior of

non-native species and their interactions with extant tree species

before promoting them in a new environment (Kreyling et al., 2011;

Pedlar et al., 2012; Wohlgemuth et al., 2022). Because Douglas fir is

still rare at a national level in Switzerland, it is impossible to draw

conclusions about its competitive ability from monitoring data such

as national forest inventories. While our common garden findings

cannot be directly extrapolated to forest ecosystems, they give

important insights in the competitive strength between species

and their responsiveness to different environmental factors.

Having grown the seedlings from seed in mesocosms avoids

legacy effects known to arise when seedlings are raised in

nurseries. In our experiment, Douglas fir demonstrated growth

and biomass production comparable to, or exceeding, that of

Norway spruce, particularly under the anticipated drier
FIGURE 5

Relative Distance Plasticity Index (RDPI) of the eight different tree species and across the different treatments. All = Across all treatment
combinations, Water = Water availability (2 levels), Nutrients = Nutrient availability (3 levels), Light = Light availability (2 levels). Aa = Silver fir,
Pa = Norway spruce, Ps = Scots pine, Pm = Douglas fir, Qp = Sessile oak, Qr = Pedunculate oak, Fs = European beech, Ap = Sycamore.
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conditions of future climates. This was observed even in light

conditions corresponding to medium-sized canopy gaps.

Over the first three years, Douglas fir exhibited the most

promising growth among the four conifer species studied. It

shows potential as a viable alternative to Norway spruce,

especially in drier and nutrient-poor sites where it has not yet

been widely planted. Being more shade tolerant than Scots pine, and

more drought tolerant than Norway spruce, Douglas fir appears

best suited to anticipated future conditions on resource limited sites.

Due to its high juvenile growth rate, Douglas fir is susceptible to

ungulate browsing for a much shorter time than silver fir

(Chakraborty et al., 2024), although it is known to be vulnerable

to fraying and bark stripping (Nicolescu et al., 2023).
4.2 Competitive ability of Douglas fir
compared to deciduous broadleaves under
future conditions

During the first three years, broadleaf species generally

outperformed Douglas fir in both above ground and below ground

biomass, as well as in plant height, demonstrating superior

competitive ability under both current and future climatic

conditions. However, under experimental conditions simulating

dryer future conditions, Douglas fir’s 3rd year growth increment

surpassed that of all broadleaf species except sycamore. Provided that

canopy gaps remain open long enough, Douglas fir thus has the

potential to even outgrow many broadleaf species, including climax

species like oaks and European beech in Switzerland. Ultimately, the

competitive outcome between Douglas fir and fast-growing pioneer

and mid-successional species like sycamore in later successional

stages will also depend on biotic factors such as ungulate browsing

(Petritan et al., 2007; Petrovska et al., 2022).

Even though natural Douglas fir regeneration is currently not

abundant in Swiss low and mid-elevation forests (Frei et al., 2021),

evidence from our experiment suggests that Douglas fir can

successfully regenerate from seeds if propagule pressure is high,

i.e. enough seed trees are available in low and mid-elevation forests

traditionally dominated by broadleaf species. Its success, however,

will depend to a large degree on resource availability, sites

conditions (Ammann, 2020), and light transmittance. This aligns

with current silvicultural practices in these regions, which have

predominantly relied on natural regeneration and are now

increasingly combined with planting. While Douglas fir is likely

to depend on active support from foresters during the thinning

phase to ensure successful establishment and high wood quality on

nutrient rich, mesic sites (Frei et al., 2022b), it is important to note

that, that Douglas fir has a competitive advantage compared to

many species on resource poor sites where it may potentially even

become invasive. This is underpinned by observations in oak forests

on open, rocky landscape (Knoerzer and Reif, 1996; Höltermann

et al., 2013). Accordingly, negative effects of non-native Douglas fir

on the biodiversity of various tree- and wood-dependent taxa (for a

summary see Wohlgemuth et al., 2021) might be more pronounced

in resource poor forests than in nutrient rich sites, where it seems

currently not outcompeting native species.
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5 Conclusion

This study assessed the early growth of Douglas fir compared to

native species common in the broadleaf-dominated lowland forests in

Central Europe. Our findings revealed that, during the first three

years, broadleaf species, including sycamore, generally outperformed

Douglas fir and other conifers in terms of biomass and height.

However, this early advantage does not necessarily lead to later

canopy dominance, as continuous growth is possible only under

long-lasting sufficient light conditions. But, Douglas fir demonstrated

outstanding growth rates on nutrient-poor soils and under drought

conditions in competition with native conifers and even some

broadleaves. The adaptability of Douglas fir to dry and poor

conditions suggests that it could serve as a viable alternative timber

species, particularly in the face of climate change.

Based on our findings, Douglas fir is likely to be able to

successfully establish, compete and regenerate in coniferous stands

across a large variety of environmental conditions. On sites naturally

dominated by broadleaf species, Douglas fir might only be able to

successfully recruit on nutrient and water limited sites.
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Lévesque, M., Saurer, M., Siegwolf, R., Eilmann, B., Brang, P., Bugmann, H., et al.
(2013). Drought response of five conifer species under contrasting water availability
suggests high vulnerability of Norway spruce and European larch. Global Change Biol.
19, 3184–3199. doi: 10.1111/gcb.2013.19.issue-10

Meier, I. C., Leuschner, C., and Hertel, D. (2005). Nutrient return with leaf litter fall
in Fagus sylvatica forests across a soil fertility gradient. Plant Ecol. 177, 99–112.
doi: 10.1007/s11258-005-2221-z

Moser, B., Bachofen, C., Müller, J. D., Metslaid, M., and Wohlgemuth, T. (2016).
Root architecture might account for contrasting establishment success of Pseudotsuga
menziesii var. menziesii and Pinus sylvestris in Central Europe under dry conditions.
Ann. For. Sci. 73, 959–970. doi: 10.1007/s13595-016-0574-1

Neophytou, C., van Loo, M., and Hasenauer, H. (2019). Genetic diversity in
introduced Douglas-fir and its natural regeneration in Central Europe. Forestry: Int.
J. For. Res. 93, 535–544. doi: 10.1093/forestry/cpz055

Nicolescu, V.-N., Mason, W. L., Bastien, J.-C., Vor, T., Petkova, K., Podrázský, V.,
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